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Enrichment of intracellular sulphur
cycle —associated bacteria in
intertidal benthic foraminifera
revealed by 16S and aprA gene
analysis

I.S. Salonen®?, P.-M. Chronopoulou?, C. Bird?, G.-J. Reichart®* & K. A. Koho?

Benthic foraminifera are known to play an important role in marine carbon and nitrogen cycles. Here,
we report an enrichment of sulphur cycle -associated bacteria inside intertidal benthic foraminifera
(Ammonia sp. (T6), Haynesina sp. (516) and Elphidium sp. (S5)), using a metabarcoding approach
targeting the 16S rRNA and aprA -genes. The most abundant intracellular bacterial groups included the
genus Sulfurovum and the order Desulfobacterales. The bacterial 165 OTUs are likely to originate from
the sediment bacterial communities, as the taxa found inside the foraminifera were also present in the
sediment. The fact that 16S rRNA and aprA —gene derived intracellular bacterial OTUs were species-
specific and significantly different from the ambient sediment community implies that bacterivory is
an unlikely scenario, as benthic foraminifera are known to digest bacteria only randomly. Furthermore,
these foraminiferal species are known to prefer other food sources than bacteria. The detection of
sulphur-cycle related bacterial genes in this study suggests a putative role for these bacteria in the
metabolism of the foraminiferal host. Future investigation into environmental conditions under which
transcription of S-cycle genes are activated would enable assessment of their role and the potential
foraminiferal/endobiont contribution to the sulphur-cycle.

Benthic foraminifera are unicellular eukaryotes widespread across marine environments. Due to their high abun-
dance and predominance in the benthic ecosystem, they play an important role in the sedimentary carbon cycle
by participating in phytodetritus processing and organic matter uptake!2. Living at and also deeper within the
sediment implies that these foraminifera sometimes live under oxygen depleted conditions and potentially rely on
alternative biogeochemical pathways®. Benthic foraminifera are known to actively take part in the nitrogen cycle,
as several species have the ability to take up and store nitrate intracellularly*~” and to perform complete denitrifi-
cation*8. A recent genome analysis of two Globobulimina species suggests the existence of a novel denitrification
pathway encoded by foraminifera’s own genome®. In certain areas, benthic foraminifera may even be responsible
for the majority of the benthic denitrification process, which highlights their global importance in the nitrogen
cycle®!?. In addition to carbon and nitrogen cycling, recent evidence of foraminiferal sulphur uptake in labelling
experiments'! suggests that foraminifera may also play a role in the sedimentary sulphur cycle.

Benthic foraminifera are known to harbour a range of potential bacterial endobionts, including putative deni-
trifying bacteria and sulphur-oxidizing bacteria'?>-'*. Recently, methanotrophs were also found to be associated
with benthic foraminifera'®. As such, the function of the putative endobiont community may be diverse, ranging
from metabolic strategies to the ability to inhabit otherwise hostile environments, such as dysoxic, sulphidic
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sediments'>'®. Endosymbiotic relationships are also common in other marine eukaryotes, offering them potential
evolutionary benefits, as they help the host to adapt to unstable conditions and survive in unfavourable environ-
ments'’. For example, ciliates are known to harbour a variety of endobionts linked to carbon, nitrogen and sul-
phur cycles, which are crucial for the survival of the host species'®'®. In ciliates, the endosymbiotic relationships
are known to have developed independently and species-specifically, and they persisted on long geological time
scales'. The origin of the benthic foraminiferal endobionts is currently not well understood. It has been suggested
that they may be transferred from generation to generation'®. Alternatively, they may be drawn from the ambient
sediment, similar to planktonic foraminifera, which are suggested to have evolved their endosymbioses via inter-
actions with water column bacteria®. However, so far very little is known of the interactions between foraminifera
and the surrounding sediment bacterial community.

Sedimentary bacterial communities may play a role in foraminiferal diet. However, bacterial uptake by ben-
thic foraminifera has been shown to be unselective, implying that bacterivory occurs mainly in association
with potential deposit-feeding behaviour?'. Feeding strategies, as well as organic matter turnover rates, appear
to be species-specific*!~?*. For example, in situ experiments with °N labelled bacteria have shown that benthic
foraminifer Ammonia tepida prefers algae in its diet over bacteria®*, suggesting that bacteria are not its primary
food source. In addition to bacterivory, foraminifera are known to have a variety of other feeding strategies, such
as herbivory, carnivory and even direct dissolved organic carbon uptake??**>26, Mixotrophy is also an important
trophic strategy for some shallow-water benthic foraminifera with the ability to harbour photosymbionts or klep-
toplasts?’~%°. The photosymbiont associations can be diverse and flexible, and it has even been suggested that some
species are able to shuffle their photosymbionts to increase adaptability*’. Kleptoplast-driven photosynthesis and
associated inorganic carbon fixation is shown to be an important carbon sequestration mechanism for Haynesina
germanica®'. Additionally, kleptoplasts may serve as an energy reservoir under unfavourable conditions®.

