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Abstract 
We present the results of a systematic literature review that examines the main paradigms and               

properties of programming languages developed for and used in High Performance Computing            

for Big Data processing. The systematic literature review is based on a combination of              

automated keyword-based search in the Elsevier Science Direct database and further digital            

databases for articles published in international peer-reviewed journals and conferences,          

leading to an initial sample of 420 articles, which was then narrowed down in a second phase                 

to 152 articles found relevant and published 2006-2018. The manual analysis of these articles              

allowed us to identify 26 languages used in 33 of these articles for HPC for Big Data processing.                  

We analyzed the languages and their usage in these articles by 22 criteria and summarize the                

results in this article. We evaluate the outcomes of the literature review by comparing them               

with opinions of domain experts. Our results indicate that, for instance, the majority of the               

used HPC languages in the context of Big Data are text-based general-purpose programming             

languages and target the end-user community. 

Keywords: ​High Performance Computing, Modelling and Simulation, Big Data, Data Mining,           

Dynamic Systems, Data Intensive Computing, Programming Languages 
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1 Introduction 
 

Big Data has become one of the most frequently used buzzwords of our times. In industry and                 

academia alike, the interest is dramatically increasing, even though the term Big Data is not               

always clear. Big Data has been defined as the “3Vs” model, an informal definition proposed by                

Beyer and Laney [81] that has been widely accepted by the community: “​Big data is               

high-Volume, high-Velocity and/or high-Variety information assets that demand cost-effective,         

innovative forms of information processing that enable enhanced insight, decision making, and            

process automation.” ​More recently, the “3Vs” model has been further extended by adding             

Veracity​ that indicates that the quality and accuracy of the data may vary. 

 

One of the major challenges of scientific computing in the context of Big Data is the need to                  

combine ​software development technology for High Performance Computing (HPC) with the           

management and analysis of Big Data [3,56]​. For instance, the Square Kilometre Array (SKA)              2

project is building a radio telescope with one square kilometre of collecting surface. SKA              

computing requirements are more than 100 petaflops, and the data traffic of SKA will exceed               

the data traffic of the whole Internet. Efficient processing of large amounts of data demands               

computational, communication and memory resources of large-scale HPC systems. Modern          

HPC systems comprise a large amount of interconnected computing nodes, each having one or              

more multi-core or many-core processors. For instance, the Summit supercomputer (Rank 1 in             3

the current TOP500 list ) has 4608 nodes, and each node comprises two IBM Power9 22-core               4

processors and six Nvidia Volta GPUs.  

 

While large-scale heterogeneous HPC systems provide high performance, there is a consensus            

that programming heterogeneous systems is not straightforward [57,58]. Parallelization of          

sequential legacy code as well as writing parallel programs from scratch is not easy and the                

difficulty of programming multi-core systems is also known as “​programmability wall​” [55].            

The multi-core shift in computer architecture has accelerated the research efforts in            

developing new programming frameworks for parallel computing, which has produced a rich            

variety of new designs of languages and of libraries using established HPC languages, which              

should assist domain programmers from science and engineering, e.g. by reducing the            

complexity of parallel programming, providing more domain-specific programming constructs,         

generating and optimizing low-level parallel code for coordination of computations across           

multiple cores and multiple computers. 

 

This study presents the results of a systematic literature review carried out as part of the                

European COST Action cHiPSet that addresses High-Performance Modelling and Simulation for           5

Big Data Applications. The literature review focuses on the main paradigms and properties of              

programming languages used in High Performance Computing for Big Data processing. Our            

initial literature search resulted with 420 articles; 152 articles are retained for final review after               

2 The Square Kilometre Array (SKA) project, Accessed August 7, 2018, www.skatelescope.org 
3 Summit: Oak Ridge National Laboratory's next High Performance Supercomputer. Accessed August 6, 
2018, https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/ 
4 TOP500 list, June 2018, https://www.top500.org/ 
5 ICT COST Action IC1406, cHiPSet, Accessed August 8, 2018, http://chipset-cost.eu/ 
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the evaluation of initial search results by domain experts. Results of our literature review              

indicate, for instance, that the majority of the used HPC languages in the context of Big Data                 

are text-based general-purpose programming languages and target the end-user community.          

To evaluate the outcome of the literature review, we developed a questionnaire and collected              

the opinions of domain experts. A comparison of literature review outcome with opinions of              

domain experts reveals that the key features of HPC programming languages for Big Data are               

portability, performance and the usability. As key issues that need more attention in future              

research are identified the language learning curve and interoperability. We consider that the             

outcome of this study may help in understanding the limitations of the state of the art in HPC                  

programming languages for Big Data, and may help the reader in identification of             

programming language issues that need to be addressed in future.  

 

The rest of the paper is organized as follows. Section 2 describes the methodology of the                

Systematic Literature Review (SLR). We present the obtained results in Section 3. Section 4              

evaluates SLR results via a questionnaire that involves domain experts. Section 5 summarizes             

our major observations and lists challenges and future research directions. After discussing the             

related work in Section 6, the paper is concluded in Section 7. 

2 The Review Process 
 

The methodology used in this Systematic Literature Review (SLR) follows the methodology            

proposed in [5, 6], which articulates in six successive steps, which are detailed in Sections               

2.1-2.6  

 

1. Research Question​, aiming at formulating the research questions the SLR should           

answer; 
 

2. Search Strategy​, aiming at detecting the largest number of primary studies related to             

the proposed research questions; 
 

3. Selection of Primary Studies​, aiming at sieving false positive by a human-driven            

abstract inspection; 
 

4. Quality Assessment​, aiming at validating of the review process; 
 

5. Data Extraction Process​, which aims to answer to each research question all selected             

studies; 
 

6. Synthesis of the Information. 

 
 

 
Figure 2.1:​ Methodology used in the SLR 
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2.1 The Research Questions 

 

In order to frame the research questions, ​PICOC criteria [5] (Population, Intervention,            

Comparison, Outcomes, Context) were used and the question elements were defined as: 
 

• ​Population ​- Composed by the primary studies found on Languages for High Performance              

Computing (HPC); 
 

• ​Intervention ​(Software engineering methodology/tool/technology/procedure that addresses       

a specific issue) - This SLR investigates studies regarding languages for HPC, describing their              

details; 
 

• ​Comparison ​(methodology/tool/technology/procedure with which the intervention is being         

compared) - Not applicable to this case; 
 

• ​Outcomes ​(it should relate to factors of importance to practitioners) - The results should               

refer to technologies, methods and metrics that lead to an increase in the quality of the                

solution, ease of configuration, usability, productivity gains, such as an easy-to-use and            

easy-to-learn language, product performance gains, such as easy maintenance, solution          

scalability, and memory efficiency; 
 

• ​Context ​- The participants involved in this study were researchers and specialists in this area.  
 

