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Abstract

Increasing climate variability is one of the donmhaomponents of climate change, resulting
particularly in altered rainfall patterns. Yet, tt@nsequences of rainfall variability on
biogeochemical processes that contribute to graesghgas emissions has received far less
attention than have changes in long-term meanathif particular, it remains unclear how leaf
litter decomposition responds to changes in rdifiajuency compared to changes in
cumulative rainfall quantity, and if changes imfail patterns will differentially affect
organisms in the decomposer food web (e.g., miatal@icomposers that break down leaf litter
through saprotrophic processes versus detritiibigsdirectly ingest leaf litter). To address this
knowledge gap, we disentangled the relative impodaf cumulative rainfall quantity and
rainfall frequency on both microbial- and detritigedriven litter decomposition, using the
isopodArmadillidiumvulgare as a model macro-detritivore species and simygatmfall in a

full-factorial microcosm experiment. We found tinaitrobially-driven decomposition was
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positively related to cumulative rainfall quantibyt tended to saturate with increasing
cumulative rainfall quantity when rainfall eventens large and infrequent. This saturation
appeared to result from two mechanisms. Firstigit level of cumulative rainfall quantity, large
and infrequent rainfall events induce lower litteoisture compared to smaller but more frequent
ones. Second, microbial activity saturated withréasing litter moisture, suggesting that water
was no longer limiting. In contrast, isopod-driveigcomposition was unaffected by cumulative
rainfall quantity, but was strongly controlled thetrainfall frequency, with higher isopod-driven
decomposition at low rainfall frequency. We fouhdttisopod-driven decomposition responded
positively to an increase in the weekly range dfsoisture and not to mean soil or litter
moisture, suggesting that an alternation of dry@odgst conditions enhances detritivore activity.
Collectively, our results suggest thatvulgare morphological and behavioral characteristics
may reduce its sensitivity to varying moisture atiods relative to microbial decomposers. We
conclude that the activity of microorganisms arapls are controlled by distinct aspects of
rainfall patterns. Consequently, altered rainfaliterns may change the relative contribution of

microbial decomposers and detritivores to littezadaposition.

Keywords

Carbon cycling — Detritivore — Macrofauna — Pretgipon frequency — Precipitation regime —

Rainfall pattern

I ntroduction

Decomposition, the physical and chemical breakdofaarganic matter, is one of the major

fluxes of CQ from terrestrial ecosystems to the atmosphere €Stiger, 2005). Given the
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decomposition sensitivity to climatic conditionsd@r et al., 2008; Aerts, 1997; Swift et al.,
1979), understanding the consequences of ongomgtel changes on decomposition is
fundamental to predicting the feedback effect anaafpheric C@concentrations. This critical
challenge has spurred the development of studiesiigating the sensitivity of litter and soil
organic matter decomposition to altered temperdeige, Davidson and Janssens, 2006; Fierer
et al., 2005; Hobbie, 1996) and rainfall (e.g., tideet al., 2009; Yahdjian et al., 2006; Yuste et
al., 2011). Yet, such studies typically focus oamfes in the mean state of climate (e.qg.,
increased average temperature; decreased cumulaitivall), thereby omitting climate
variability, one of the dominant components of @tmchange. Rainfall events in particular are
expected to become more variable, with larger &g frequent rainfall events leading to
enhanced probabilities of drought and heavy rdPP€C, 2013). These predictions raise a
critical question: for a given cumulative rainfgliantity, are large and infrequent rainfall events
equivalent to smaller but more frequent ones ai¢imy and sustaining decomposition?
Furthermore, it is unknown whether responses défeong groups of organisms in the
decomposer food web (e.g., microbial decomposaitsiieak down leaf litter through
saprotrophic processes versus detritivores thattlyringest leaf litter).

The limited understanding of rainfall variabilitffects on decomposition derives in part
from the difficulty of manipulating rainfall regirsen a manner sufficient to capture the
complexity of current and future rainfall regim@artial rainout shelters consisting of elevated
frames with gutters exclude a known proportionadterainfall event, thus reducing cumulative
rainfall but keeping rainfall frequency unchangedy( Shihan et al., 2017; Yahdjian & Sala,
2002). Alternatively, rainout shelters consistindull roofs deployed during a subset of rainfall

events reduce both cumulative rainfall quantity eaidfall frequency simultaneously,



