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This paper continues the series of works [1–5] on
the shortwave diffraction on the prolate body of
revolution. The numerical comparison of the wave
currents for Dirichlet and Neumann boundary con-
ditions confirms the continuous transition of the
current from the lit area into the shadowed zones
through Fock’s zone. The formulae for the cur-
rents were obtained according to the Leontovich–
Fock parabolic equation method [6]. We investigated
the influence of the correction term that contains
the large parameter, on the Fock’s current. This
large parameter reflects body’s elongation. Diffrac-
tion formulae obtained in [1,4], give the integral rep-
resentation of the field in some neighborhood of the
point, which is located on the boundary of geometric
shadow. These formulae give a continuous transfor-
mation from ray field in the lit area to the field in
the shadow using Fock’s currents.

1 Introduction

This paper considers an axi-symmetric shortwave
diffraction problem of a plane wave. The plane
wave incidents a strictly convex prolate body of
revolution Ω along the rotation axis. The prolate
body Ω (obstacle, scatterer) has two major geo-
metric characteristics at its surface ∂Ω: curvature
radii along and perpendicular to the rotation axis.
Both radii are assumed to be much larger than the
wavelength of the incident wave. Wave field U sat-
isfies Helmholtz equation (∆ + k2)U = 0, where
k � 1 is the wave-number. Either the Dirichlet or
the Neumann condition is set on the surface of the
scatterer. We choose a solution that satisfies the
limiting absorption principle at far distances from
the body.

The Equator coincides with the shadow-light
boundary created by the plane incident wave. We
denote by s the arc length along the geodesic curve
on the surface of revolution, measured from the
Equator, and n is the coordinate along the outward

normal to the scatterer’s surface. It measures the
distance from ∂Ω to the observation point (s, n).
We find the axi-symmetric solution of the problem,
namely the wave filed U , such that

∂U

∂ϕ
= 0, 0 ≤ ϕ ≤ 2π,

where ϕ is the angle of body revolution.
The solution has the form U = eiksW (s, n),

where eiks describes the main oscillations of the
wave field, and W is the attenuation function.

We use the Fock–Leontovich parabolic equation
method [1,4,6] to obtain the first three terms of the
asymptotic expansion

U = eiksW = eiks
(
W0 +

W1

k
1
3

+
W2

k
2
3

+O
(
k−1

))
,

(1)
where each of the terms Wj = W inc

j + W ref
j , j =

0, 1, 2, is the full wave field, namely the sum of the
incident and the reflected waves. We call W0 the
main, W1 the first correcting and W2 the second
correcting terms of the expansion. Expansions (1)

1
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Figure 1: The main five zones near ∂Ω: lit
zone 1 , the Fock’s zone 2 , neighborhood of
the limit ray 3 , zone 4 is a shadow, zone 5 is
a surface layer full of creeping waves.
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Figure 2: Penumbra and shadow regions
σ > 0. The field in the shadow region 4 be-
tween regions 3 and 5 has ray nature of the
leaving wave. Region 5 is the creeping waves
zone with ν = O(1), s = O(1).

have been obtained for both the Dirichlet [1] and
the Neumann problems [4].

The field has been constructed in the vicinity of
the light-shadow boundary, see zone 3 in Fig. 1,
this is a penumbra Fock’s region. The point with
coordinates (s = 0, n = 0) belongs to the geomet-
ric boundary of the shadow, which is the Equa-
tor. In the neighborhood of that point, we intro-
duce Fock’s boundary layer, where O(k

1
3 s) = O(1),

O(k
2
3n) = O(1). Body Ω is three-dimensional, we

use coordinates (s, n, ϕ) in the vicinity of the Equa-
tor, see Fig. 2. Since we measure the distance s
from the Equator, s = 0 at the Equator; s > 0 cor-
responds to the shadowed part of the surface; s < 0
corresponds to the lit zone. Fock’s zone was called
“field nucleus” by V. M. Babich [7]. If we know the
wave field in this zone, we can construct an asymp-
totic of the wave field in the lit region 1 , in the
vicinity of the extreme ray 3 and in the shadowed
region 4 . In our case, this zone is a circular domain
in the vicinity of the light-shadow boundary (near
the Equator), where coordinates s and n are quite
small. Thus we use the stretched dimensionless co-
ordinates (σ, ν) as

σ =
M0

ρ0
s, ν =

2M2
0

ρ0
n.