Despite the significant contribution of these ubiquitous and abundant organisms to both C and N cycling
e.g.l>*8- 1% very little is known of the potential interactions between the sediment bacteria and benthic foraminif-
era. Previously, endobiont studies have been mainly based on transmission electron microscope (TEM) observa-
tions* and lacked direct comparisons to the sediment microbial community. Recently, 16S rDNA metabarcoding
has provided insights into intracellular bacterial communities of planktonic foraminifera, allowing the identifica-
tion of putative species-specific endobionts****, Here, we use a metabarcoding approach to target the 16S rRNA
gene and focus on 3 benthic species, Ammonia sp. (T6), Elphidium sp. (S5), and Haynesina sp. (S16)* collected
from intertidal localities in the Dutch Wadden Sea. We compare the 16S rDNA metabarcoding —derived intracel-
lular bacterial operational taxonomic units (OTUs) to those of the ambient sediment to determine which bacte-
rial groups are enriched within foraminifera, and link the findings to sediment porewater chemistry and sediment
bacteria distribution. We examine potential species-specific intracellular bacterial 16S OTUs in foraminifera, as
well as, the effect of sediment depth and sampling location. Furthermore, the sulphur cycle-related aprA (dis-
similatory APS reductase) functional gene is quantified and sequenced, to explore the potential for intracellular
bacteria-driven sulphur oxidation/sulphate reduction in benthic foraminifera, and to study the phylogenetic rela-
tionships of the associated bacteria.

Results

Pore water geochemistry. The oxygen penetration depth at both de Cocksdorp and Mokbaai sites was
approximately 0.2 mm (Fig. 1). Below the oxygen penetration, a clear manganese (Mn) and iron (Fe) reduction
zone was detected, indicated by increases in the availability of dissolved Mn and Fe. In Mokbaai, the Fe and Mn
concentrations in the surface sediments were close to 20 pumol/l, declining to zero at approximately 4 cm sediment
depth. At de Cocksdorp, the decline is faster, and the concentration of Fe and Mn dropped to 0 pmol/l before 2 cm
sediment depth. A small Fe peak at approximately 5cm sediment depth may be related to bioturbation. No clear
denitrification zone was detected in pore water nitrate (NO;™), with NO;~ being present, both in Mokbaai and
de Cocksdorp, down to 10 cm sediment depth (Fig. 1). Pore-water ammonium (NH, ") was clearly higher in de
Cocksdorp than in Mokbaai, where an increase to over 600 umol/l was seen at 10 cm sediment depth, suggesting
relatively higher remineralisation of organic matter (OM) in de Cocksdorp compared to the Mokbaai sediments.
The enhanced OM remineralisation in de Cocksdorp was also evident from the presence of H,S in surface sedi-
ments, whereas no H,S was detected in Mokbaai at the depths sampled.

Intracellular foraminiferal- and sediment-based bacterial 165 OTUs. Three species were retrieved
from Mokbaai, including 13 Ammonia sp. (T6), 9 Elphidium sp. (S5) and 1 Haynesina sp. (S§16); and 5 from de
Cocksdorp, of which all were Elphidium sp. (S5) specimens (Supplementary Table S1). The 16S Illumina MiSeq
sequencing produced a total of 4 019 303 sequences in the sediment dataset and 7 097 136 sequences in the
foraminiferal dataset. The number of sequences after trimming and quality filtering was 423 845 and 937 601,
and resulted in 16 255 and 16 356 OTUs in the sediment and foraminiferal datasets, respectively. After filtering
OTUs with low number of reads (total sum of reads per OTU across all samples <5 in foraminiferal dataset, <10
in sediment, Supplementary Fig. S1), the number of OTUs was further reduced to 2521 (sediment) and 1896
(foraminifera). Trimming down the OTU number reduced the total number of sequence reads by 8.9% (sedi-
ment) and 2.4% (foraminifera). Levelling rarefaction curves indicate that the sequencing depth was satisfactory
in sediment samples (Supplementary Fig. S2). Foraminiferal specimens varied more in the amount of reads and
OTUs obtained (Supplementary Fig. S2).

The number of bacterial classes was similar in sediment samples (88) and inside foraminifera (89). The intra-
cellular bacterial 16S OTUs of foraminifera consisted of similar bacterial classes to those found in the sediment
but at contrasting relative abundancies (Fig. 2). The difference between the foraminiferal intracellular 16S OTUs
and the sediment was clearly identified by principal coordinate analysis (PCoA), using Bray-Curtis distance
where the sediment and foraminiferal specimens were separated on the x-axis, explaining 19.8% of variance
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Figure 1. Porewater profiles of O, and H,S, NH," and NO;~, Fe and Mn at both Mokbaai and de Cocksdorp.