70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

confounding the effect of each factor (e.g. Tagbal., 2004; Vogel et al., 2013). While such
methods have improved our understanding of theemprences of reduced cumulative rainfall or
seasonal drought on litter decomposition, they ig@little insight on the rainfall variability
effect on decomposition. To our knowledge, advamtesderstanding rainfall frequency effects
on decomposition have been limited to work in @edsystems, where a few studies have
applied artificial rainfall events by watering teeil with equivalent amounts of water delivered
as either large and infrequent pulses, or smallfi@gient ones. One study by Whitford et al.
(1986), reported that 25-mm cumulative precipitaiiothe Chihuahuan Desert accelerated litter
decomposition when added as small weekly pulsds)diiwhen added as larger monthly pulses.
This suggests that smaller but more frequent putsgssustain decomposition better than large
infrequent ones. In contrast, in the Patagonigop&eAustin et al. (2009) reported that litter
decomposition was similar when litter received andfd pulse once a week or 3.3-mm pulses
three times a week. These conflicting results ia@i¢hat reduced frequency does not always
lead to a decline in decomposition, but may dependumulative rainfall quantity. Recently,
Joly et al. (2017a) reported that large, infrequmrnses induced lower litter decomposition than
small, more frequent pulses, but only at high l@felumulative rainfall when the differences in
pulse size were highest. This suggests that decsitigpomay saturate at a certain threshold in
pulse size (Fig. 1a), leading to non-linear resperd decomposition to increasing cumulative
rainfall quantity when delivered at low frequenci¥st, the mechanisms underlying such
saturation of decomposition remain unclear.

Another challenge in assessing decomposition resgsoto rainfall frequency is that
studies to date have largely focused on microosgasy omitting soil fauna responses. Studies

have typically incubated litter over sieved ancdrsoil (e.g., Austin et al., 2009; Joly et al.,
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2017a) or within fine-mesh litterbags (e.g., Whitfet al., 1986). These methods may
inadvertently affect research findings as soil faptay an important role on litter
decomposition, increasing mass loss by 37% on geaaross biomes (Garcia-Palacios et al.,
2013). Macrofauna are particularly important teelitdecomposition, with detritivores such as
millipedes catalyzing litter decomposition by fragmting and compacting litter into fecal pellets
(Joly et al., 2018, 2015). To date, the few studesessing the response of detritivore feeding
activity to altered rainfall pattern focused onuwlyht intensity and duration, i.e. a change in both
cumulative rainfall quantity and frequency. Fortaree, Coulis et al. (2013) found that
millipede feeding activity decreased less than afi@l activity in response to simulated drought
(reduced watering amount and frequency). Similanlyg four year field experiment simulating
droughts with rainout shelters that reduced sunmanafall by 40%, Thakur et al. (2018) found
that summer droughts did not reduce detritivorevaigtexcept when accompanied by increased
temperatures. These results suggest that detetaciivity might be more resistant to dry
conditions than the largely moisture-driven micedlaictivity (Schimel et al., 1999). Yet, in both
studies the effect of frequency and cumulativefadlinvere confounded. On the other hand,
Nielsen & Ball (2015) hypothesized that greatef smisture and hence large precipitation
events are needed to trigger the activity of saihfa relative to microorganisms. Such different
responses are expected as small rainfall evertt&dlep soil moist for short periods may be
sufficient to trigger the activity of organisms Wwitast growth and reproduction time, such as
microorganisms. However, larger rainfall eventg #eep the soil moist for longer time periods
may be required to trigger the activity of largeganisms with slower growth and reproduction
such as detritivores (Schwinning and Sala, 20@dnk with this reasoning, for a given

cumulative rainfall quantity, detritivores should less active with small and frequent events
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than with large, infrequent events, as a largeneweuld more likely trigger their activity (Fig.
1b). However, this hypothesis by Nielsen & Ball 18D was put forward based on a synthesis of
micro- and mesofauna studies, and was not testaetienentally. A better quantification of the
sensitivity of distinct groups of organisms withite decomposer food web (e.g., microbial
decomposers versus detritivores) to changes ifatbfrequency thus appears to be an important
step toward improving predictive capability of tt@nsequences of rainfall patterns on litter
decomposition.

In this study, we aimed to determine the relatimpartance of cumulative rainfall
guantity and frequency on microbial and detritivdreven litter decomposition. In line with the
aforementioned expected responses (see Fig. H)ymehesized that (H1) microbially-driven
decomposition would increase linearly with cumwlatrainfall, but would reach a plateau for the
low rainfall frequency at high cumulative rainfé@flig. 1a). Further, we hypothesized that (H2)
detritivore-driven decomposition would increasehndecreasing rainfall frequency and would
be less sensitive to increasing cumulative rairtFelh microbial decomposition (Fig. 1b). We
tested these hypotheses by measuring litter decsitigroof velvet mesquitePfosopis vel utina)
in the absence or presence of detritivores, intaidio the presence of microbial decomposers,
after a six-week incubation under controlled caodg. As an operational definition for this
study, we defined decomposition as litter carbonl¢Ss during the course of the experiment,
regardless of whether from saprotrophic processewestion by detritivores. Litter C loss in
the absence of detritivores was used as an indio&taicrobially-driven decomposition, while
the increase in C loss with the addition of detoites was considered as detritivore-driven
decomposition. We used the isopfiamadillidium vulgare Latreille as a model detritivore

species. Rainfall was delivered as a factorial doation of four cumulative rainfall levels and
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three rainfall frequencies (Fig. 2). To asses<ffect of varying rainfall amounts and
frequencies on soil and litter moisture and to sss$lee control of these variables over microbial
and detritivore-driven decomposition, we monitosed and litter water content throughout the

incubation.