Here M0 is the Fock’s large parameter, such that
formula (2) defines ρ0 as the curvature radius of
geodesics (meridians) on the Equator:(

kρ0

2

)1
3

= M0, ρ0 = ρ(s)
∣∣
s=0

. (2)

The aforementioned formulae are valid in any plane
ϕ = const, for instance, when ϕ = 0.

Figure 3: Integration contour Γ = Γ1 ∪ Γ2

goes along the straight line from ∞ei 2π3 to 0,
and then from 0 to ∞ along the positive real
axis in the complex plane of ζ. The roots of
w1(ζ) and w′1(ζ) belong to the ray ei

π
3 (shown

as stars).

2 The currents for the main term W0 in
the penumbra zone

We follow V. A. Fock [6] and present the main term
of asymptotics (1) in a form of a contour integral
for the Dirichlet problem:

WDir
0 =

1√
π

∫
Γ

eiσζ
[
v(ζ − ν)− v(ζ)

w1(ζ)
w1(ζ − ν)

]
dζ,

(3)
and for the Neumann problem:

WNeu
0 =

1√
π

∫
Γ

eiσζ
[
v(ζ−ν)− v′(ζ)

w′1(ζ)
w1(ζ−ν)

]
dζ.

(4)
Contour Γ is described in Fig. 3. This contour cov-
ers the roots of Airy function w1(ζq), q = 1, 2, . . .,
in the first quadrant, or the roots of its derivative
w′1(ζ ′q). The roots of Airy function w1(ζ) and its

derivative belong to the ray ei
π
3 .

The main approximation of the Dirichlet problem
current IDir

0 is a value of the derivative of WDir
0 with

respect to the normal n at n = 0, i.e.,

IDir
0 =

∂

∂n
WDir

0

∣∣∣∣
n=0

=
∂

∂ν
WDir

0 · ∂ν
∂n

∣∣∣∣
n=0

or, going further, since the Wronskian is
v(ζ)w′1(ζ)− v′(ζ)w1(ζ) = 1,

IDir
0 =

2M2
0

ρ0

1√
π

∫
Γ

eiσζdζ

w1(ζ)
.

Thus the dimensionless Dirichlet current for the nu-
merical implementation is

k−1IDir
0 =

1

M0

1√
π

∫
Γ

eiσζdζ

w1(ζ)
=

1

M0
f(σ). (5)
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For the Neumann problem, the main approximation
to the current is the value of the full field WNeu

0 on
the surface of the scatterer, i.e., when n = 0:

INeu
0 = WNeu

0

∣∣∣
n=0

=
1√
π

∫
Γ

eiσζ
dζ

w′1(ζ)
= g(σ). (6)

In the book [6] by V. A. Fock, the currents intro-
duced for the Dirichlet problem f(σ), and for the
Neumann problem, g(σ), have the following forms

f(σ) =
1√
π

∫
Γ

eiσζ
dζ

w1(ζ)
, (7)

g(σ) =
1√
π

∫
Γ

eiσζ
dζ

w′1(ζ)
. (8)

Together with integrals (7), (8), V. A. Fock intro-
duced functions F (σ), G(σ), corresponding to the
Dirichlet and Neumann problems:

F (σ) = e
iσ3

3 f(σ), G(σ) = e
iσ3

3 g(σ).