The goal of this SLR is to ​answer five research questions​, presented in Table 2.1.1, and for this                  

purpose a number of sub-questions were formulated for each of them. 
 

Table 2.1.1:​ Research Questions that were formulated 

Question ID Research Questions 

RQ 1 Which are the categories of languages in use? 

   RQ 1.1 What are the current research trends in languages for HPC? 

RQ 2 What is the nature of the languages for HPC? 

   RQ 2.1 What kind of language is it? 

   RQ 2.2 What is the execution model that is being used? 

   RQ 2.3 What are the key advantages of the language? 

   RQ 2.4 What is/are the application domain/s of the language? 

   RQ 2.5 What are the paradigms underlying the languages? 

   RQ 2.6 
Which are the execution stack requirements (?-aaS) to support the artifacts created 
with those languages? 

   RQ 2.7 What is the existing tool support for the language? 

   RQ 2.8 What are the technologies used to create the language tool suite? 

   RQ 2.9 Does the language target specific hardware? 

   RQ 2.10 What is the purpose of the language? 

   RQ 2.11 What is the preferred language representation type? 
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RQ 3 What are the typical user profiles for the languages? 

   RQ 3.1 What are the roles of the users of this language? 

   RQ 3.2 What kind of technical knowledge is required? 

RQ 4 How effective are the languages? 

   RQ 4.1 Is the success of the languages evaluated in the articles? 

   RQ 4.2 
What is the impact on the productivity gains brought by the languages reported? 

What is the impact on the products’ performance gains brought by the languages 
reported? 

   RQ 4.3 

Is there an explicit comparison with competing approaches? 

Is the comparison quantitative, qualitative, or both? 

What are the comparison methodology and metrics used? 

RQ 5 What types of articles are published in the area of programming models for HPC? 

   RQ 5.1 Does the article include COST cHiPSet's authors? 

   RQ 5.2 What are the institutions involved? 

   RQ 5.3 What is the name of the conference or journal? 

   RQ 5.4 Who is sponsoring the research? 

   RQ 5.5 What kind of research is being reported? 

 
2.2 The Search Process 

 

One of the main objectives to conduct a SLR is to ​detect the largest number of primary studies                  

related to the proposed research questions​. 
Our research process is based on three main steps, identified in Figure 2.2.1. 

 

 
Figure 2.2.1:​ Stages of the Research Process 

The cHiPSet ICT COST Action experts selected, by consensus, the Elsevier Science Direct             

database to use in the review. Initially, the following query was defined based on the chosen                

keywords: 

 

"Big data" AND "Programming Model" AND "Programming Language" AND "High performance           

computing" 

 

With the purpose of covering up the largest possible number of relevant studies, without              

discarding any, and considering that authors may use equivalent keywords, the initial query             

was reformulated into: 
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("Big data" OR "Data Intensive" OR "Stream Data") AND ("Programming Model" OR "Language             

Model" OR "Modelling Language") AND ("Domain Specific Language" OR "General Purpose           

Language" OR "Programming Language" OR "Programming Framework") AND ("HPC" OR          

"High performance computing" OR "Grid Computing" OR "Supercomputing" OR "Parallel" OR           

"Concurrent") 

With this literature search we found ​262 articles​. 
 

The references found were then presented to the cHiPSet ICT COST Action group of experts to                

assess their completeness. From this analysis, it was found that the coverage of the literature               

offered in the Elsevier Science Direct database was insufficient for this domain, with a              

significant number of relevant publications that were not part of this selection because they              

were not contained in this digital library. For this reason, we considered a shortlist of               

conferences and journals that are relevant for the field in study, which is presented in Table                

2.2.1. 

 
Table 2.2.1:​ Conferences and journals considered in the study 

Conferences Journals 

GTC / GPGPU conference ACM Transactions on Parallel Computing 

IEEE International Parallel and Distributed 
Processing Symposium 

Concurrency and Computation Practice and 
Experience 

International Conference on Parallel Processing Future Generation Computer Systems 

International Conference on Supercomputing IEEE Computing in Science and Engineering 

International European Conference on 
Parallel and Distributed Computing 

Journal of Parallel and Distributed Computing 

International Supercomputing Conference Journal of Supercomputing 

Parallel Computing Conference Parallel Computing 

Principles and Practice of Parallel Programming Scientific Programming 

SIAM Conference on Parallel Processing for 
Scientific Computing 

 

Supercomputing Conference  

 

A second search was done, both in the already verified digital library and in other existing                

databases, using queries similar to that presented above, but with the results filtered in the               

shortlist of conferences and journals in Table 2.2.1. Table 2.2.2 presents the list of digital               

libraries used and the respective number of articles obtained by the second search, after              

removal of duplicate documents. Except for Google Scholar database, where it was only             

possible to explore all combinations of the mentioned keywords, in all other databases             

complex queries were made.  
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Table 2.2.2:​ Results obtained with the second search 

Source Name Number of Publications obtained 

academia.edu 1 

ACM Digital Library 16 

Compendex 6 

Elsevier Science Direct 27 

Google Scholar 32 

IEEE Xplore 3 

Research Gate 3 

Springer Link 70 

Total of articles found: 158 

 

It is important to mention that ​all searches were based on the title, abstract and keywords of                 

articles published between January 2006 and March 2018​, a period of time that, in the opinion                

of experts, should cover the studies required for this SLR. 

After removing any duplicate articles, we obtained a total of ​420 ​(262 with the first search +                 

158 with the second one) ​articles from 8 different digital databases that were processed              

through the next phases of this SLR. 