M ethods

Detritivore, litter, and soil collection
We chose the common pill woodlouse (Isopoda: Arifhdiidae) Armadillidium vulgare
(referred to as “isopods” hereafter) for our exmemt, as it is a widespread detritivore species.
This species is native to Europe and introducedarth America. It is widely distributed,
existing in mesic temperate ecosystems as wekm@as arid ecosystems that undergo long
periods of drought. We collected around 400 indiaid in April 2017 from the litter layer of a
tree-covered and drip-irrigated area landscapell mative Sonoran Desert species in Tempe,
Arizona, USA (33°25’8” N, 111°55’39” W). The isopsdvere kept until the start of the
experiment in containers containing soil and maetomposing litter from the collection site.
We collected leaf litter of velvet mesquiter ¢sopis velutina Woot.) in May 2017 from a
Sonoran Desert mesquite shrubland (33°32’'13” N;23’66” W), near Phoenix, Arizona, USA.
We used decomposing leaf litter rather than fresklyesced litter due to detritivore preference
for partially decomposed litter (David and Gill&Q02; de Oliveira et al., 2010). Collected leaf
litter was air-dried, cleaned of debris (small mcdkvigs, non-targeted litter species, adhering
soil particles), and stored in paper bags untilstiaet of the experiment. Leaf litter C and
nitrogen (N) concentrations were 0.392 g tliger and 0.023 mg N glitter, C:N ratio was

17.0, and water-holding capacity was 1.64.@H" litter.
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Surface soil (top 5 cm) was collected in April 2Gitthe Desert Botanical Garden
(33°27'51"N, 111°56'26"W) in Phoenix, Arizona, USAm inter-canopy areas of a mesquite
shrubland. Soil was air-dried at 30°C and passedessively through 5 mm and 2 mm sieves.
We discarded the > 5 mm fraction and retained tBev#n fraction (hereafter 'fine gravel) and
the <2 mm fraction (hereafter 'soil'). The soxttee was loamy sand (71% sand, 25% silt, 4%

clay) with a water-holding capacity of 0.339 gHg" soil.

Experimental setup

In a full-factorial experiment, we manipulated cuative rainfall, rainfall frequency, and isopod
presence. Cumulative rainfall treatments consisfeD, 40, 50 and 60 mm monitiffor a total

of 42, 56, 70 and 84 mm throughout the six-weeklation). The corresponding weekly
amount for each cumulative rainfall treatment wekvered in three different frequency
treatments: rainfall was added in one large putsh @veek, two intermediate-sized pulses each
week, or three small pulses each week (Fig. 2)hEamulative rainfall and frequency treatment
combination was applied to two decomposer treatsn@mte treatment with microorganisms
only and one treatment with microorganisms plug feopods. Each treatment combination was
replicated 4 times for a total of 96 microcosms\ifulative rainfall levels x 3 frequencies x 2
decomposer treatments x 4 replicates).

All microcosms consisted of 450 ml plastic contasnihat were perforated on the bottom
with 13 holes (1.5 mm diameter) to allow water dagie. Each microcosm was lined with an air-
and water-permeable polypropylene cloth to presgeiitloss. A layer of 70 + 1 g of fine gravel
on top of the cloth facilitated drainage, and thas topped with 350 + 1 g of soil. Because

terrestrial isopods including. vulgare commonly seek shelter during dry conditions toiévo
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desiccation (Dias et al., 2012), we constructedtastss(20 mm long and 5 mm high) made from
plastic irrigation pipe cut lengthwise. We placew ghelter in each microcosm and then added
2.0 £ 0.01 g of air-dried leaf litter. Initial adiried litter mass was converted into oven-dried
mass by weighing air-dried litter subsamples, dyyirem at 60°C for 48 h, and reweighing them
to obtain dry mass. We ensured that no leaf Wti@s placed under the shelters to avoid
preferential litter decomposition in the sheltecraclimate. Four isopods were added to each
isopod treatment microcosm, with individuals sedddb have a total mass of 300 + 50 mg
without gender distinction. To prevent isopod escapile allowing evaporation from soil and
litter surfaces, microcosms were covered with 2 nylon mesh secured with rubber bands.
For all microcosms, the microbial community presgas derived from microorganisms present
in the air-dried soil and litter. Microcosms weneubated in a controlled environment chamber
(20°C, 50% relative humidity, 12 h day/night cyde) six weeks. This duration was chosen as it
allows substantial microbial decomposition evenairdty conditions (Joly et al., 2017a) and to
prevent litter from becoming limiting in the isopt@atment.

Another set of 48 microcosms without isopods (4 alative rainfall levels x 3
frequencies x 4 replicates) was set up to mondbrasd litter moisture three times a week
throughout the incubation (hereafter ‘moisture ocolfjt Litter water content was estimated by
selecting three leaflets from the litter layer, gieng these immediately, drying at 60°C for 48h,
and reweighing. This led to a sampling of ca. B4léts per moisture control microcosm
throughout the incubation. We assumed that thisedse would have negligible impact on litter
and soil water content as each microcosm was filltlal ca. 200 leaflets. Soil water content was
estimated by weighing microcosms, given the knawitial soil dry mass for each microcosm.

