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Abstract: Secchi disk depth (ZSD) and Forel-Ule index (FUI) are the two oldest and easiest 

measurements of water optical properties based on visual determination. With an overarching 

objective to obtain water inherent optical properties (IOPs) using these historical 

measurements, this study presents a model for associating remote-sensing reflectance (Rrs) with 

FUI and ZSD. Based upon this, a scheme (FZ2ab) for converting FUI and ZSD to absorption (a) 

and backscattering coefficients (bb) is developed and evaluated. For a data set from HydroLight 

simulations, the difference is <11% between FZ2ab-derived a and known a, and <28% between 

FZ2ab-derived bb and known bb. Further, for a data set from field measurements, the difference 

is < 30% between FZ2ab-derived a and measured a. These results indicate that FZ2ab can 

bridge the gap between historical measurements and the focus of IOP measurements in modern 

marine optics, and potentially extend our knowledge on the bio-optical properties of global seas 

to the past century through the historical measurements of FUI and ZSD. 

©2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Obtaining long-term geophysical properties of water for the ocean is of great importance in 

studying the trend of marine primary production and carbon stocks and understanding the role 

of oceans in climate change [1,2]. For the global ocean, satellite measurement via ocean color 

is the only feasible means for synoptic and repetitive coverage, which is a key requirement for 

studying the temporal and spatial information on the bio-optical properties of the oceans [2–4]. 

Ocean color is fundamentally determined by inherent optical properties (IOPs), and variations 

of IOPs are indicators of changes in the optically active constituents of water. In particular, the 

absorption coefficient (a, m1) and backscattering coefficient (bb, m1) play a key role in 

governing light propagation in water columns and they primarily determine remote-sensing 

reflectance (Rrs, sr1), a radiometric measure of water/ocean color [5,6]. Therefore, the 

derivation and understanding of IOPs have been the focus of ocean color remote sensing in the 

past decades [7–10]. Extensive efforts have been made in the recent decades to develop modern 

optical-electronic instruments for measuring IOPs [11–13] and robust algorithms for retrieving 

IOPs from remote-sensing reflectance (Rrs) (e.g., IOCCG, 2006). However, long before these 

developments in modern marine optics, earlier oceanographers used rudimentary techniques to 

obtain valuable measurements of the optical properties of water, represented by the Secchi disk 

and Forel-Ule color scale, and there are records of such measurements of world’s oceans for 

more than a century [14–16]. 

The Secchi disk depth (ZSD, m), a measure of water clarity, is “measured” by lowering a 

white or black-and-white disk with a diameter around 30 cm in water until it is no longer visible 
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to an observer at the surface. ZSD provides an intuitive and quantitative measurement of water 

transparency or clarity, and its measurement started ~150 years ago [16]. ZSD has been widely 

accepted and measured globally owing to its low cost and easy acquisition, maintaining a 

tradition of ongoing measurement and expanding applications through many science projects 

[17,18]. The theoretical interpretation of ZSD was initiated about 60 years ago [19] and 

summarized in Preisendorfer [20], where ZSD was theoretically modeled as an inverse function 

of the sum of beam attenuation (c, m1) and diffuse attenuation coefficient of downwelling 

irradiance (Kd, m1) weighted by the human eye response function. However, numerous 

measurements found that ZSD is highly dependent on Kd rather than c [21–23]. This mismatch 

or inconsistency between theory and measurements was resolved recently [24,25], where 

mistakes in the classical Secchi theory and model were identified. The new Secchi theory and 

mechanistic model [24] indicate that ZSD is determined by Kd at the transparent window (Kd
tr), 

which is in excellent agreement with the extensive measurements by various groups over a wide 

range of waters [25]. The transparent window indicates the spectral wavelength of a water body 

that is mostly penetrative by visible light, which can be determined from the spectrum of 

remote-sensing reflectance [24] and also can be expressed and calculated as the dominant 

wavelength of remote-sensing reflectance [26]. 

Around the end of the nineteenth century, the Forel-Ule scale was invented to systematically 

document color variations of natural waters. The Forel-Ule index (FUI) divides natural water 

color into 21 classes, covering water colors from dark blue to yellowish brown [27]. FUI is 

determined by comparing the appearance of water against a handheld Forel-Ule color scale 

while a Secchi disk is kept at half of ZSD; the matching index in the color scale is recorded as 

the FUI of the water body under observation [16]. Because color is a perception of the human 

eye to the spectral radiance of any object, the FUI color index of water column itself without 

the Secchi disk now can be calculated based on water reflectance and the response function of 

the human eye [27,28]. It is noteworthy that FUI color index measurements have historically 

used a Secchi disk in order to enhance brightness, but a side effect of this protocol is that the 

color is slightly altered. However, studies have shown that the historical FUI can be simply 

linked with the FUI of water (i.e., without a Secchi disk in water for the determination of FUI) 

[29]. 