(Fig. 3). Alpha diversity (Shannon index) was higher in sediment (median 5.7 Mokbaai, 5.3 de Cocksdorp) than
inside the foraminifera (median 2.6 to 3.8 at Mokbaai, 3.4 at de Cocksdorp) (Fig. 4).

The sediment bacterial 16S OTUs at de Cocksdorp were dominated by class Campylobacteria (up to 44.3% rel-
ative abundance, Fig. 2). Campylobacteria was also the most abundant class inside the foraminifera (all Elphidium
sp. (S5)) at this site, but with a higher relative abundance, making up to 51.5% of the 16S OTUs (Fig. 2). The most
common genus of this class in both sediment and foraminifera (up to 99.6% of all Campylobacteria reads) was the
sulphur-oxidizing bacterium (SOB) Sulfurovum (Supplementary Table S3). In addition, at de Cocksdorp, classes
such as Deltaproteobacteria, Actinobacteria and Chloroplasts were more relatively abundant in foraminifera (up
0 36.8%, 29% and 27.4%, respectively) than in sediments (up to 12.7%, 1.3% and 4.7%, respectively). At Mokbaai,
Campylobacteria dominated the intracellular bacterial 16S OTUs of foraminifera (up to 63.1% in Ammonia sp.
(T6) 79.1% in Elphidium sp. (S5) and 50.1% in Haynesina sp. (S16) (Fig. 2), whereas in the sediments bacterial
classes Gammaproteobacteria (up to 25.7%) and Deltaproteobacteria (up to 20.2%) were the most abundant
(Fig. 2). Differences were observed in the intracellular bacterial 165 OTUs among the 3 species. For example,
Ammonia sp. (T6) contained a higher relative abundance of Alphaproteobacteria (up to 90.3%) than Elphidium
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Figure 2. Relative abundance (%) of bacterial classes (>2%) in sediment and in foraminifera samples.
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Figure 3. Principal coordinate analysis (PCoA) including both sediment and foraminifera samples.

sp. (S5) (up to 6.8%) or Haynesina sp. (S16) (8%), whereas Elphidium sp. (S5) had more Deltaproteobacteria
(up to 69.7%) than Ammonia sp. (T6) (up to 43.8%) or Haynesina sp. (S16) (18.2%) (Fig. 2). In addition, chlo-
roplast OTUs were detected in the intracellular bacterial OTUs of some foraminiferal specimens (up to 74.5%).
SILVA classification was not able to distinguish the source of chloroplasts, however, additional BLAST search
implied that majority of the most common chloroplast OTUs in the sediment and inside foraminifera were orig-
inated from diatoms (Supplementary Tables S4 and S5). The closest BLAST match of the most abundant intra-
cellular chloroplast OTU of foraminifera (in average 59.8 4-25.3% in all foraminifera) was a chloroplast isolated
from a benthic foraminifera Virgulinella fragilis** (Supplementary Table S$4). Other common chloroplast OTUs
were mainly from diatom sources, and some of them, such as Triceratium dubium, Extubocellus spinifer and
Plagiogramma staurophorum were also common chloroplast OTUs in the sediment (Supplementary Tables S4
and S5). According to non-metric multidimensional scaling analysis, Mokbaai (excluding Haynesina sp. (S16),
as only one specimen of this species was available), Ammonia sp. (T6) and Elphidium sp. (S5) specimens were
separated on the x-axis (NMDS1) (Fig. 5). Indeed, species was found to be a significant factor (p-value = 0.004,

PERMANOVA), whereas sediment depth was not (p > 0.1, PERMANOVA).

Sediment bacterial communities at the two sites were different, as shown in the principal coordinate anal-
ysis (PCoA), where the sites are separated on the x-axis (42.6% of the variance, Fig. 6). This separation is
likely due to contrasting relative abundancies of the dominant taxa, for example at Mokbaai bacterial classes

Gammaproteobacteria (up to 25.7%) and Deltaproteobacteria (up to 20.2%) were dominating, whereas at

de
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Figure 4. Shannon diversity index (H’) in foraminifera and sediment samples in box-whisker plot. Lines
indicate median value, boxes standard error and error bars the standard deviation.

0.4 ®
b °
o ° °
[ ]
®
@
=} @ Ammonia
= 00 i
S 00 ) PY Elphidium
L]
L ]
-0.2
®
[ ]
0.4 0.2 0.0 0.2 04
NMDS1

Figure 5. Non-metric multidimensional scaling (nMDS) plot of Ammonia sp. (T6) and Elphidium sp. (S5) from
Mokbaai.
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Figure 6. Principal coordinate analysis (PCoA) of sediment samples showing in-sediment depth in color.