The water contained in the litter was consideregligible compared to the soil water content.
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From these estimates, we calculated the overalhritar and soil moisture throughout the
incubation, mean weekly minimum, mean weekly maximand mean weekly range of litter
and soil moisture.

Water pulses were added to microcosms from allieaqgies on Fridays, to twice and
three times a week frequencies on Mondays, anurée times a week frequencies on
Wednesdays (Fig. 2). Water additions took placer aftoisture content measurements. These
pulses were applied to microcosms by adding thigdated volume of deionized water minus 3
ml to the litter surface with a bottletop dispengdre remaining 3 ml were added with a hand
sprayer (volume controlled by weighing the micraapsensuring a consistent distribution of
water on the litter layer for all treatments. Abpod treatment microcosms were checked for
dead isopods three times a week. Occasional depdds were replaced with live isopods of
known mass.

At the end of the experiment, isopods were weigbefinal mass and released at their
collection site. For each microcosm, the mean idapass throughout the incubation was
estimated as the mean of initial and final measeregm For microcosms in which we replaced
dead isopods with live ones, we estimated the mssgod mass as the mean of initial,
intermediate, and final measurements weighted éylthration between measurements. All
microcosms except those from the moisture contrel® dried in a glasshouse for 48 h at ca.
40°C. The remaining leaf litter in each microcosaswollected, cleaned of foreign material
(small rocks, soil particles, and feces), drie@GRC for 48h, and reweighed. Decomposed litter
from each microcosm and five samples of initidelitwere pulverized with a ball mill (8000D,
Spex CertiPrep, Metuchen, NJ, USA) and analyze@€fooncentration using an elemental

analyzer (ECS 4010, Costech Analytical Technolgdres, Valencia, CA, USA).
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Response variables

Litter decomposition was expressed as the percemf@ lost from the litter during the
incubation: %C loss = (M G - M; x &) / (M; x G) x 100, where Mand M are the initial and
final 60°C dry masses, respectively, and@d G are the initial and final litter C concentrations
(% of litter dry mass), respectively. We used titteloss rather than total litter mass loss to
correct for inorganic contamination of leafletsieted from microcosms where they were in
direct contact with soil. Since the initial litteonsisted of decomposing rather than freshly fallen
leaf litter, we assumed that most of the leachivigch dominates the early decomposition stage
(Berg and McClaugherty, 2014), had already occuvéel thus considered that C losses from
the treatment without isopods resulted from micat¥pidriven decomposition. In turn, we
considered that C losses from the treatment withads resulted from both microbially- and
isopod-driven decomposition. To isolate isopod framroorganism effects on total C loss, we
subtracted the C loss without isopods (mean vadudrpatment combination) to the C loss with
isopods (Bocock’s formula; David, 1998). This isdpifect was then corrected for differences
in isopod mass among microcosms by dividing ith®yisopod mass (average throughout the
incubation) for each microcosm, providing a peragatof isopod-driven C loss per mass of
isopod. We further multiplied this value by the mésopod mass for all isopod microcosms
(0.33 g), to ensure that isopod- and microbialiyelr decomposition were expressed with the

same units, thus facilitating comparisons.

Satistical analyses

11
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The hypothesized effects of cumulative rainfall mfitg, rainfall frequency, and their interaction
on (H1) microbially- and (H2) isopod-driven decorsfimn were tested using two-way
ANOVAs. Additionally, the effects of cumulative rdall quantity, rainfall frequency, and their
interaction on soil and litter moisture were tesisthg two-way ANOVAs. For all ANOVAs,
among-treatment differences were identified usingely HSD tests. We considered differences
significant wherp < 0.05 and differences marginally significant wi@e®5 <p < 0.10.
Furthermore, we assumed that any effect of raigfiadintity and frequency over decomposition
would be mediated by their effect on litter and smisture. Thus, to disentangle the underlying
mechanisms, we used regressions to evaluate theokonhlitter and soil moisture (overall mean,
mean weekly minimum, mean weekly maximum and meagkly range) over both microbially-
and isopod-driven decomposition. For each relaligndoth linear and non-linear regressions
(including asymptotic exponential, exponential, @ogver) were fitted and the best-fit model
was chosen using the Akaike Information CriteridfQ). All data were checked for
homoscedasticity and normal distribution of resld@d transformed when needed. All

analyses were performed using R version 3.4.4 (R Ceam, 2018).

Results

Microbially- and isopod-driven decomposition

Mean microbially-driven litter C loss after six wesewas 13 + 1.8% (mean = SE) across all
rainfall treatments. Litter C loss increased limganth cumulative rainfall quantity when
considered across all rainfall frequencies (Fig.Tadble 1). However, because rainfall frequency
had a marginally significant effeqh € 0.085, Table 1), patterns of litter C loss weisginct for

each frequency. While C loss linearly increasedh witmulative rainfall quantity for the three

12
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pulses per week frequency, it plateaued with irirgacumulative rainfall quantity for the one
and two pulses per week frequencies (Fig. 3a).dddas indicated by the letters from the Tukey
HSD test, when pulses were added once or twiceek vileere were no significant differences in
litter C loss between the 40, 50 and 60 mm nibmtéatments (Fig. 3a).