Because the color of water is an outcome of the interactions between sunlight and the 

absorption and scattering of water constituents, it varies with changes in the optically active 

constituents of water [26]. Given its long history, transferability in sensors, and high capacity 

for indicating natural events and bulk changes in water constituents at large-scales [15,30–32], 

FUI was recently included in a “standard” suite of water quality parameters. Further, owing to 

its ease of measurement, FUI is also included in the collections of water quality data from 

sensors developed for citizen science based observatories that include smartphone-based 

approaches [33]. 

Although both ZSD and FUI are valuable measurements of some aspects of water properties, 

there is a gap between the historical data set and the focus of IOP measurements in modern 

marine optics. In general, FUI is a qualitative representation, which makes it difficult to 

compare FUI with quantitative measurements of IOPs developed in recent decades. This is also 

highlighted in Woerd and Wernand [34] (their Fig. 8) that there are large uncertainties between 

the absorption coefficient at 440 nm and the hue angle (a measure of water color). It is thus 

useful and necessary to convert the ZSD and FUI data records to IOPs (a and bb) to fill this gap, 

which can then potentially extend IOPs of the global oceans from present day to decades and a 

century ago. As Rrs is an analytical function of a and bb, we thus developed an empirical model 

to express Rrs as a function of FUI and ZSD. In addition, as ZSD is an analytical function of Kd 

that can be expressed with a and bb, this FUI to Rrs model offers a means of algebraically 

deriving a&bb from the combination of FUI&ZSD. This paper thus presents the scheme to semi-

analytically derive a&bb from FUI&ZSD, termed as FZ2ab hereafter, which demonstrates the 

potential of obtaining IOPs from historical measurements. 
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2. Data sets

In this study, the FZ2ab scheme for retrieving a&bb from FUI&ZSD was developed and tested 

using three data sets. 

The first data set (Dataset 1) is a field measured data set containing ZSD and Rrs spectra from 

612 sites covering clear to turbid waters from coastal and oceanic areas around the world. The 

waters of these measurements cover the China Sea, Gulf of Mexico, and the Pacific and Atlantic 

oceans (see Fig. 1 of [35]) with Chla (concentration of chlorophyll) in a range of ~0.02 μg/L to 

> 100 μg/L. The measurement and determination of Rrs followed the above-surface approach

[36,37]. ZSD values ranged from 0.3 m to 44.3 m with an average value of 10.6 m. Dataset 1

was used to develop the model for retrieving Rrs from FUI and ZSD.

The second data set (Dataset 2) is a simulated data set including 500 data points generated 

by HydroLight [38] and published by the International Ocean Colour Coordinating Group 

(IOCCG) for the purpose of algorithm validation [39]. This simulated data set comprises both 

IOPs and apparent optical properties (AOPs). In particular, IOPs, including a(λ) and bb(λ), were 

generated with established bio-optical models, whereas AOPs, including Kd(λ) and Rrs(λ), were 

generated using HydroLight with the available IOPs. IOP data covered a wide range of 

properties, with a(440) ranging from ~0.01 to 3.2 m1 and bb(440) ranging from 0.003 to 0.13 

m1, which suggest an equivalent range of Chla concentration from ~0.03 to 30.0 μg/L. ZSD of 

this data set was derived following Lee et al. [24] (ranging from ~0.8 m to 34.8 m with an 

average of 9.1 m). 