 
2.3 Selection of the Primary Studies 

 

 
Figure 2.3.1:​ Selection Process of the articles 

As shown in Figure 2.3.1, we faced four stages throughout the selection process of the primary                

studies: 
 

1. Select the related articles - a shortlist (Table 2.2.1) was created with conferences and               

journals considered relevant for the study. Next, the queries were executed in the online              

libraries listed in Section 2.2; 
 

2. Remove duplicate documents found; 
 

3. Apply the inclusion and exclusion criteria already defined, in order to verify whether the               

resulting documents are relevant to the review. The criteria adopted were those presented in              

Table 2.3.1; 
 

4. Finally, a selection mechanism was used by analyzing the title, abstract and keywords of               

each of the remaining studies. 
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Table 2.3.1:​ Inclusion and Exclusion criteria of the articles 

Inclusion Criteria Exclusion Criteria 

Study must have addressed HPC research 
Irrelevant publication that lay outside the core 
HPC research field 

Peer reviewed study that had been 
published in journal, conference and 
workshop 

Non-peer reviewed study (abstract, tutorial, 
editorial, slides, talk, tool demonstration, 
poster, panel, keynote, technical report) 
Peer-reviewed but not published in journal, 
conference, workshop (e.g., PhD thesis, book, 
patent) 

Study must be written in English Publication not in English 

Study must be accessible electronically Electronically non-accessible study 

Study is related with Computer science 
literature / Systems area 

Article published before 2006 

 

After executing the described selection mechanism, ​152 ​articles continued for the future            

phases. 

 
2.4 Quality Assessment  

 

To evaluate the quality of the present study, we used the criteria proposed by [5, 6] and                 

examined the following four fundamental questions. 
 

• ​Are the review inclusion and exclusion criteria described and appropriate? In this case, all the                

criteria (Table 2.3.1) considered appropriate are explicitly defined; 
 

• ​Does the literature search cover all relevant studies? Initially, we only researched in journals               

that seemed more influential, but later, after a conversation with the experts, it was concluded               

that there was another type of literature that was not yet covered, but nonetheless considered               

important. Therefore, we created a shortlist (Table 2.2.1) with the conferences and journals             

considered relevant to the study to support the answers to the questions proposed. After that,               

researches of these conferences and journals were carried out in the following electronic             

platforms: academia.edu, ACM Digital Library, Compendex, Elsevier Science Direct, Google          

Scholar, IEEE Xplore, Research Gate and Springer Link; 
 

• ​Has the quality of the review been assessed? ​The authors reviewed the studies resulting from                

the research done, noting whether they should be included or excluded from the review.              

Despite there is no absolute guarantee that important information is not being lost, as a               

safeguard mechanism, in one small sample of articles, one of the experts makes a second               

review of these documents, finding that there are no important data to be excluded; 
 

• ​Have primary studies been adequately referred to? ​Throughout the SLR, all the studies              

published by the conferences and journals indicated by the specialists were identified. In             

addition to these studies, experts were asked to create a shortlist of articles that should be                

found. 
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2.5 Data Extraction Process 

 

To preserve the consistency of the data extraction, a data collection template was created. At               

this time, when each study was analyzed, this form should be completed. All collected data               

was stored in a shared spreadsheet created for this purpose. A team of 17 researchers (being                

them the authors of this paper) participated to data extraction directly reading the primary              

studies selected during the previous stage. The initial data referred to the reviewer of the               

publication and to the publication itself. The remaining information concerned the research            

questions referred in Section 2.1. In this phase, a detailed analysis of the studies included in                

the previous stages was carried out, being extracted the information considered relevant by             

the respective reviewers of these studies. 

 
2.6 Synthesis of the Information 

 

During this stage, the previously extracted information was compiled identifying possible           

clerical errors during previous steps and taking into account the research questions formulated             

(the studies that referred to the languages used for HPC). After this task, a shared document                

was created, being given answers to the research questions and referring the found languages,              

as well as the individual data of each of them. This document has been checked by all                 

reviewers of the articles included and all the information contained therein has been             

confirmed by them. 

3 Discussion of the Results 
 

Throughout this section, the answers to the proposed research questions will be discussed. We              

have separated the different categories of languages, which may be: ​1) a DSL (Domain Specific               

Language), which is a language adapted to a specific application domain that offers             

appropriate annotations and abstractions [8, 9, 10]; ​2) a GPL (General Purpose Language),             

which is a programming language designed to be used in writing Software in a wide variety of                 

application domains [8]; ​3)​ ​a DSL embedded in another DSL; or ​4)​ a DSL embedded in a GPL. 

 

In addition to the information gathered on the existing languages, several documents have             

been found regarding libraries and Application Programming Interfaces (API), which were not            

considered because they are integrated in the languages mentioned throughout this section.            

Respecting these conditions, at the end of this process, we identified 33 articles, to which               

corresponded 26 languages​. Appendix A presents a list of the languages identified describing             

their characteristics. Due to the similarity of the answers given to the research questions, some               

languages were grouped, for instance, C and C++, or Python and R.  
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RESEARCH QUESTION 1 - Which are the categories of languages in use? 

According to the results presented in Figure 3.1, ​54% of the languages focused in the               

publications found are classified as being GPL ​(14 languages)​, that is, a programming language              

designed to be used in Software writing in a wide variety of fields of application. It’s possible to                  

see that ​31% ​of these languages ​(8 languages) ​are DSL, being a language adapted to a specific                 

application domain that offers appropriate annotations and abstractions. The remaining          

languages ​(4 languages) ​were considered DSL embedded in an GPL. 

Though the study considered that a DSL embedded in another DSL would be found, our               

analysis did not find any. 

 
 

 

Figure 3.1:​ ​Which are the categories of languages in use? - RQ 1 
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RESEARCH QUESTION 2 - What is the nature of the languages for HPC? 

The objective of this research question was to characterize the nature of languages for HPC. To                

accomplish this objective several sub research questions were identified and their results are             

here discussed. 

The key advantage of the languages found is the "Usability" of the language. The "Ease of                

configuration", "Portability", "Orchestration" and "Performance" of the language are the other           

advantages that are perceived as important. Other advantages referred to were "Visualization            

of user-initiated query results", "Ease to express constraint problems" and "​Enabling high-level            

parallel programming using skeletons​" ​(see Figure 3.2)​. 