Mean isopod-driven litter C loss was 39 + 1.8% (m#&E) across all rainfall
treatments. In contrast to microbially-driven Cdpsopod-driven litter C loss was unaffected by
cumulative rainfall quantity (Table 1), with no sificant differences in C losses across
cumulative rainfall quantity levels for a givendreency (Fig. 3b). However, isopod-driven litter
C loss significantly decreased with increasingfedirirequency (Table 1). This was particularly
important at low levels of cumulative rainfall quiay (30 and 40 mm month for which C loss
was significantly higher for the one pulse per wden for the three pulses per week treatment

(Fig. 3b).

Changesin litter and soil moisture under altered rainfall pattern
Litter moisture increased with increasing cumulatiginfall quantity (Fig. 4a, Table 1).
However, patterns of litter moisture differed amdregjuency treatments (Table 1) with litter
moisture less responsive to cumulative rainfallngitya for the one pulse per week frequency
compared to the two and three pulse per week fremiee (Fig. 4a), as indicated by the
significant interaction between cumulative rainfgllantity and frequency (Table 1).

Similar to litter moisture, mean soil moisture thghbout the incubation significantly
increased with increasing cumulative rainfall qutgr{Fig. 4b, Table 1). In contrast to litter
moisture, patterns of soil moisture were fairly gdmamong frequency treatments (Fig. 4b), but

with significantly higher soil moisture at loweliméall frequency (Table 1).

13



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

Moisture control over microbially- and isopod-driven decomposition
Microbially-driven litter C loss responded positiyéo litter moisture, with the best-fit model
following an asymptotic exponential function (F&). Soil moisture was also positively
correlated with microbially-driven litter C lossgmaining 52% of the variance in C loss (Fig.
5c¢). All other litter and soil moisture variablesdan weekly minima, maxima and range) also
positively correlated significantly with microbigdriven litter C loss (data not shown).

In contrast, isopod-driven litter C loss correlateither with litter nor soil moisture (Fig.
5b, d). Of all litter and soil moisture variablesgan weekly minima, maxima, mean and range
of moisture), the range of soil moisture was thky @ariable significantly related to isopod-

driven litter C loss, explaining 11% of variatidfid. 6).

Discussion

With this study, we provide some of the first elentseto begin answering the question: are large
and infrequent rainfall events equivalent to smdlle more frequent ones at inducing and
sustaining decomposition? We found that the regativportance of cumulative rainfall quantity
and frequency on litter decomposition was diffefentmicrobially-driven than for isopod-

driven decomposition within the range of experinaétreatments used for our study.
Specifically, we report that the contribution ofamdorganisms to litter decomposition is
primarily controlled by the overall cumulative réah quantity and only marginally affected by
its frequency. In contrast, the contribution ofl statritivores A. vulgare) to litter decomposition

is unaffected by cumulative rainfall quantity, lsttongly controlled by rainfall frequency, with

higher detritivore-driven decomposition at low faihfrequency. These contrasting responses
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suggest that changing rainfall patterns due toatknthange may change the relative

contribution of microbial decomposers and detritgsoto litter decomposition.

Microbial response to changesin rainfall pattern

In line with our first hypothesis, microbially-dewn decomposition generally increased with
increasing cumulative rainfall. This control fitstlvthe common view that macroclimatic
variables, such as annual precipitation, are domidavers of litter decomposition
(Meentemeyer, 1978). However, as expected baseecent findings (Joly et al., 2017a); Fig.
1a), microbially-driven decomposition increasead&rly with increasing cumulative rainfall only
when simulated rainfall events were delivered aallsamd frequent pulses (Fig. 3a). In contrast,
when delivered as large and infrequent pulses,abially-driven decomposition appeared to
saturate (Fig. 3a). The effect of rainfall frequgna microbially-driven decomposition was
however only marginally significant (Table 1), casting with the higher effect of rainfall
frequency observed in our previous experiment (8oBl., 2017a). This may be due to the
narrower range of cumulative rainfall quantity ugechis study (30-60 mm monith, compared
to the range (30-120 mm moffjrused in Joly et al. (2017a), and to distinct esvinental
conditions such as lower temperature and highativel humidity in the present study that may
have reduced desiccation between rainfall events.