The third one (Dataset 3) is a field measured data set covering 195 sites in oceanic and 

coastal waters off China (Fig. 1). It contains concurrent measurements of Rrs, ZSD, and 

absorption coefficients (a). Details of the measurements are available in Shang et al. [40]. In 

brief, a(λ) was obtained as the sum of the absorption coefficients of water (aw), particulates 

(ap), and colored dissolved organic matter (ag). Specifically, ap was measured with a dual-beam 

PE Lambda 950 spectrophotometer equipped with an integrating sphere (150 mm diameter) 

following a modified Transmittance–Reflectance (T-R) method [41,42], and ag was measured 

using a Varian Cary-100 dual-beam spectrophotometer following Ocean Optics Protocols 

Version 2.0 [43]. This data set covered a ZSD range from 0.1 to 30 m with an average of 9.9 m, 

whereas a(440) from water samples ranged from ~0.01 to 3.9 m1. In particular, Dataset 3 from 

field measurements was independent from Dataset 1 used in the development of the model for 

Rrs. Dataset 2 and Dataset 3 were used to test the performance of the FZ2ab scheme. See 

Data File 1 and Data File 2 for underlying values in Dataset 1 and Dataset 3 respectively, in the 

Supplementary Material. 
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Fig. 1. Locations of 195 sampling sites from Dataset 3. 

In the three data sets, the FUI was derived from the Rrs spectrum with the color response 

function of CIE [44] using the method described in Wang et al. [26]. In brief, an Rrs spectrum 

was converted to XYZ in CIE colorimetric space with the integration of the product of an Rrs 

spectrum and the color response function [44]. By normalizing the brightness of the spectrum, 

the chromaticity coordinate (x,y) was derived from X,Y,Z. Then, a color angle α was calculated 

from (x,y), and its corresponding FUI was derived using an updated 21-class FUI lookup table 

established from the color of the Forel-Ule scale by Novoa et al. [45]. Note that the FUI in this 

study represents an index of water color without the Secchi disk in water [26]. 

Meanwhile, Rrs at the transparent window (Rrs
tr) was determined as the Rrs value at the 

dominant wavelength, which is a wavelength indicating the perceived water color produced by 

the Rrs spectrum. The dominant wavelength is also well related to the color angle α and can be 

calculated from α using a reference table [26]. 

3. Model of Rrs based on FUI and ZSD 

According to the new theory of Secchi depth [24,25], ZSD is an inverse function of Kd at the 

transparent window (Kd
tr). Further, Kd is a function of a&bb based on radiative transfer [46–

48]. Thus, another independent function of a&bb is required at the transparent window in order 

to algebraically derive these two properties. FUI is a measure of water color, which in principle 

is analogous to Rrs – also a measure of water color. Studies have shown that FUI can be 

accurately calculated from an Rrs spectrum [27,28]. However, there is no model, theoretical or 

empirical, to convert FUI to Rrs, particularly at the transparent window of a water body (Rrs
tr). 

Here an empirical model based on a wide range of measurements is developed for this 

conversion through correlation analyses. 

For the Rrs
tr, FUI, and ZSD values of Dataset 1, various empirical relationships between Rrs

tr 

and FUI as well as between Rrs
tr and FUI&ZSD were tested. It was found that the transparent 

window location of the water samples varied in a wide range, and the relationship between Rrs
tr 

and FUI was very scattered, the same with that between Rrs
trand ZSD (Fig. 2). But a strong 

correlation was found between Rrs
tr and ln(FUI*ZSD) (see Fig. 3(a)), at least for the data set in 

this study. Hence, an empirical model for estimating Rrs
tr from FUI and ZSD could be developed 

as follows: 
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Fig. 2. Scatterplots of (a) in situ measured Rrs
tr versus FUI, (b) in situ measured Rrs

tr versus ZSD 

based on the in situ data set (Dataset 1, N = 612). 

 

Fig. 3. Scatterplots of (a) in situ measured Rrs
tr versus C (i.e. ln(FUI*ZSD)), (b) in situ measured 

Rrs
tr versus the modelled Rrs

tr from the combination of FUI and ZSD based on the in situ data set 

(Dataset 1, N = 612). 

For this data set with wide dynamic ranges of ZSD and FUI, the coefficient of determination 

(R2) between known and modeled Rrs
tr was 0.63, with root mean square error (RMSE) of 0.0031 

sr1 and mean absolute relative difference (MARD) of 36.8%, as shown in Fig. 3(b). The 

accuracy indices RMSE and MARD are defined as follows: 
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where xest denotes the estimated value, xmea denotes the measured or simulated value, and n is 

the number of measurements. 

These R2 and RMSE values are very encouraging because FUI is primarily a qualitative 

measure of water color, where some small spectral variations in Rrs spectrum may not be well 
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represented in FUI. Further, the uncertainty of Rrs from satellite measurements, especially those 

of coastal waters, is also ~20–30% [49–52]. Therefore, these quality measures suggest the 

converted Rrs
tr from FUI&ZSD are acceptable for further inversion practices. 