Concerning tools supporting the languages, compilers are the most well represented support 

tool, followed by tool suite and interpreters ​(see Figure 3.3)​.  

 

Figure 3.2: ​What are the key advantages of the language? - RQ 2.3 

 

 

 

Figure 3.3: ​What is the existing tool support for the language? - RQ 2.7 
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Most of the surveyed languages do not target specific hardware (85%)​. It’s known that ​40% ​of                

the languages found target GPUs or multi-core architectures. 

The main purpose of the languages found is to "Implement the solution", followed by the               

"Formalization of the solution", "Formalization of the requirements of the problem" and "Data             

Interpretation" ​(see Figure 3.4)​. 

 

Figure 3.4: ​What is the purpose of the language? - RQ 2.10 

 

Results for the language representation type revealed that there is a concrete syntax for all the                

languages found and the preferred representation type of ​76% ​of them is Textual (see Figure               

3.5)​. 

 

Figure 3.5: ​What is the preferred language representation type? - RQ 2.11 
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RESEARCH QUESTION 3 - What are the typical user profiles for the languages? 

Figure 3.6 displays the distribution of the typical user profiles for the languages. Most of the                

identified languages are used by end-users, who utilize the language to solve problems. It is               

known that ​16,5% of the languages are used by developers, who utilize the language to create                

tools/setups/solutions for other users. 

 

Figure 3.6: ​What are the roles of the users of this language? - RQ 3.1 

 

RESEARCH QUESTION 4 - How effective are the languages? 

Effectiveness is articulated in three aspects, addressed by RQ 4.1 (success), RQ 4.2             

(productivity gain), and RQ 4.3 (advantage against competitive approaches). As shown in            

Figure 3.7, most of the articles reviewed are (somehow) evaluated the corresponding            

languages for success.  

 

 

Figure  3.7: ​Is the success of the languages evaluated in the article? - RQ 4.1 
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Figure 3.8 displays a graphical representation for the impact on the productivity gains brought              

by the languages. With a ​Quantitative ​analysis, the productivity gain brought by the languages              

reported with the most impact was the easiness to use the language, followed by the               

learnability. With a ​Qualitative ​analysis, the productivity gain brought by the languages            

reported with the most impact was the easiness to use, followed by the lower cognitive               

overload and the learnability. ​Comparing these analysis, the productivity gains brought by the             

languages reported was mainly measured using qualitative methods. 

 

Figure 3.8: ​What is the impact on the productivity gains brought by the languages reported?  - RQ 4.2 

The chart in Figure 3.9 represents the impact on the products' performance gains brought by               

the languages reported. With a ​Quantitative ​analysis, the products​' performance gains brought            

by the languages reported with the most impact were the computation efficiency and the              

scalability. With a ​Qualitative ​analysis, the products​' performance gain brought by the            

languages reported with the most impact was evolvability/maintainability, followed by          

scalability. ​Unlike the productivity gains brought, comparing these analyses, the products’           

performance gains brought by the languages reported was mainly measured using           

Quantitative ​methods. 

 

Figure 3.9: ​What is the impact on the products​'​ performance gains brought by the languages reported? - 

RQ 4.2 
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According to the statistics, ​64% ​of the articles included an explicit comparison between the              

language reported and other competing approaches. Half of the articles included an explicit             

comparison of the language proposal with respect to distinct settings/context/configurations. 

 

 

Figure 3.10: ​Number of articles using each metric - RQ 4.3: What are the metrics used? 

All the metrics were measured using quantitative methods. 

The most used metric was the computational time, followed by the lines of code and the                

satisfaction​ (see Figure 3.10)​. 

  

15 
 



 

RESEARCH QUESTION 5 - What types of articles are published in the area of              

programming models for HPC? 

A large part of the articles that referred to languages for HPC do not include authors of the                  

cHiPSet ICT COST Action but there are some exceptions like [39, 40, 43]. 

The scientific journal that published more articles was "Future Generation Computer Systems",            

followed by "Parallel Computing" and "Journal of Parallel and Distributed Computing", as            

illustrated by Figure 3.11. Most of these articles were sponsored by public or both public and                

private funds. Given that each of these can be classified as both a case study, as an experiment                  

report and a comparative assessment, there was a greater occurrence of experience reports.             

Also case studies and comparative assessments were found in a similar number, as shown in               

Figure 3.12. 

 

Figure 3.11:​ Which conferences and journals publish articles about languages for HPC? - RQ 5.3 

 

 

Figure 3.12: ​Number of articles reporting each type of research - RQ 5.5 
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According to the values presented in Figure 3.1, about half of the languages found are of type                 

GPL, these being: Bobolang; C; C++; Erlang; FastFlow; Goal Language supported by RuGPlanner;             

Java; OpenCL; Python; R; Scout; Selective Embedded Just-In-Time Specialization; SkIE-CL; Swift.           

Several articles were found related to DSL, more specifically: CineGrid Description Language;            

CRUCIBLE; e-Science Central WFMS; Higher-order "chemical programming" language; Liszt;         

Mendeleev; MiniZinc; Network Description Language. Three of the articles found referred to            

languages considered DSL embedded in GPL: Pipeline Composition; Spark SQL; Spark           

Streaming; Weaver. 

4 SLR Evaluation by Domain Experts 
 

A questionnaire was prepared and used as a form of validation of the results found and                

confrontation with the opinion of what the domain experts expected to find, based on the               

research questions proposed for this SLR (Section 2.1). 

This questionnaire is presented in the Appendix B and aims to find out: in what areas of                 

engineering have the specialists worked; if their activity consists primarily in the development             

of new support tools or in the utilization of existing tools; which programming languages ​​are               

used in this area; what makes them use these languages ​​in relation to the others they know (in                  

the context in question); what are the advantages of these languages; what existing support              

tools they know; for the domain where they are inserted, how effective are the languages               

​​used, that is, how successful they are in producing a desired result; what is the impact on the                  

performance brought by the reported languages ​​and their main limitations/difficulties of use. 