Then the dimensionless current for the Dirichlet
and Neumann problem is equal in the main approx-
imation to

k−1IDir
0 =

1

M0
e−i

σ3

3 F (σ), (9)

INeu
0 = e−i

σ3

3 G(σ). (10)

3 Comparison of the currents in main ap-
proximation with ray solution

We compare Fock’s currents (5), (6) (or (9), (10))
with the ray solution in the lit area 1 , Fig. 1.
V. A. Fock showed that with σ large and nega-
tive, the reflected field coincides with the reflected
geometric-optical wave in the Fock’s boundary layer

W ref = ∓

√
|σ∗|√
σ2 + 3ν

exp

[
i

(
− 5

27
σ3 − νσ

3

+
4

27
(σ2 + 3ν)

3
2

)]
, (11)

where σ∗ = 2
3σ−

1
3

√
σ2 + 3ν, σ = −|σ| < 0 (see [3]).

The minus sign in front of a radical corresponds to
the Dirichlet, and the plus sign to the Neumann
boundary condition. As σ → −∞ and restricting
ν = O(1), formula (11) can be simplified. Denoting
the expression for the reflected wave by W ref

−∞, we
write

W ref
−∞ = ∓

√
2σ2 + ν√
2σ2 + 3ν

e−i
(
νσ+σ3

3

)
.

The full field in the lit zone as σ → −∞ is then
equal to

W ray = W inc +W ref
−∞

= ei
(
νσ−σ33

)
∓
√

2σ2 + ν√
2σ2 + 3ν

e−i
(
νσ+σ3

3

)
.

Then the dimensionless current for the Dirichlet
problem has the following form as σ → −∞:

k−1IDir
0 =

1

M0

(
2iσ +O

(
σ−2

))
e−i

σ3

3 . (12)

Comparing formulae (9) and (12), we get

F (σ) = 2iσ +O
(
σ−2

)
, as σ → −∞.

Similarly, for the Neumann problem, the current is
equal to

INeu
0 =

[
2 +O

(
σ−3

)]
e−i

σ3

3 , as σ → −∞. (13)

Formulae (10), (13) imply that

G(σ) = 2 +O
(
σ−3

)
, as σ → −∞.

Under Ray method assumptions, the current on
the perfectly reflecting boundary (s < 0) equals
the double of the current of the reflected wave.
Moreover, the current is vanishing in the penum-
bra (s > 0).

4 Currents in the shadowed zone

The incident waves do not penetrate the penumbra
region (s > 0), but the integrand exp (iσζ) of (5),
(6), decays exponentially at σ > 0 in the upper half-
plane (Im ζ > 0), since | exp (iσζ)| = exp (−σ Im ζ).
In this case the integration contour Γ should be
lifted up into the upper half-plane. The poles of
the integrand, which are the roots of either Airy
function w1(ζq) = 0, q = 1, 2, . . ., or the roots of
the derivative of Airy function w′1(ζ ′q) = 0, become
residues under the latter contour shift. The roots
belong to the ray arg(ζ) = π

3 . In the shadow zone,
functions F (σ), G(σ), σ > 0, decay exponentially
as exp (−σ Im ζq), q = 1, 2, . . ., or exp (−σ Im ζ ′q).
Therefore, functions F (σ) and G(σ) describe grad-
ual decay of the field amplitude on the way from
the light to the shadow.

In the shadowed part of the scatterer, we con-
sider the main term of the Dirichlet asymptotics
(3) as σ > 0, recalling that ζq are the roots of Airy
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function, w1(ζq) = 0. Thus, the residue at pole ζq,
q = 1, 2, . . ., for the integral (3) equals to

Res
ζ→ζ1

WDir
0 = −2

√
πi
∑
q=1

w1(ζq − ν)

[w′1(ζq)]2
eiσζq .