4. Derivation of a and bb from ZSD and FUI 

Based on the new Secchi disk depth model [24,25], ZSD can be approximated as: 

 
0.96

SD tr

d

Z
K

  (4) 

As mentioned before, Kd
tr is the diffuse attenuation coefficient of downwelling irradiance 

at the transparent window of the water body, which has been recognized as the governing 

parameter of ZSD in the new theory and model [24,25], as it suggests that ZSD is determined by 

photons in the transparent window rather than photons of the entire visible domain. 

Further, modeling of the radiative transfer equation suggested Kd can be expressed as a 

function of a and bb [47,48]: 
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where m0-3 are model constants, and 
s
θ is the solar zenith angle. 

Decades of ocean optics studies have shown that Rrs is related to a and bb through below-

surface remote-sensing reflectance (rrs) [5,8]: 
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Here, g0 and g1 are approximately 0.089 and 0.125, respectively. 

Thus, with Rrs
tr derived from known FUI and ZSD using Eq. (1) and Kd

tr calculated from ZSD 

(Eq. (4)), we have two equations (Eq. (5) and Eq. (6)) for two unknowns (atr, bb
tr), which can 

then be derived algebraically from known pairs of ZSD and FUI. 

5. Evaluation of the FZ2ab inversion scheme 

5.1 Evaluation with HydroLight data set 

The FZ2ab inversion scheme was first evaluated using Dataset 2. Because Rrs
tr is a required 

input in the derivation of a&bb in FZ2ab and converted from FUI&ZSD, we first compared 

model (Eq. (1)) derived Rrs
tr with known (HydroLight simulated) Rrs

tr; Fig. 4 shows a scatterplot 

between the two. The MARD and RMSE for the estimated Rrs
tr were 40.3% and 0.0042 sr1, 

respectively, which are similar to those observed during the development of the model. 

Considering that the simulated data set includes quite random combinations of optically active 

constituents (i.e., colored dissolved organic matter, phytoplankton, suspended sediments) that 

may not exist in natural environments, these statistical measures suggest acceptable model 

results for Rrs
tr. On the other hand, for an Rrs spectrum, FUI itself is more dependent on the 

spectral shape rather the entire magnitude. Therefore, the modeled Rrs
tr from FUI is expected 

to have some uncertainties. 
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Fig. 4. Scatterplot between Rrs
tr from HydroLight simulation and Rrs

tr obtained from FZ2ab 

scheme. The five black outlined circles were considered as outliers with extreme combinations 

of optically active constituents (i.e., colored dissolved organic matter, phytoplankton, and 

suspended sediments). If excluded, MARD would decrease from 40.3% to 39.6%. 

A comparison of FZ2ab derived atr and known atr (in a range of ~0.02–0.83 m1) for the 

HydroLight simulated data set is shown in Fig. 5, where the MARD value is 10.5%, RMSE is 

0.034 m1, and R2 is 0.95. For such a wide range of atr, these values indicate excellent retrieval 

of atr by FZ2ab, even though the input estimated Rrs
tr has relatively large errors. Note that the 

atr derived by FZ2ab is slightly (~9.9%) lower than known atr at the high end (atr > ~0.4 m1). 

This is because the FUI values for these data points ranged 18–21, which are beyond the FUI 

range used in the development of the model (Eq. (1)) to calculate Rrs
tr from FUI and ZSD. 

Meanwhile, there was a small (12.4%) overestimation at the lower end when atr < ~0.08 m1, 

which corresponds to Rrs
tr < 0.01 sr1, where the model estimated Rrs

tr was underestimated 

compared to HydroLight simulations (see both Fig. 3 and Fig. 4). These biases could be 

improved in the future by refining Eq. (1) with more inclusive data. 

Unlike the excellent retrieval of atr, the performance of FZ2ab in the retrieval of bb
tr (0.002–

0.133 m1) was less robust (Fig. 6). MARD was 28.0%, R2 was 0.78, and RMSE was 0.014 

m1, but most data points fall around the 1:1 line. This difference between the performance of 

FZ2ab for atr and bb
tr retrieval is a result of the combined effects of the following: 1) Kd(λ) is 

determined by both a&bb, but a(λ) plays a dominant role, and thus ZSD (i.e., Kd
tr) provides a 

first order estimation of atr, where the application of Rrs
tr (i.e., FUI) helps in correcting the 

contribution of bb
tr in Kd

tr; 2) in general, Rrs(λ) depends on the ratio of bb(λ)/a(λ), and thus, the 

value of Rrs
tr can be impacted by both atr and bb

tr. Therefore, the uncertainty brought by the Rrs
tr 

estimation has a smaller impact on the retrieval of atr (which is mainly determined by Kd
tr), but 

a larger impact on the retrieval of bb
tr as it is proportional to Rrs

tr. 
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Fig. 5. Scatterplot of FZ2ab derived atr versus HydroLight atr for the simulated data set. 