Saturation of microbial activity with increased aulative rainfall quantity may result
from three mechanisms. First, above a given thidsbfcevent size, litter or soil may reach its
maximum water-holding capacity with excess watst to runoff or drainage. Second,
increasing event size may not linearly increasedtivation during which litter or soil is within

the moisture range appropriate for microbial attivCollectively, these mechanisms may limit
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the efficiency of rainfall to increase and sustater/soil moisture when rainfall is delivered as
large and infrequent events. In line with this, fasend that mean litter moisture was lower when
pulses were large and infrequent, at high levelunfiulative rainfall (Fig. 4a). In parallel, soil
moisture tended to saturate with increasing cunwaatinfall quantity (Fig. 4b), which likely
results from the fact that soil often reached issximum water-holding capacity, and excess
water was lost out of microcosms through drain@gea third mechanism, microorganisms may
no longer be limited by moisture conditions abogven threshold of litter and/or soil moisture.
In line with this mechanism, we observed a satonatif microbially-driven decomposition with
increasing litter moisture (Fig. 5a). Such satoratvas previously reported for microbial
respiration with increasing litter moisture (Schiraeal., 1999), with a decrease at very high
levels of litter moisture. Such decrease was neenked in our study, possibly because we did
not include a very high moisture treatment to prév&pods from drowning. On the other hand,
microbially-driven decomposition did not saturatéwncreasing soil moisture (Fig. 5c).
However, because microbially-driven decomposit®hkely to be more directly controlled by
litter moisture rather than soil moisture, and leseasoil moisture also saturates with increasing
cumulative rainfall quantity (Fig 4b), it may beattthe linearity of the relationship is
coincidental rather than mechanistic. Nonethekssi$ microbial respiration may saturate with
increasing soil moisture, as was reported by Spleng2007). Regardless of the underlying
mechanisms, this saturation of microbial contribatio litter decomposition with decreasing
frequency could have substantial consequencesali®g and CQ emissions from terrestrial

ecosystems.

Isopod responses to changes in rainfall pattern
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In contrast to microbially-driven decompositiompped-driven decomposition was not affected
by cumulative rainfall but was exclusively affectegrainfall frequency (Table 1). Isopod-
driven decomposition was higher at low frequenagye(pulse per week), than at high frequency
(two or three pulses per week), particularly at kwnulative rainfall quantity (Fig. 3b). The
lack of response of isopod-driven litter decomposito cumulative rainfall quantity indicates
that the activity of individuals from our studiedpulation ofA. vulgare was even more resistant
to decreasing cumulative rainfall quantity thaniveel predicted (Fig. 1b) based on reports that
soil fauna activity is relatively resistant to dgi (Coulis et al., 2013; Thakur et al., 2018).sThi
drought resistance may be due to strategies thétdesiccation, including morphological
characteristics such as a lower surface:volume catmpared to microorganisms, an
exoskeleton, and, in the casefofvulgare, the capacity to coil into a sphere (known as
‘volvation’). Additionally, mobility coupled with bhavioral characteristics such as sheltering
(Dias et al., 2012) may allow macrofauna to templyreelocate towards favorable conditions.
Although relocation away from dry areas reducedithe spent on leaf litter foraging, it may
allow satisfying water requirements by permittingter intake while minimizing water losses, as
soil protected under shelters (e.g., rocks or waathtural environments, artificial shelters in
our study) may remain moist for longer than litteilexposed soil. Such spatial decoupling of
food and water intake may allow isopods to remativa after the litter has dried down and as
long as the soil in the shelter remains suffickenbist. This behavior was reported for the
desert isopotHemilepistus reaumuri, which under dry conditions alternates feedingqugiat

the soil surface with resting periods in their n@idurrows (Shachak et al., 1979). In the
burrows,H. reaumuri obtain water via cutaneous absorption of saturaitednd by feeding on

wet sand (Coenen-Stal3, 1981). Our microcosms caatartificial shelters only, which may
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391 have offered some opportunity for mobility and bebeal responses to the moisture treatments.
392 However, these responses may be even greater figldesonditions than in our experiment,

393 potentially leading to an even greater resistaadew moisture levels.

394 Greater isopod-driven decomposition at low rainfi@dfuency compared to high

395 frequency fits our prediction that isopod-drivertai@position increases with decreasing rainfall
396 frequency and associated increase in pulse sige 1B). This finding is in line with the

397 theoretical framework put forward by Nielsen & B&D15) which suggests that a larger rainfall
398 event that induces greater soil moisture is ne¢alétgger activity of invertebrates compared to
399 microorganisms. However, we observed lower isopdekd decomposition for the 60 mm

400 monthY/two pulses a week treatment than for the 30 mmthdone pulse a week treatment

401 (Fig. 3b), despite identical pulse sizes (7.5 mmpu#se) and lower average soil and litter

402 gravimetric moisture content for the 30 mm matidme pulse a week treatment (Fig. 4a and 4b).
403 Furthermore, mean litter and soil moisture didaféct isopod-driven decomposition (Fig. 5b
404 and 5d). Consequently, our results suggest thaehigulse sizes and average soil moisture alone
405 are not sufficient to increase invertebrate agtivitat least within the range of environmental
406 conditions present for this experiment and forstudied species — in contrast with the

407 hypothesis of Nielsen & Ball (2015). Instead, warid that the average weekly range of soil
408 moisture (average difference between weekly maxirmathminimum soil moisture) was the

409 only moisture parameter related with isopod-dridenomposition (Fig. 6). This suggests that an
410 alternation of dry and moist conditions is nheedethaximize isopod activity. One possible

411 explanation for this is that isopods suchAasulgare perform compensatory feeding, consuming
412  a higher quantity of moist leaf litter following peds of drought to satisfy their water

413 requirements. Compensatory feeding has been repfatésopods feeding on low quality litter,
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i.e. consuming more low-quality than high-qualityel to compensate for its low nutritive value
(Hattenschwiler and Bretscher, 2001), while mosstialated compensatory feeding has been
reported for vertebrates (Nicolson and Fleming,3 @t not isopods.