 

4.1 Questionnaire Results 

 

Taking into account the answers to the previous survey, it is possible to conclude that, ​with a                 

wide experience in HPC of the respondents (claiming to work in the area for more than 10 years                  

and considered with a high level of technical knowledge for the languages used ​(see Figure               

4.1.1)​): 
 

 
Figure 4.1.1: ​How do you rate your level of technical knowledge for languages used for HPC? - Question 

14 
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• Their main activity consists on the ​development of new support tools​, rather than the use of                 

existing tools​ (see Figure 4.1.2)​; 
 

 
Figure 4.1.2: ​Does your High Performance Computing activity consist primarily of developing support 

tools or of using existing tools? - Question 4 

 

 

• All of them use the ​programming languages C, C++ and OpenCL, ​and the following are also                 

explored: ​Java, Python and R​; 
 

 

• ​The usability and the nature of the problem in question are the main reasons that make them                  

use the above languages in relation to the others they know ​(see Figure 4.1.3)​; 
 

 

 
Figure 4.1.3: ​What made you use these languages in relation to the alternatives you know? - Question 6 
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• ​The portability, the performance and the usability ​of the referred languages are the main               

advantages pointed out​ (see Figure 4.1.4)​; 
 

 
Figure 4.1.4: ​What are the key advantages of these languages? - Question 7 

 

 

 

 

 

• The existing tool support for the languages used were rate ​with a mean of 3 ​(from 1 to 5,                    

where 1 indicates that the tool support is very poor and 5 that it is excellent, ​see Figure 4.1.5​),                   

and the ​existing support tools mentioned are​: ​VAMPIR, CUDA SDK, Performance API (PAPI) and              

Linux performance tools (see Figure 4.1.6)​; 
 

 
Figure 4.1.5: ​How do you rate the existing tool support for the languages you use for HPC? - Question 8 
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Figure 4.1.6: ​In relation to the previous question, what are the existing support tools you know?​ - 

Question 9 

 

 

 

 

 

• The languages used were considered ​effective with a mean of 3.6 (from 1 to 5, where 1                  

indicates that they are not effective and 5 that they are extremely effective, ​see Figure 4.1.7​),                

and the fundamental language mechanisms that justify this decision are ​the support for data              

parallelism and the direct control of resources, such as memory​; 
 

 

 
Figure 4.1.7: ​For the domain where you are, how do you rate the effectiveness of the languages you 

use?​ - Question 10 
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• Considering a diverse range of professionals, several obstacles have been identified but,             

according to the answers provided, ​the interoperability and the learning curve ​are the main              

difficulties felt ​(see Figure 4.1.8)​. 
 

 
Figure 4.1.8: ​What are the limitations/difficulties of the languages you use?​ - Question 13 

 
4.2 Comparison between the Questionnaire Results and the Information found 

 

Comparing the results obtained by the analysis of the results of the questionnaire with the               

languages found through the research carried out, confronting the opinion of what was             

expected to be discovered, according to experts, it is known that there any many languages               

used in High Performance Computing, presented in Section 3, and for that reason a part of                

them were not known by the respondents. ​The languages referenced in most of the articles,               

the most popular ones, are the languages used by these specialists: C, C++, OpenCL, Java,               

Python and R. 

 

The documents referred to a wider range of advantages than the experts, including the              

"Easiness of configuration" and the "Orchestration". However, ​the main advantages pointed           

out by these people, like the portability, the performance and the usability of the languages               

were found in the documents​. Since we have known the advantages of the languages,              

according to the information found in the digital libraries, ​the reasons, referred to by the               

experts, that make them use the above languages in relation to the others they know were the                 

expected ones​. 
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5 Observations, research challenges and future directions 
 

In this section we summarize our major observations, research challenges and future            

directions in the domain of HPC programming languages for Big Data processing.  

 

Major observations based on the reviewed literature: 
 

● general-purpose programming languages are used most frequently (54% of observed          

cases); 

● majority (that is 76%) of the languages were text-based; 

● usability (effectiveness, efficiency, satisfaction) is considered the key feature of the           

used language; 

● simulators, validators or IDEs are not often available; 

● 67% of the language users were end-users; 

● 87% of the reviewed literature has provided a kind of language evaluation, with             

majority of the cases using computational time as metric; 

● majority of the reviewed literature reports experiments. 

 

 

Major observations based on the opinions of domain experts that responded to our             

questionnaire: 
 

● key features of a HPC programming language for Big Data are performance, portability,             

and usability;  

● usability of the language is decisive when selecting a language; 

● existing tool support for HPC programming languages is average 3;  

● popular tools include CUDA SDK; PAPI, Vampir, Linux performance tools; 

● most (that is 83%) of the experts develop support tools. 

 

Major challenges and future research directions include: 
 

● learning curve of the HPC programming languages is a major challenge that needs to              

be addressed in future;  

● future research should pay more attention to interoperability. 

6 Related Work 

 
The ultimate motivation of this manuscript is set a deep state-of-the-art on “Programming             

Languages for Data-Intensive HPC Applications” by systematically analysing the literature in           

the field reducing as much as possible bias due to authors direct experience during the               

analysis. There two well-known methods to target this aim are “Systematic Mapping Studies”             

(SMS) and “Systematic Literature Reviews” (SLR), which has been eventually adopted.  
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Systematic Mapping Studies [5, 168] support a ​broad and shallow approach to literature             

revision and are typically exploited for structuring a research area. They are built on general               

questions to discover research trends. In this, the quality assessment of primary studies is              

optional (e.g. primary studies without empirical evidence can be included). Examples of some             

SMS are [9, 169, 170, 171, 172].  

 

On the contrary, Systematic Literature Reviews (SLR) support a ​narrow and deep approach to              

literature revision. They are used for gathering and synthesizing evidence on well-defined area.             

They are built on focused questions to aggregate evidence on a very specific goal. Here, the                

quality assessment of primary studies is crucial (e.g. primary studies without empirical            

evidence should not be included). 