 

Fig. 6. Scatterplot of FZ2ab derived bb
tr versus HydroLight bb

tr for the simulated data set. 

5.2 Evaluation with the field data set 

The FZ2ab system was further tested and evaluated with Dataset 3. Figure 7 compares modeled 

vs measured Rrs
tr, and Fig. 8 compares modeled vs measured atr. The modeled Rrs

tr was found 

to match measured Rrs
tr quite well for this field data set, with MARD value of 27.3%, RMSE 

of 0.0036 sr1, and R2 as 0.83. The higher performance of the measured data set is likely because 

field data were collected in natural environments, where extreme combinations of 

phytoplankton and suspended sediments that occurred in the simulation could be avoided. 

Nevertheless, when Rrs
tr < ~0.005 sr1, the model derived Rrs

tr was found to be overestimated 

(by ~48.9%) compared with the known Rrs
tr, as presented in the scatter plot for Rrs

tr at the lower 

end. Similarly with the results of the HydroLight data set, the uncertainties in Rrs
tr estimation 

did not significantly affect the estimated atr (0.01–0.76 m1), for which a robust performance 

(R2 = 0.88, MARD = 26.0%) has been achieved. Taking into account uncertainties in the 

measurements of Rrs [53,54] and a from water samples [55], these results suggest that the atr 

and Rrs
tr values estimated from the FZ2ab system are basically consistent with those from 
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sample measurements. Unfortunately, we could not acquire field measured bb to test and 

validate the bb
tr retrievals. 

 

Fig. 7. Scatterplot of modeled Rrs
tr versus measured Rrs

tr based on Dataset 3. 

 

Fig. 8. Scatterplot of FZ2ab derived atr versus measured atr from water samples in Dataset 3. 

6. Discussion and conclusions 

Global oceanographic measurements play a key role in the research of climate change, where 

consistent and meaningful data covering long time spans are critical [56,26]. Taking full 

advantage of historical data collected over the past century, especially before the era of satellite-

based measurements, is quite necessary to extend the period of effective records [56,57]. Water 

color and transparency are the few oceanographic parameters closely coupled with the physical 

and biogeochemical processes at different spatial and temporal scales that have been recorded 

for more than a century [58]. Therefore, the effective use of such historical measurements 

would provide important insights into the status and trend of oceanic environments over a long 

time scale. 

In the past decades, realizing the intuitive and quantitative representation of ZSD, a series of 

studies used the long record of ZSD to study phytoplankton in the oceans [27,57]. However, 
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because of multiple factors affecting the value of ZSD, the empirically converted Chla from ZSD 

exhibited different levels of uncertainties for different regions. On the other hand, probably due 

to the subjective and qualitative nature of FUI, only few studies used the long record of FUI to 

study the status or trend of water quality or phytoplankton in marine environments. Further, 

studies have shown the potential of FUI and ZSD to indicate changes in bulk water optical 

properties, especially at large scales [27,28,59]. Here, for the first time, a scheme (FZ2ab) was 

developed to semi-analytically derive the total absorption coefficient (a) and back scattering 

coefficient (bb) from the combination of FUI and ZSD. Such a scheme will not only offer a route 

to extend IOPs of the oceans back to a century ago, but the derived absorption coefficient could 

also improve the estimation of Chla, which has been widely and routinely used to represent 

biomass in aquatic environments. 

As would be expected, although both FUI and ZSD are closely related to an Rrs spectrum, 

Rrs
tr values derived from FUI&ZSD have some uncertainties. This is because some spectral 

variations of the Rrs spectrum cannot be fully reconstructed from a 21-class FUI system, 

especially when this system was used to estimate the Rrs value at an everchanging wavelength. 