Cocksdorp, class Campylobacteria was more abundant (up to 44.3% in de Cocksdorp, 21.2% in Mokbaai)
(Fig. 2). In addition, chloroplasts (up to 11.3%) were more abundant at Mokbaai. The sediment community also
changed with depth, as indicated by the y-axis of the PCoA plot (18.1% of the variance, Fig. 6). At de Cocksdorp,
Bacilli (16.4% to 0.01%) and Chloroplasts (2.7% to 0.8%) decreased with depth whereas anaerobic classes,
such as Anaerolinae (1.9% to 10.6%) and Dehalococcoidia (0.02% to 4%), increased. At Mokbaai, the anaer-
obic classes Anaerolinae (1.2% to 3.9%) and Thermoanaerobaculia (1.2% to 2.3%) also increased with depth
(Fig. 2). In the sediment, the driving factors for the variance in the bacterial communities were site (p-value
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0.001, PERMANOVA) followed by sediment depth (p-value 0.004, PERMANOVA). In contrast, when looking at
Elphidium sp. (S5), which was found at both study sites in 0-4 cm depth, neither site nor depth was found to be
significant (p > 0.1, PERMANOVA). Thus, the overdriving factor determining the sediment bacterial commu-
nity was site followed by depth, whereas the composition of intracellular bacterial 16S OTUs of foraminifera was
species-dependent.

Intracellular aprA OTUs of foraminifera. In foraminifera, the abundant class Campylobacteria was
dominated by the SOB genera Sulfurovum and Arcobacter (up to 95.7% and 40.3% of reads inside the class,
respectively). All foraminifera species also harboured a high relative abundance of Deltaproteobacteria (up to
43.8% in Ammonia sp. (T6), 69.7% in Elphidium sp. (S5) and 18.2% in Haynesina sp. (S16)), in which common
genera included sulphate-reducing bacteria (SRB), such as, Desulfobacula, Desulfosarcina and Desulforhopalus
(Supplementary Table S3). In total, 687 sulphur-cycle related intracellular aprA OTUs (referred to as aprATX in
Fig. 7) of foraminifera were analysed.

Phylogenetic analysis (Fig. 7) confirms the relation of intracellular foraminiferal aprA OTUs to both SOB
and SRB. In fact, the analysed intracellular foraminiferal aprA OTUs are almost evenly distributed between SOB
(45.1% of all sequences) and SRB (51.1% of all sequences) (Fig. 7). Four well defined clusters can be seen on the
tree: 2 SRB clusters (SRB I, consisting of 49.9% of all sequences; SRB II, consisting of 1.2% of all sequences) and
2 SOB clusters (SOB aprA lineage I with 21.3% of all sequences; SOB aprA lineage II with 23.8% of all sequences)
(Fig. 7). The SOB clusters have 91% (SOB aprA lineage II) and 96% (SOB aprA lineage I) ML bootstrap support.
The most abundant OTU (aprATX1, relative abundance 6% across all specimens) is found in SOB aprA lineage I
and is related (98.9% BLAST similarity) to a sediment isolate of the saline Lake Grevelingen in the Netherlands®.
More sequences from this lake are part of the largest branch on our tree, comprising 19 OTUs (18.5% of all
reads), which is clustering with known Desulfobacteraceae. A close relative of this group of sequences (89-90%
BLAST similarity) is an endosymbiont of the oligochaete Olavius algarvensis®*®. Few aprA OTUs group together
with symbiotic bacteria (Fig. 7). For example, the lowest branch of the SOB aprA lineage I, consisting of 9.6% of
aprA OTUs groups together with a Gammaproteobacterium associated with the echinoid Asterichinus elegans gut
microflora®. In addition, single aprA OTUs, such as aprATX6 (1.54% of reads), clusters with a Tubificoides ben-
edii ectosymbiont in SOB aprA lineage II*%, and aprATX17 and aprATX93 (1% of reads) cluster with the marine
sponge Geodia barretti-associated bacteria® in the SOB aprA lineage I (Fig. 7).

As with the bacterial 16S OTUs, each foraminiferal species appeared to have distinct bacterial aprA OTUs.
According to canonical correspondence analysis (CCA), based on Ammonia sp. (T6) and Elphidium sp. (S5)
from both sites (Haynesina sp. (S16) excluded due to lack of adequate replicates), species was a significant factor
influencing the intracellular aprA OTUs (p-value 0.026, ANOVA) whereas site was not (Fig. 8). Quantification
of the S cycle-related genes (aprA and dsrB) showed that the gene copy numbers were high across specimens and
sites (Supplementary Table S6). In sediments, the aprA gene copy numbers were 2.1 x 107 (SD 1.4 x 107) and
2.9 x 107 (SD 1.8 x 107) per gram dry sediment at de Cocksdorp and Mokbaai, respectively. Per single foraminife-
ral cell, the aprA gene copy numbers were on average 2.3 X 10% (SD 2.4 x 10%) in Ammonia sp. (T6), 3.7 x 10* (SD
3.5 x 10%) in Elphidium sp. (S5), and 8.4 x 10! in Haynesina sp. (516) (Supplementary Table S6). In contrast, the
quantification of N cycle-related genes was not consistent across samples, and their amplification was unsuccess-
ful with the exception of the nirS gene (Supplementary Table S6). The nirS gene was sequenced on the Illumina
MiSeq platform, alongside blank samples. The resulting communities were similar to the blank samples, which
were dominated (over 99% of total nirS reads) by a single OTU 89% similar to Gammaproteobacterium B9-12
(AJ248393) from Pacific NW sediments. Thus, we reason that no real nirS community was captured.