 

In the first phase of the SLR, research was done to find out if there were studies combining the                   

different languages used for HPC in the databases of several digital libraries, i.e. academia.edu,              

ACM Digital Library, Compendex, Elsevier Science Direct, Google Scholar, IEEE Xplore, Research            

Gate and Springer Link. We concluded that until now, there are only studies that refer to                

specific languages or compare few programming languages, but there is a lack of             

comprehensive literature studies of the kind of this paper that address HPC programming             

languages in the context of Big Data. There are also some primary studies regarding tools, such                

as libraries [29, 39, 44, 45, 46, 47, 48], integrated in known languages used in this type of                  

computation, or APIs and programming models [32, 49, 50, 52, 53, 54]. 

7 Conclusions 
 

We performed a systematic literature review to examine the main paradigms and properties of              

programming languages used in High Performance Computing for Big Data processing. Five            

main research questions drove our SLR. These were further decomposed into 22 sub-research             

questions. Automated search for articles including simultaneously at least one from four            

groups of keywords was undertaken in two stages. The first used the Elsevier Science Direct               

database. The second search used eight different digital databases, but restricted the journals/             

conferences to a predefined shortlist. Only articles in the time period of January 2006 to March                

2018 were considered. From a total of 420 articles found in the search, only 152 were                

considered relevant for our study. The analysis of these articles allowed us to identify 26               

languages used in 33 articles for HPC for Big Data processing. We have provided a               

comprehensive classification of the languages encountered and their usage and evaluation by            

different criteria. We observed that the majority of the used HPC languages in the context of                

Big Data are text-based general-purpose programming languages and target the end-user           

community. Furthermore, results of the literature review are evaluated the by comparing them             

with opinions of domain experts. A comparison of literature review outcomes with opinions of              

domain experts revealed that the key features of HPC programming languages for Big Data are               

portability, performance and the usability.  
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APPENDIX A - Languages used for Data-Intensive HPC Applications 
 

Table A.1:​ List of the Languages found 

List of the Languages found 

Domain Specific Languages 

CineGrid Description Language + Network Description Language 

CRUCIBLE 

e-Science Central WFMS 

Higher-order "chemical programming" language 

Liszt 

Mendeleev 

MiniZinc 

General Purpose Languages 

Bobolang 

C/C++ 

Erlang 

FastFlow 

Goal Language supported by RuGPlanner 

Java 

OpenCL 

Python/R 

Scout 

Selective Embedded Just-In-Time Specialization 

SkIE-CL 

Swift 

Domain Specific Languages embedded in General Purpose Languages 

Pipeline Composition (PiCo) 

Spark Streaming and Spark SQL 

Weaver 
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A.1 Domain Specific Languages 
 

A.1.1 CineGrid Description Language + Network Description Language​ [11] 

Q2: NATURE OF THE LANGUAGE ​-> ​Ontology languages describing domain-specific services and            

network entities, for the domain of a non-public digital media data grid, in OWL (i.e.,               

ultimately, XML) 

Purpose of the language: ​Formalization of the requirements of the problem; Formalization of             

the solution; Data Interpretation 

Key advantages: ​Portability, easiness of configuration, ​visualization of user-initiated query          

results 

Paradigms underlying the language: ​Declarative (Data access service configuration and          

deployment structure graphs expressed in OWL/XML syntax) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language:​ ​Interpreters 

Technologies used to create the language tool suite: ​XML based technology (​Jess reasoner for              

querying OWL ontologies​) 
  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language:​ ​Developer 

Technical knowledge required: ​Tools (OWL/XML editor), Languages (SQWRL query language for           

OWL ontologies), Hardware/Systems (Data grids), Theoretical Background (XML database         

querying and reasoning) 

Q4: EFFECTIVENESS OF THE LANGUAGE ->​ Success not evaluated  
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A.1.2 CRUCIBLE ​[16] 

Q2: NATURE OF THE LANGUAGE 

Host language:​ ​Java 

Application Domain: ​Data analytics 

Purpose of the language:​ ​Implement the solution 

Key advantages: ​Portability, Usability (Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language:​ ​Object-Oriented 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language:​ ​Interpreters, Compilers, Tool suite 

Technologies used to create the language tool suite:​ ​IBM Infosphere, Accumulo, HDFS 

Execution stack requirements to support the artifacts created with those languages: ​OS (any),             

IO architecture (HDFS), Message Passing Middleware (​IBM Infosphere​) 

Execution model that is being used: ​Virtual Execution Environment (JVM), Distributed           

Middleware (IBM InfoSphere), Compiled code for CPU 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language:​ ​End-user 

Technical knowledge required: ​Tools (XText), Languages (Java), Frameworks (IBM Infosphere),          

Hardware (CPU), Systems (Clusters), Theoretical Background (Communicating Sequential        

Processes) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Explicit comparison with           

competing approaches, Quantitative comparison performed. Productivity gains brought by the          

languages reported ​(Expressiveness and Easier to use - Qualitative), ​Products' performance           

gains brought​ ​(Evolvability/Maintainability - Qualitative) 
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A.1.3 e-Science Central WFMS​ ​[13] 

Q2: NATURE OF THE LANGUAGE 

Host languages: ​workflow blocks can be written in Java, R, Octave and Javascript 

Application Domain:​ ​Cloud-based data analysis 

Purpose of the language: ​Implement the solution 

Key advantages: ​Performance, Portability, Easiness of configuration, Orchestration, Usability         

(Effectiveness/Efficiency/Satisfaction) 

There is a concrete syntax for the language and the preferred representation type is              

Diagrammatic 

Existing tool support for the language:​ ​Tool suite 

Technologies used to create the language tool suite: ​They describe porting of a genomics data               

processing pipeline from a shell-script implementation on a HPC cluster, to e-Science Central             

based workflow on Microsoft Azure cloud 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-users 

Technical knowledge required:​ ​Languages (workflow), Systems (Amazon AWS, Microsoft Azure) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed, ​Compared shell-script implementation on a HPC cluster with workflow on           

Microsoft Azure cloud, ​Impact on the productivity gains brought ​(Learnability, Lower cognitive            

overload, easier to remember, easier to use - Qualitative and e-Science Central enables users              

to design workflows for data analysis), ​Products' performance gains brought ​(Computation           

efficiency and Scalability - Quantitative; Evolvability/Maintainability  - Qualitative)  
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A.1.4 Higher-order "chemical programming" language​ [12] 