The uncertainty appears to be the highest for the data set in this study when the Rrs
tr value is 

under 0.01 sr1 (see Figs. 3, 4, 7) where the value of ln(FUI*ZSD) is between 3 and 4. This is 

likely a result that when ln(FUI*ZSD) is 3 to 4, the dominant wavelength of the transparent 

window changes over a wide range (470 nm ~580 nm), indicating the complicated and varying 

constituents in water. Moreover, observation conditions, such as the sky condition and the 

viewing geometry that may affect either FUI and/or Rrs
tr, were not taken into consideration in 

the reconstruction of Rrs
tr [60]. Nevertheless, the estimated Rrs

tr showed MARD values of just 

27.3% and 40.3% for the field measured data set and HydroLight simulated data set, 

respectively. However, the analytical optical mechanism behind this Rrs
tr derivation model 

remains to be studied in the future work, which may refine this model and improve the Rrs
tr 

estimation accuracy. 

More importantly, it is very encouraging that the uncertainties in model derived Rrs
tr do not 

significantly affect the subsequent derivation of atr in the FZ2ab scheme. This is because ZSD is 

mainly determined by atr. For instance, an increase of 50% in Rrs
tr only decreases the retrieved 

atr by ~13.6% with this FZ2ab scheme. Therefore, small MARD values were observed for the 

FZ2ab-estimated atr, i.e. 10.5% and 24.8% for the simulated data set and field measured data 

set, respectively. However, because bb
tr is proportional to Rrs

tr, where an increase in Rrs
tr by 

50% will increase the retrieved bb
tr by ~28.2% with the FZ2ab scheme. As a result, the MARD 

of estimated bb
tr was larger (28.0%) than that of simulated atr. Moreover, it is found that the 

retrieval performance (for the entire atr and bb
tr range in this study) is not sensitive to FUI, 

where MARD value for the first 1-9 FUI is nearly the same as that of all FUI. This result 

suggests nearly uniform performance for both oceanic waters and coastal waters. Overall, the 

results indicate that in the FZ2ab system, through simultaneously resolving the equations of 

Rrs
tr and ZSD (Eq. (5) and Eq. (6)), the impact of Rrs

tr uncertainty can be reduced when atr and 

bb
tr are derived. This also implies that ZSD plays a larger role than FUI in determining the values 

of atr and bb
tr. 
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Fig. 9. Relationship between atr&bb
tr and a(440)&bb(440). (a) atr versus a(440) and (b) bb

tr versus 

bb (440) of the simulated data set; (c) atr versus a(440) of the measurement data set. 

The retrieved Rrs, a and bb in the FZ2ab scheme are all related to a specific spectral region: 

water’s transparent window. The dominant wavelength of this window, which varies with 

constituents in water [26,61], can be calculated from an Rrs spectrum though [26]. In addition, 

the FUI of water is closely associated with dominant wavelength [40]. All these features imply 

that the FUI is not only related to Rrs spectrum from which it was calculated, but also indicates 

the dominant wavelength of water’s transparent window, thus provides a clear indication of the 

wavelength of the derived atr and Rrs
tr values. Actually, it is found that there are strong 

relationships between atr and bb
tr and a(440) and bb(440) (Fig. 9), respectively, so knowing atr 

and bb
tr provides important properties for further evaluation of other water quality properties, 

such as Chla. This may further support the value of atr&bb
tr for water quality products in both 

historical and modern marine study. It is noteworthy that the FUI in the data sets of this study 

was calculated using the in situ Rrs spectrum [27,15] rather than traditionally measured FUI 

along with a Secchi disk in water. Nevertheless, the accuracy of this calculated FUI was very 

high given the qualitative and classification nature of FUI measurement [27,15]. 

In summary, an inversion system FZ2ab was proposed to derive the IOPs of oceans from 

two historical water color measurements (FUI and ZSD). Rrs was firstly estimated from FUI and 

ZSD and then the total absorption (a) and backscattering (bb) coefficients were algebraically 

solved as both Rrs and ZSD are functions of a and bb. Applications of this scheme to both 

HydroLight simulated and field measured data sets show very satisfactory and consistent 

results. Therefore, absorption and backscattering coefficients can be derived from 

measurements of FUI and ZSD, which not only opens the door to obtain more accurate 

estimation of Chla concentration or suspended sediments than that from ZSD or FUI alone, but 

also potentially support to extend the data records of IOPs of the oceans to the past century 

during which no measurements by modern instrumentations were available. We envision that 
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such data products would significantly enhance our understandings of the optical properties of 

the oceans and greatly help in the evaluation of oceanic systems in a changing climate. 
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