Discussion

The 16S rDNA metabarcoding revealed a wide diversity of both SRB and SOB enriched among the intracellu-
lar bacterial 16S OTUs of foraminifera compared to the surrounding sediment bacterial community. Although,
some intraspecific variation was observed (Fig. 2), statistically intracellular bacterial 16S OTUs as well as aprA
OTUs of foraminifera were species-specific. Overall, alpha diversity was lower in foraminifera compared to sed-
iments, which could potentially imply a selective uptake, although differences in the amount of sample mate-
rial (0.25 g sediment vs. a single foraminiferal cell) may also be the driver of the lower diversity obtained. The
genetic potential for sulphur oxidation and sulphate reduction was further identified by targeting and quantifying
the aprA gene, which was found to be abundant across different foraminiferal species. In contrast, intracellular
N-cycle associated bacteria were not successfully targeted in foraminifera, implying that they play a trivial role
in our specimens compared to S-cycle associated bacteria. We were able to amplify a rather long DNA fragment
(approximately 550 bp) of intracellular bacterial DNA from foraminifera, implying that the bacterial DNA was
not degraded by digestion, which would typically limit the length of the fragments obtained*. As such, the intact
nature of the extracted DNA implies that the bacteria inside the foraminifera may be alive and putatively endo-
biotic. Intact and dividing bacteria have also been previously observed inside intertidal benthic foraminifera
Ammonia sp. (T6), suggesting that putative bacterial endobionts could exist at least in this species*!. To verify the
activity and function of the putative endobionts, RNA and/or FISH analysis are recommended.

The presence of bacterial OTUs inside the foraminifera solely due to bacterivory cannot be completely
excluded but seems very unlikely. Although similar bacterial taxa were present in the foraminifera and the
surrounding sediment, these occurred in contrasting relative abundancies. Foraminifera digest bacteria ran-
domly?! while deposit feeding, which would likely result in intracellular bacterial composition that would more
closely mirror that of the ambient sediment. Random deposit feeding would also not be expected to result in
species-specific bacterial 16S OTUs observed here. In addition, previous work has shown that bacterivory plays
only a minor role in fulfilling the carbon requirements of benthic foraminifera****2. Instead, the elphidiid speci-
mens (Elphidium sp. S5, Haynesina sp. S16), are kleptoplastic®® and thus are likely to have a dietary preference for
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Figure 7. Phylogeny based on ML analysis of the partial aprA gene (about 370 bp). Collapsed branches
are indicated by a polygon. Bootstrap values over 70% are shown with an asterisk (*). OTUs of this study
are marked with aprATX prefix, with the relative abundance of that OTU in average across all samples in

parenthesis. Known symbionts are indicated in bold. SRB: sulphate-reducing bacteria; SOB: sulphur-oxidizing
bacteria; SRA: sulphate-reducing archaea.

diatoms?, whereas Ammonia sp. T6 has been suggested to exhibit also carnivorous behaviour?®*. The relatively
low yield of chloroplasts in elphidiids in this study, compared to the study of Chronopoulou et al. (2019) where
universal 18S primers were used to target eukaryotes on the same specimens, may be related to the limited ability
of 16S primers to target these organelles. Thus, to better target intracellular algal signal we recommend the use of
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Figure 8. Canonical correspondence analysis (CCA) of intracellular aprA bacterial OTUs. Arrows showing
explanatory variables. C=de Cocksdorp, M = Mokbaai.

universal eukaryotic primers. As an alternative to being solely a food source, the sediment bacterial community
could also provide endobionts to benthic foraminifera in a similar way that the endobionts of pelagic foraminifera
have been linked to the surrounding water column®.