Then, the dimensionless current k−1IDir
0 for the

Dirichlet problem equals to the sum of exponen-
tially decaying currents

k−1IDir
0 =

∑
q=1

1

M0

2
√
πi

w′1(ζq)
e
σ|ζq|

2 (i−
√

3)

=
1

M0
e−i

σ3

3 F (σ).

It is enough to compute function F (σ) given by (7)
in the shadow zone for q = 1, since |ζq| > |ζ1| for
all q > 1, thus the corresponding terms decay faster

than exp
(
−σ|ζ1|

√
3

2

)
. In the shadow zone, function

F (σ) ≈ ei
(
σ3

3 +
σ|ζ1|

2

)
c1 · e−σ|ζ1|

√
3

2

decays exponentially, i.e., amplitude decreases as
we go deeper into shadow.

Thus, for the Neumann case and (4), we have

Res
ζ→ζ′q

WNeu
0 = 2

√
πi
∑
q=1

w1(ζ ′q − ν)

ζ ′q[w1(ζ ′q)]
2
eiσζ

′
q .

The Neumann dimensionless current also equals the
sum of the currents

INeu
0 = e

−iσ3
3 G(σ)

=
∑
q=1

2
√
πie

σ|ζ′q|
2 (i−

√
3) 1

ζ ′qw1(ζ ′q)
.

In the shadow zone, function G(σ) also decays ex-
ponentially,

G(σ) ≈ c2ei
(
σ3

3 +
σ|ζ′1|

2

)
e−σ|ζ

′
1|
√

3
2 .

Thus, due to the presence of the negative exponent
in F (σ) and G(σ) in the shadow zone, the current
in the shadow decays fast. Fock’s formulae (3), (4)
give continuous transition of the current from the
lit zone to the shadow zone in both Dirichlet and
Neumann problems [6]. Table below present the
first three roots of the Airy function w1(ζq) = 0
and its derivative w′1(ζ ′q) = 0:

ζ1 = 2.33811 · eiπ3 , ζ ′1 = 1.01879 · eiπ3 ,
ζ2 = 4.08795 · eiπ3 , ζ ′2 = 3.24820 · eiπ3 ,
ζ3 = 5.52056 · eiπ3 , ζ ′3 = 4.82010 · eiπ3 .

Even though the currents are valid near the sur-
face, they can be used to calculate the field at far
distances also by using quadratures.

5 Correction terms W2

Consider the correction terms W1 and W2 in (1).
Calculation of these terms requires time and effort
[1, 4]. The second large parameter Λ0 = ρ0

f(0) ap-

pears to matter due to the shape of the scatterer,
this parameter measures its prolongation. Here
f(0) is the curvature radius of the Equator.

For the numerical experiment we take ρ′0 = 0.
Then the first correction term W1 vanishes, as ρ′0 is
its factor. Prolongation parameter Λ0 appears in
the second correction term W2 in combination with
M0, namely, as Λ0

2M2
0

and their positive powers. The

restriction of validity of the obtained asymptotic
series then is Λ0 = 2M2−ε

0 , 0 < ε < 2. When
ε = 2, we have Λ0 = O(1) and both curvatures’
radii does not differ much from each other, which
is not a case of prolate body.

In the case of ε = 0, the large parameter Λ0 com-
pensates the Fock’s large parameter M0. There-
fore, the system of equations

L0W0 = 0,

L0W1 + L1W0 = 0,

L0W2 + L1W1 + L2W0 = 0,

. . .

loses its asymptotic nature and all the equations
get singular in their coefficients [2].

The current from the correction term W2 in the
Dirichlet problem has the following form on the sur-
face ∂Ω [1]

k−1IDir =
1

M0
√
π

∫
Γ

eiσζ

w1(ζ)
dζ

+
Λ0

2
√
πM3

0

∫
Γ

eiσζ
[

ζ

w1(ζ)
− [w′1(ζ)]2

[w1(ζ)]3

]
dζ. (14)

The dimensionless variable σ describes the position
of the observation in the Fock’s zone in (14). The
corresponding current for the Neumann case is then
as follows:

INeu =
1√
π

∫
Γ

eiσζ

w′1(ζ)
dζ

+
1√
π

Λ0

2M2
0

∫
Γ

eiσζ
[

ζ

w′1(ζ)
− ζ

2[w1(ζ)]2

[w′1(ζ)]3

]
dζ.