Q2: NATURE OF THE LANGUAGE 

Application domain​: ​a rule-based coordination language for asynchronous, self-organizing         

parallel processing of scientific workflows 

Purpose of the language​: ​Formalization of the solution, Implement the solution 

Key advantages​: ​Performance, Portability, Easiness of configuration, Orchestration, Usability         

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language​: ​Declarative (rule-based asynchronous coordination),        

Hybrid (Atoms of the scripting language are usually written in some sequential HPC language              

like C) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language​: ​Interpreters, Compilers 

Technologies used to create the language tool suite​: ​HOCL interpreter/JIT plus runtime support             

extensions for parallel / distributed processing, written in Java 

Execution stack requirements to support the artifacts created with those languages​: ​Message            

Passing Middleware (Java Message Service, ActiveMQ, DAIOS WS (WSDL, SOAP)), Java, HOCL            

Interpreter 

Execution model that is being used​: ​Distributed middleware (Java Message Service, ActiveMQ,            

DAIOS WS (WSDL, SOAP)),  Compiled code for CPU (using a JIT) 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language​: ​End-users 

Technical knowledge required: ​Languages (Java, "chemical programming" in HOCL), Theoretical          

Background (Rule-based programming, "chemical programming" for WS/workflow       

coordination) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed, ​Experimental comparison with two traditional-style workflow systems based on 3           

HPC test problems, ​Metrics ​(Time), ​Impact on the productivity gains brought ​(Learnability,            

Lower cognitive overload, easier to remember, expressiveness, easier to use - Qualitative),            

Products' performance gains brought ​(Computation efficiency - quantitative;        

Evolvability/Maintainability, Scalability  - Qualitative) 
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A.1.5 Liszt ​[14] 

Q2: NATURE OF THE LANGUAGE -> ​A DSL, based on Scala, for solving partial differential               

equations (PDEs) on unstructured meshes 

Application Domain: ​Constructing mesh-based partial differential equations solvers 

Purpose of the language:​ ​Implement the solution 

Key advantages: ​Portability, Easiness of configuration, Usability       

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Functional and Object-Oriented (The Liszt programming          

environment is based on Scala) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Compilers 

The language target specific hardware and GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Technical knowledge required: ​Languages (Scala) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed. ​The authors ported four example applications to Liszt and ran these applications on              

three platforms: a GPU, an SMP, and a cluster. They evaluate the MPI-based runtime on both                

the cluster and the SMP since it can run on either platform. ​Metrics ​(Lines of Code, Time)​,                 

Products' performance gains brought ​(Computation efficiency and Scalability - Quantitative;          

Memory Efficiency  - Qualitative)  
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A.1.6 Mendeleev ​[17] 

Q2: NATURE OF THE LANGUAGE 

Application Domain: ​Data analytics 

Purpose of the language: ​Formalization of the requirements of the problem, Implement the             

solution 

Key advantages: ​Portability, Easiness of configuration, Orchestration, Usability        

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Declarative (Goal-based planning of analytic applications          

using an abstract model based on a semantically annotated type system) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language:​ ​Compilers, Tool suite 

Technologies used to create the language tool suite: ​Compiler generators (​IBM Infosphere            

Streams; CRUCIBLE), Goal-based planning of analytic applications with automatic code          

generation based on CRUCIBLE DSL 

Execution stack requirements to support the artifacts created with those languages: ​IO            

architecture (HDFS and others), Message Passing Middleware (​IBM Infosphere Streams​) 

Execution model that is being used: ​Virtual Execution Environment (JVM), Distributed           

Middleware (IBM InfoSphere), Compiled code for CPU 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-user 

Technical knowledge required: ​Tools (​Mendeleev DSL​), Languages (​RDF, IBM InfoSphere,          

Accumulo​), Frameworks (​CRUCIBLE, IBM Infosphere​), Hardware (CPU), Systems (Clusters),         

Theoretical Background (RDF graphs) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated  
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A.1.7 MiniZinc ​[15] 

Q2: NATURE OF THE LANGUAGE 

Application domain:​ ​Constraint modeling language 

Purpose of the language: ​Formalization of the requirements of the problem, Formalization of             

the solution, Implement the solution 

Key advantages: ​Usability (Effectiveness/Efficiency/Satisfaction), ​Easier to express constraint        

problems 

Paradigms underlying the language: ​Hybrid (The constraints are expressed with logic           

operators) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Compilers, Tool suite, IDE 

Technologies used to create the language tool suite: ​The compiler compiles MiniZinc to             

FlatZinc, a language that is understood by a wide range of solvers 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language:​ ​End-users 

Technical knowledge required: ​Theoretical Background (Constraint modelling) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Both Quantitative and           

Qualitative comparison performed, ​The article compares base version of MiniZinc with one            

integrating the extensions, ​Metrics ​(Lines of Code, Time), ​Impact on the productivity gains             

brought ​(Expressiveness - Qualitative, Easier to use - Quantitative), ​Products' performance           

gains brought​ ​(Memory efficiency, Computation efficiency - Quantitative) 
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A.2 General Purpose Languages 
 

A.2.1 Bobolang​ [34] 

Q2: NATURE OF THE LANGUAGE -> ​Specification language for streaming applications 

Application Domain:​ ​Design of streaming applications 

Purpose of the language: ​Formalization of the solution, Data Interpretation 

Key advantages: ​Easiness of configuration, Orchestration, Usability       

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Declarative (it is a specification language dedicated to            

designing streaming applications) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing support for the language: ​Compilers 

Technologies used to create the language tool suite: ​underlying system language (e.g. C++) 

Execution model that is being used:​ ​Compiled code for CPU (from underlying system language) 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​Developer 

Technical knowledge required:​ ​Theoretical Background (Domain of streaming applications) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success not evaluated 
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A.2.2 C/C++ ​[18, 22, 27, 29, 30, 31, 32] 

Q2: NATURE OF THE LANGUAGE 

Application Domain: ​CFD​ ​(any application that benefits from GPU), Heterogeneous Computing 

Purpose of the language: ​Formalization of the requirements of the problem, Formalization of             

the solution, Simulation of the problem, Simulation of the solution, Implement the solution 

Key advantages: ​Performance, Portability, Easiness of configuration, Orchestration, Usability         