Previous studies have suggested that SOB could potentially have an endobiotic relationship with foraminif-
era'. In addition, sulphur (*'S) incorporation under dysoxia was observed for Ammonia sp. (T6), implying an
ability to potentially synthesize sulpholipids through a sulphate activation pathway'!. In other marine eukaryotes,
endo- and ectobionts associated with the sulphur cycle are widespread in marine environments and occur in
several phyla'’. The host can benefit from them in various ways. For example, SOB symbionts can fix carbon auto-
trophically while deriving energy from sulphur-oxidation, and provide the host with organic carbon sources'”.
Sulphur-oxidizing symbioses have been discovered in marine sponges*, nematodes*, ciliates'®*>$ and oligo-
chaete worms®**’. In turn, SRB symbionts can produce sulphide by oxidizing either organic compounds e.g.
acetate or inorganic compounds e.g. hydrogen. Some eukaryotes, such as the oligochaete worm Olavius algar-
vensis, can even harbour both SOB and SRB, forming an endosymbiotic sulphur cycle, potentially helping the
host cope with sediments with variable sulphide concentrations***". In our data, several aprA OTUs in the SRB I
branch cluster together with the O. algarvensis Delta 1 symbiont. Overall, the sulphur cycle -related OTUs were
almost equally distributed between SRB and SOB branches, in which they grouped with known symbiotic bac-
teria of other marine eukaryotes, suggesting that some of the aprA OTUs could be putative endosymbionts for
the foraminifera. These closely related symbionts included, for example, ectosymbionts of the oligochaete worm
Tubificoides benedii isolated from the Wadden Sea coastal sediments®. In the SRB I branch, the foraminiferal
intracellular bacterial OTUs contained a large abundance of sulphate-reducing Deltaproteobacteria, belonging
to bacterial families Desulfobulbaceae and Desulfobacteraceae. In ciliates, these same bacterial taxa have been
identified as endobionts growing autotrophically and potentially providing the host with amino acids'®. Similarly,
kleptoplast-bearing foraminifera are able to receive photosynthates, such as amino acids, directly from their sym-
bionts*. In addition, utilisation of dissolved amino acids has been observed in benthic foraminifera®, although
the exact mechanism for this is poorly understood. We suggest that sulphur-cycle related endobionts could poten-
tially benefit foraminifera by providing carbon or other vital compounds, such amino acids, to the host.

Dynamic environments with changing redox conditions, such as intertidal mudflats, have been estimated to
be a potential hotspot for sulphur-cycle related symbiotic associations®®. They are in general characterized by a
very shallow oxygen penetration depth* and variable redox stress due to non-steady state porewater geochem-
istry associated with tidal activity and bioturbation. In this study, at de Cocksdorp, the sediment became oxygen
depleted after 0.2 mm and free H,S was detected below 1 cm sediment depth (Fig. 1). Despite the challenging con-
ditions, foraminifera can thrive in these environments due to their ability to survive long periods of anoxia®**!
and tolerate sulphidic conditions®*. In the Wadden Sea, all three species are commonly encountered and contrib-
ute significantly towards benthic biomass***2. Under anoxia, the metabolic rate of foraminifera decreases® and
their cytoplasm gets thinner*!.. However, despite reduced metabolism, foraminifera must still sustain their vital
functions and have been shown to continue to grow and calcify®*. In other eukaryotes, such as ciliates, endobionts
are hypothesized to be crucial for survival in anoxic/dysoxic environments'®**. In a similar way, endobionts could
help benthic foraminifera to adapt to changing environmental conditions. The relatively diverse composition of
intracellular bacterial 16S OTUs may also provide the foraminifera an advantage in responding to environmen-
tal stress, as they could potentially utilize the most appropriate endobiont community, in a similar fashion to
photosymbiont-bearing foraminifera that have been suggested to potentially shuffle their internal symbiont pool
in response to changes in environmental conditions®*®. In addition to sulphur-cycle bacteria, the intracellular
bacterial 16S OTUs observed in this study included chloroplasts, of which the most abundant one was similar
to kleptoplastic endobionts previously isolated from Virgulinella fragilis'. It has been suggested that harbouring
chloroplasts along with SOB symbionts may have the advantage of reducing the harmful effects of H,S'>'4, which
could benefit kleptoplastic species such as Elphidium sp. and Haynesina sp. The genetic and metabolic diversity
of putative sulphur cycle-associated endobionts might help foraminifera to colonize unstable, dynamic environ-
ments, where oxygen is limited but sulphate and sulphide is abundant.
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Conclusion

To date, sulphur-cycle related putative endobionts in benthic foraminifera have been largely overlooked and
understudied, however, as our data shows, the genetic potential for both sulphur oxidation and sulphate reduc-
tion is abundant in the studied foraminiferal species from two different locations. Furthermore, these SOB and
SRB are phylogenetically closely related to known symbiotic bacteria of other marine eukaryotes. We therefore
hypothesize, that these putative endobionts, which foraminifera may derive from the ambient sediment, could be
linked to foraminiferal carbon / nutrient acquisition, allowing the foraminifera to inhabit the periodically anoxic
and sulphidic intertidal sediments. Future studies targeting the activity of the putative endobionts are needed to
confirm their functions and roles in foraminiferal ecology.