Collectively, our results based on the isopodulgare suggest that rainfall frequency
may have important consequences to detritivoreedrlitter decomposition, in contrast to the
important influence of cumulative rainfall for madsial litter decomposition. In ecosystems
subject to long periods of drought that are inteted with infrequent large rainfall events, slight
changes in the size and frequency of these eveaysave important consequences on the
activity of detritivores. In the Sonoran Desert, iftstance, the litter consumption and survival of
the desert milliped®rthoporus ornatus (Girard, 1853), which remains inactive for mostioé
year and emerges out of the soil only after monsaors (Wooten et al., 1975), may be
jeopardized by a change towards more frequentrbatiar rainfall events. On the other hand, a
reduction in rainfall frequency and increase inrg\&@ze in temperate ecosystems may lead to an

increased contribution of soil macrofauna to lidecomposition.

Limits and ways forward

It is important to stress that we considered alsidgtritivore species in our experiment and our
results may be specific #a vulgare. The wide distribution of this species, spannind and

mesic ecosystems, may explain its lack of sensjttei cumulative rainfall quantity. Other
detritivore species with narrower distributionsgém with different physiological and

behavioral reactions to desiccation may resporfereifitly to changes in rainfall patterns.
Indeed, desiccation resistance varies among detgtispecies, including among isopod species,

and was found to be higher in detritivore commaesitiving in environments with low soll
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moisture than those in high soil moisture environte¢De Smedt et al., 2018; Dias et al., 2013).
Thus, detritivores less adapted to low soil moestumay still be affected by cumulative rainfall
guantity, unlikeA. vulgare in our study. Additionally, by comparing the respe of a macro-
detritivore to that of microorganisms, our studgudeed on the extreme ends of the decomposer
food web size range. Intermediate-sized soil oggasi(micro- and meso-fauna) may exhibit
intermediate response to changes in rainfall patdn light of our results, assessing the
response of other detritivores and other groughetlecomposer food web (e.g. microbivores,
predators) to changes in rainfall patterns wiliroportant for holistic prediction of litter
decomposition. In addition, our experiment focusadhe short-term responses of microbial and
detritivore activities through their effect on déittdecomposition. Over longer temporal scales,
microbial and detritivore community composition nehange as a response of rainfall pattern
changes (David and Handa, 2010; Nielsen and Ball52Yuste et al., 2011). Notably, Zimmer
(2004) reported that populations of four abundaopod species in a floodplain forest in
Germany were reduced by more intense precipitatlising spring and dry summers.
Understanding the consequences of rainfall vaitsglmh both community composition and
feeding activity will thus be needed to predict dwerall change in detritivore-driven
decomposition. Given these limitations, we recogiimat it is difficult to generalize our findings
to field conditions where different detritivoresegpes occur. Instead, we view our results as
being most useful for testing hypotheses betweafathpattern and the activity of different
groups of the decomposer food web, and as a wiaekdify climatic controls over ecological
processes that warrant further exploratioatu. Additionally, assessing the consequences of

altered rainfall patterns in concert with changetemperature is needed as these different
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aspects of climate change may have interactivetsffen detritivore activity (Thakur et al.,

2018).

Conclusions

Our study provides clear evidence that the contivbs of different groups of the decomposer
food web (i.e., microorganisms and a detritivorecps) to litter decomposition are controlled
by distinct aspects of rainfall patterns. While cdative rainfall quantity was the dominant
driver of microbially-driven decomposition, it ditbt affect isopod-driven decomposition within
the range of treatments applied. In turn, rairffauency had contrasting effects on
microorganisms and detritivores. At low rainfakduency, microbially-driven decomposition
saturated with increasing rainfall quantity, wh#epod-driven decomposition peaked,
particularly at low cumulative rainfall quantityh@nge in rainfall frequency thus appear to be a
largely overlooked aspect of climate change of irtgoece to C and nutrient cycling of surface
litter. In light of the recent reappraisal of tlegulatory role of macroclimate over litter
decomposition (Bradford et al., 2017, 2016; Jolglet2017b), our results highlight the need to
consider climatic variables such as rainfall atl&n@&emporal scale and to consider the response
of different groups of the decomposer food web thay have markedly distinct response to

changes in rainfall patterns.
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Figures