(15)
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Figure 4: Neumann Fock’s current (6) and its asymptotics (13) in the lit zone and the Fock’s
zone (−5 ≤ σ ≤ 1).
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Figure 5: Real parts of Fock’s currents (6), (5), are shown with solid line; and the currents
with the correction terms (15), (14), are shown with dashed line; here ε = 0.1, kρ0 = 20,
−5 ≤ σ ≤ 3.

6 Numerical results

To compare the ray current vs Fock’s current (6)
with its asymptotics (13) for the Neumann prob-

lem, we have chosen kρ0 = 20, M0 = 10
1
3 , namely

Λ0

2M2
0

= 1
Mε

0
and kρ0 = 50, M0 = 25

1
3 . As we

are interested in the influence of body elongation
parameters, we will compare two cases of ε = 0.1
which correspond to the case of prolate body, and
ε = 1.5, which corresponds to the case of a nearly
spherical body. We have also computed the cur-
rents for kρ0 = 50, however, the character of the
curves is the same as for kρ0 = 20, hence we do not
present these results here.

The choice has been made to compare the out-
puts with the results in [5]. The horizontal axis cov-
ers the lit area, namely −5 ≤ σ ≤ 1, step h = 0.05.
The vertical axis is real and imaginary parts of the
dimensionless currents, see Fig. 4.

To present the influence of the large parameters
that describe the prolongation of the body, we plot
formulae (15) and Fock’s current (6), (8). The cur-
rent coincides with the current obtained by the ray
method in the Fock’s zone, see Figs. 5–8.

The correction term for the Dirichlet case does
not affect the field as the influence of the prolon-
gation appears to be very small. The current coin-
cides with the current obtained by the ray method
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Figure 6: Imaginary parts of Fock’s currents (6), (5), are shown with solid line; and the
currents with the correction terms (15), (14), are shown with dashed line; here ε = 0.1,
kρ0 = 20, −5 ≤ σ ≤ 3.
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Figure 7: Real parts of Fock’s currents (6), (5) are shown with solid line; and the currents
with the correction terms (15), (14), are shown with dashed line; here ε = 1.5, kρ0 = 20,
−5 ≤ σ ≤ 3.
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Figure 8: Imaginary parts of Fock’s currents (6), (5), are shown with solid line; and the
currents with the correction terms (15), (14), are shown with dashed line; here ε = 1.5,
kρ0 = 20, −5 ≤ σ ≤ 3.
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Figure 9: The absolute value of the relative
error in percents, for ε = 0.1, −5 ≤ σ ≤ −1,
kρ0 = 20.

in the Fock’s zone. The relative correction term for
the current (see Fig. 9) shows that in the lit zone,
where the match of the currents is extremely good,
the influence of the correction term in the Neumann
case is higher.

7 Conclusions

All the scatterers with the smoothly changing cur-
vature have the same currents distribution if their
curvature at s = 0 is the same; and if the incident
wave is the same.

The difference between the Dirichlet current (5)
and the Neumann current (6) is in the order of their
amplitudes: the amplitude is of order O(M−1

0 )
compared to the Neumann case.

In the case of Neumann boundary conditions, the
wave field penetrates the boundary shadow region
5 deeper compared to the Dirichlet case. The wave
field on the limit ray 3 is strongly non-zero in the
Neumann case.

The obtained formulae for the currents are valid
near the surface of the scatterer, however, they give
a way to determine the field at greater distances,
using quadratures.

Our future plans are to obtain and evaluate the
behaviour of the creeping waves in the shadow zone
5 and compare the influence of the elongation.
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