Methods

Study sites and sampling. The samples were collected in November 2015 from two sites situated on inter-
tidal mudflats on the coast of Texel island, the Netherlands. The sediment at Mokbaai (53°00/17.2""N 4°45/22.6"E)
appeared generally sandier and during sampling large polychaete worms and burrows were observed to >10cm
sediment depth. At de Cocksdorp (53°09'23.2”N 4°52/53.0”E), situated on the north side of Texel, polychaete
worms and large burrow structures were absent.

From both sites, an intact sediment core (inner diameter 10 cm) was retrieved during low tide. Both cores were
transported immediately to the Netherlands Institute of Sea Research (NIOZ), which is located within 5km dis-
tance from Mokbaai and 20 km distance from de Cocksdorp, for further processing. In a temperature-controlled
laboratory (set at 12 °C), dissolved oxygen and hydrogen sulphide (H,S) were measured, using Unisense microe-
lectrodes. Porewater oxygen profiles were measured with a Unisense microsensor (OX-100), two-point calibrated
in 100% air-saturated filtered sea water collected from the study site, and in an anoxic solution, containing sodium
ascorbate and NaOH (both at 0.1M). Oxygen measurements were carried out at depth intervals of 100 um. The
pore water H,S profiles were measured with a Unisense (H2S-100) microsensor, four-point calibrated in an anaer-
obic solution containing Na,$ at concentrations of 0, 12.5, 25, 50 umol/L (according to manufacturer’s instruc-
tions), and measurements were carried out at depth intervals of 200 um.

After profiling, the core was subsampled with 3 truncated syringes, of which 2 were used for pore water anal-
ysis and 1 for both environmental DNA (eDNA) sequencing and picking of the foraminifera. The two syringes
for porewater measurements were immediately placed in a nitrogen-flushed glove bag and the sediment was
sliced at 1 cm intervals down to 10 cm depth. Slices were transferred into 50 ml centrifuge tubes fitted with 0.45
pm maxi-spin centrifuge filters and subsequently centrifuged at 3000 rpm for 20 minutes outside the glove bag.
Afterwards, the tubes were transferred back into the glove bag, where the supernatant was filtered (0.25 pm) and
divided into subsamples. The nutrient analyses of NO,~ and NH," were carried out at the Royal NIOZ according
to standard protocols®>*, respectively. The elemental samples (namely iron and manganese) were acidified with
1M HNO; and measured with ICP-OES at the University of Helsinki, Department of Food and Environmental
Sciences (precision and accuracy <5% RSD as determined by in-house and reference standards). All values are
reported as pmol L.

The third syringe was also sliced with 1 cm intervals down to 10 cm sediment depth. Each slice was first sub-
sampled for sediment eDNA with a sterile plastic spatula (1-1.5g of sediment frozen in liquid nitrogen and
stored at —20°C). The remaining sediment was sieved with filtered seawater through a 125 um mesh and living
foraminifera were collected based on motility*'. Foraminifera were identified to genus level based on morphol-
ogy, which was verified with 18S V9 amplicon sequencing®. All specimens were washed minimum 3 times using
sterile artificial sea water (ASW), to remove any remaining sediment from their shell. Afterwards, foraminifera
were placed in RNAlater (ThermoFischer) solution, in order to dissolve their carbonate shells whilst keeping the
nucleic acids intact, and stored at +4 °C until further molecular analyses.

DNA extractions and sequencing. The carbonate-free foraminiferal cells were carefully washed again a
minimum of 3 times with sterile ASW to remove all remains of their shell and residual RNAlater?***. The clean,
intact cells were crushed into DOC buffer for DNA extraction®®. Sediment DNA was extracted from 0.25g of sed-
iment with the PowerSoil® DNA Isolation Kit (MoBio, Carlsbad, USA) according to the manufacturer’s instruc-
tions. To analyse the 16S gene, DNA was amplified with the Polymerase Chain Reaction (PCR) method, using a
mixture of the universal bacterial primers pA_Illum_FP_1-3 and pD’_Illum_RP_1-3 targeting the V1-V3 regions
of the 16S rRNA gene® (Supplementary Table S2). The PCR conditions were as follows: 98 °C for 10 seconds (s),
followed by 32 cycles (foraminifera) or 25 cycles (sediment) of 98 °C 55 for denaturation, 72 °C 15 for annealing
and 72°C 30s for elongation and 72 °C for 1 minute (min) for final elongation. Each PCR product was visualized
with gel electrophoresis (1% agarose) to check if a single band of the correct size was observed and the PCR was
successful. In order to control potential contamination, to which 16S rDNA metabarcoding of a single cell is
susceptible, blank samples were used alongside foraminiferal specimens (DOC buffer and ASW), and sediment
samples (extraction kit buffers), as well as non-template blanks for PCR and post-PCR.