Figure 1. Hypothesized relationships between cumulative afligluantity and decomposition
driven by (a) microbial decomposers and (b) detiies when rainfall is delivered as large and
infrequent events (yellow dashed line) or smallfoeiuent events (blue dotted line). (a) For
microbial decomposer, we hypothesized that incnegasimulative rainfall quantity leads to a
linear increase in microbial decomposition whenweéd as small frequent events. When
delivered as large but infrequent events, we hygmged that microbially-driven decomposition
saturates because litter moisture saturates anolat activity is no longer limited by moisture.
(b) For detritivores, we hypothesized an increasgetritivore-driven decomposition with
increasing cumulative rainfall quantity, but witlslaallower slope than for microbially-driven
decomposition, as detritivores may be more redistadrought than microbes. We also
hypothesized that large infrequent events leaddioen detritivore-driven decomposition than

small and frequent events, as detritivores mayirequeater soil moisture to trigger activity.

Figure 2. Simulated rainfall patterns throughout the incidrafor the different cumulative
rainfall quantity (30, 40, 50 and 60 mm mofidelivered at three different rainfall frequencies
(once a week, yellow dashed line; twice a weekemylashed line; three times a week, black
dashed line). For a given cumulative rainfall qitgntess frequent pulses were also larger than

the more frequent ones.

Figure 3. Percentage of litter carbon (C) loss driven byni@roorganisms and (b) isopods after

six weeks of incubation (mean + SE, n=4) under flifferent cumulative rainfall quantities (30,

40, 50 and 60 mm morthand three different rainfall frequencies (1, 2 8pulses per week).
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Microbially-driven litter C loss was the C lossrmcrocosms without isopods. Isopod-driven
litter C loss was calculated for each microcosrthadlifference in C loss between the litter loss
with isopods and the mean C loss without isopodgrpatment combination. Points on the
cumulative rainfall quantity axis are jiggered &barity. Letters indicate significant differences

in C loss among cumulative rainfall quantity anebinency treatment combinations (Tukey HSD

tests).

Figure4. Mean (a) litter and (b) soil moisture for the sieak incubation (mean + SE, n=4),
under four different rainfall quantities (30, 4@ &nd 60 mm month and three different rainfall
frequencies (1, 2 and 3 pulses per week). Pointe@oumulative rainfall quantity axis are
jiggered for clarity. Letters indicate significaifference in C loss among cumulative rainfall

guantity and frequency treatment combinations (JURED tests).

Figure 5. Microbially-driven litter C loss as a function @) mean litter moisture and (c) mean
soil moisture, and isopod-driven litter C loss darection of (b) mean litter moisture and (d)
mean soil moisture. Mean moisture variables wereprged from all measurements during the
six-week incubation. A black line represents thgression line if the slope is significantly
different from zero, and grey areas represent 98&tidence intervals of regression lines. The
regression line on panel (a) correspond to an amtro@xponential non-linear model, while the
regression line on panel (c) correspond to a lineadlel. The r2 and p-values are not reported for

Fig. ba as they cannot be computed for nonlinegression. ns, nonsignificant.

Figure6. Isopod-driven litter C loss as a function of thean weekly range of soil moisture.

This range of soil moisture was computed as thenrdédterence between the weekly maximum
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651 and weekly minimum soil moisture. The black linpresents the linear regression line and the

652 grey area represents the 95% confidence intervilleofegression line.
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653 Tablel. Results of two-way ANOVAs testing the main effestumulative rainfall quantity, rainfall frequenand their interaction
654 on (i) microbially-driven litter C loss (n = 46) @iii) isopod-driven litter C loss (n=46) after siseeks of incubation, and on (iii) litter
655 moisture (n=48) and (iv) soil moisture (n=48). Samd litter moisture variables were computed atieall mean for all

656 measurements taken per microcosm during the sixwweebation.

Microbially-driven litter carbon loss Isopodigkn litter carbon loss
Sour ce of variance df Mean sq. F-value p-value df Mean sq. F-value -valpe
Cumulative rainfall quantity (CRQ) 3 471.7 24 <0.001 3 26 0.8 0.478
Rainfall frequency (RF) 2 52.1 2.6 0.085 2 771.6 25.1 <0.001
CRQ x RF 6 33.2 1.7 0.155 6 17 0.6 0.765
Residuals 34 19.7 - - 34 30.8 - -
Litter moisture Soil moisture
Sour ce of variance df  Mean sq. F-value p-value df Mean sq. F-value -valpe
Cumulative rainfall quantity (CRQ) 3 15.7 79.6 <0.001 3 395.2 153.867  <0.001
Rainfall frequency (RF) 2 2 10 <0.001 2 16.8 6.529 <0.01
CRQ x RF 6 0.9 4.5 <0.01 6 0.5 0.183 0.979
Residuals 36 0.2 - - 36 2.6 - -
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Litter decomposition
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Isopod—driven litter C loss (%)
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Highlights
* Wedisentangled the effect of rainfall quantity from frequency on decomposition
*  We compared the responses of microbially- and isopod-driven litter decomposition
* Microbially-driven decomposition increased with increasing rainfall quantity

» Isopod-driven decomposition increased with decreasing rainfall frequency