The PCR purifications, second PCR round and Illumina MiSeq sequencing were performed in the Laboratory
of DNA sequencing and Genomics in the Institute of Biotechnology at the University of Helsinki*®. Unique cus-
tom barcodes for later sample de-multiplexing were selected using BARCOSEL®. After sequencing, raw reads
were sorted into samples based on barcodes. Then, MiSeq overhangs, barcode and primer sequences were
removed®. 16S rDNA sequences were assembled to paired-end reads and quality-filtered in Mothur version
1.36.1, according to the MiSeq Standard Operating Procedure®!. Maximum length was set to 550 base pairs
(bp). Quality filtered reads were aligned against the SILVA database (release 132) and chimeric sequences were
removed in Mothur with the UCHIME tool®2. OTUs were created using 97% similarity threshold. Taxonomy was
assigned in Mothur against the SILVA database using representative sequences corresponding to the distance
centroids of each OTU. The blanks were analysed alongside samples and the OTUs that were abundant in the
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blanks (consisting of 99.6% reads in the blanks) were subsequently removed from the final 16S rDNA dataset.
Finally, in order to avoid diversity overestimation while preserving our sequencing effort, OTUs summing up to
<5 (foraminifera specimens) and <10 (sediment samples) sequence reads were removed. These thresholds were
set based on plotting the cumulative sum of OT'Us that would be filtered against the total counts (Supplementary
Fig. S1).

To quantify common nitrogen cycle genes (amoA, nirS, nirK, norB; Supplementary Table S2) and sulphur-cycle
genes (aprA, dsrB; Supplementary Table S2) we performed quantitative PCR (qPCR) (Supplementary Table S6).
The same specimens were used for the qPCR analysis as for the 16S rDNA metabarcoding. The reaction for
each specimen was performed in triplicate in a final volume of 10 pl, which contained 5l of SensiFAST SYBR
No-ROX mix (2x) (Bioline), 200 nmol/L of each primer and 1 pul of 10 times diluted DNA. The conditions for all
reactions were as follows: 95 °C for 3 min; 40 cycles of 95°C for 5s and 60 °C for 30s; 95°C for 55; 65°C for 55, and
a final step of 95°C for 30s. Absolute quantification of the targeted genes was performed with a series of 10-fold
standard dilutions, using the CFX Manager (version 4.0) software (Bio-Rad). Standards were derived from envi-
ronmental purified PCR products. Following quantification, the functional gene adenosine-5’-phosphosulfate
reductase (aprA) was amplified and sequenced to target bacteria involved in the sulphur cycle (Supplementary
Table S2). The PCR conditions were as follows: a denaturation step at 98 °C for 30, 20-28 cycles of 98 °C for 10s,
72°C for 15s for annealing, 72 °C for 155, and a final elongation at 72 °C for 1 min. Sequencing was done on the
Mumina MiSeq platform as described earlier with the 16S gene. Processing of the aprA sequences was done in the
QIIME pipeline (version 1.9.1) and its associated modules®®. OTUs were specified at 90% similarity level using the
USEARCH algorithm® and taxonomy of the most abundant representative sequences was assigned by a BLAST
search® against the National Center for Biotechnology Information (NCBI) database.

To construct the phylogenetic tree, representative sequences of the most abundant aprA OTUs (i.e. OTUs of
>0.05% relative abundance) were aligned with their closest relatives (85-100% similarity) and aprA sequences
of known sulphur-cycle bacteria, and known endo- or ectosymbiotic sulphur cycle —associated bacteria from
other marine eukaryotes, such as sponges, oligochaetes and nematodes. Alignment was done using the mus-
cle algorithm® (version 3.8.31) and edited in MEGA7%. Maximum likelihood (ML) phylogenetic tree was con-
structed using MEGA?7, after performing a “best model” analysis to select the best substitution model (Tamura
3-parameter model with discrete Gamma distribution rates among sites) according to BIC (Bayesian Information
Criterion)®”%, The tree was edited in Dendroscope® (version 3.5.9) and Adobe Illustrator CC (version 23.0.2).

Statistical analysis. Statistical analysis was done in R (version 3.4.2). Alpha diversity (Shannon) and rare-
faction analysis was calculated using package vegan’® (version 2.4-5). Non-metric multidimensional scaling anal-
ysis, principal coordinate analysis and canonical correspondence analysis were done using packages phyloseq’’
(version 1.22.3) and ggplot2”* (version 3.0.0). Significance of variables was determined using PERMANOVA
function in vegan”®.

Data Availability

The representative DNA sequences of OTUs of the 16S sequence data are available in NCBI GenBank under
accession numbers MK646075 - MK647970 (foraminifera) and KCXS00000000, PRJNA528017 (sediment). The
representative DNA sequences of aprA OTUs (aprATX) are available in NCBI GenBank under accession numbers
MK569530 - MK569654.
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