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Object-Oriented, Hybrid (supports heterogeneous        

environment and it can be event-driven) 

There is a concrete syntax for the language and the preferred representation type can be both                

Textual and Diagrammatic 

Existing tool support for the language: ​Interpreters, ​Compilers, Validators, Simulators, Tool           

suite, IDE 

Technologies used to create the language tool suite: ​GenERTiCA source code generator 

Execution stack requirements to support the artifacts created with those languages: ​multiple            

OS supported 

Execution model being used: ​Virtual Execution Environment (self-managed), Distributed         

middleware (self-managed), Compiled code for CPU, Compiled code for GPU 

The language target GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-user and developer 

Technical knowledge required: ​Languages (C/C++), Hardware (parallel & distributed systems;          

Grids; Clouds) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed, ​Algorithms for task scheduling are evaluated, ​Metrics ​(Time), ​Impact on the            

productivity gains brought ​(Learnability - Quantitative and Lower cognitive overload, easier to            

remember, easier to use - Qualitative), ​Products' performance gains brought ​(Computation           

efficiency, Scalability - Quantitative and Evolvability/Maintainability, Scalability - Qualitative)  
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A.2.3 Erlang​ [35] 

Q2: NATURE OF THE LANGUAGE 

Application Domain: ​Computational and memory-intensive applications using a high number of           

cores (64). The use-case is urban traffic planning 

Purpose of the language: ​Implement the solution, Data Interpretation 

Key Advantages:​ ​Performance, Usability (Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Functional 

There is a concrete syntax for the language and the preferred representation type is Textual 

Tool support for the language: ​Interpreters, Compilers, Tool suite, IDE 

Execution stack requirements to support the artifacts created with those languages: ​Message            

Passing Middleware (​Erlang uses a message passing system to communicate between agents​),            

Libraries (​"exometer" for global logging and "lcnt" to monitor lock contention​) 

Execution model that is being used: ​Virtual Execution Environment (Erlang includes a            

stack-based VM) 

The language target GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Technical knowledge required: ​Languages (Erlang), Theoretical Background (​Agent-oriented        

frameworks and Evolutionary systems​) 
  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Explicit comparison of the            

language proposal with respect to distinct settings/context/configurations, Quantitative        

comparison performed, ​Sc​alability of the different techniques when increasing the number of            

cores, ​Metrics ​(Number of agent reproductions)  
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A.2.4 FastFlow ​[39, 40] 

Q2: NATURE OF THE LANGUAGE 

Host Language:​ ​C++ 

Application Domain:​ ​Streaming applications 

Purpose of the language:​ ​Implement the solution 

Key advantages: ​Performance, Usability (Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Functional, Object-Oriented 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Compilers 

The language target GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this languages: ​End-users 

Technical knowledge required: ​Languages (C++), Hardware (CPU), Theoretical Background         

(Streaming Applications) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed, ​The applicability of FastFlow has been illustrated by a number of studies in              

different application domains including image processing, file compression and stochastic          

simulation, ​Metrics ​(Time), ​Product's performance gains brought ​(Memory Efficiency,         

Computation Efficiency - Quantitative)  
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A.2.5 Goal Language supported by RuGPlanner​ [33] 

Q2: NATURE OF THE LANGUAGE -> ​A declarative language for expressing extended goals,             

allows for continual plan revision to deal with sensing outputs, failures, long response times or               

time-outs, as well as the activities of external agents; Many elements of the language are               

inspired by XSRL (XML Service Request Language) 

Purpose of the language: ​Formalization of the requirements of the problem, Formalization of             

the solution, Implement the solution, Data Interpretation 

Key advantages: ​Performance, Orchestration, Usability (Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Declarative (​Provides the user with expressive constructs           

for stating complex goals, beyond the mere statement of properties that should hold in the               

final state​), Functional (​comprises a number of atomic service operations that can serve a              

variety of objectives with minimal request-specific configuration​), Logic (​it is based on            

translating the domain and the goal into a Constraint Satisfaction Problem​) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Technologies used to create the language tool suite: ​an extended language detached from the              

particularities and interdependencies of the available services 

Execution model that is being used:​ ​Compiled code for  CPU 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-user 

Technical knowledge required:​ ​Languages (Goal language) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> Success evaluated, Quantitative comparison          

performed, Explicit comparison of the language proposal with respect to distinct           

settings/context/configurations, ​Two test cases. They performed a number of tests regarding           

the scalability of the system with respect to a number of factors, ​Metrics ​(Lines of code,                

Satisfaction, Time), ​Impact on the productivity gains brought ​(Learnability, Lower cognitive           

overload, Easier to remember, Expressiveness, Easier to use - Qualitative), ​Products'           

performance gains brought ​(Computation efficiency, Scalability - Quantitative) 
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A.2.6 Java ​[18, 19, 20, 21, 22] 

Q2: NATURE OF THE LANGUAGE 

Application Domain: ​Grid w applications to Ray tracing and Sequencing; Machine Learning;            

Specify policies to transform divide and conquer sequential programs into parallel executions 

Purpose of the language: ​Formalization of the requirements of the problem, Formalization of             

the solution, Simulation of the solution, Implement the solution, Data Interpretation 

Key Advantages: ​Performance, Portability, Easiness of configuration, Orchestration and         

Usability (Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Object-Oriented, Hybrid (Language to schedule constraint          

solving) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Tool support for the language: ​Interpreters, Compilers 

Technologies used to create the language tool suite: ​XML based technology (​A XML like syntax               

to describe classes and methods to be scheduled​) 

Execution stack requirements to support the artifacts created with those languages: ​VM            

Supervisor (JVM on grid), OS (any), IO architecture (Grid), Libraries (Apache Spark, 77 Weka              

3.6.0, Hadoop 0.20) 

Execution model that is being used: ​Virtual Execution Environment (​Java Virtual Machine​),            

Distributed middleware (Hadoop, Apache Spark), HPC Libraries (Apache Spark), Bytecode for           

virtual machine (JVM on Grid) 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language:​ ​End-user 

Technical knowledge required:​ ​Languages (Java) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​S​uccess evaluated, Quantitative comparison          

performed, Metrics ​(Lines of code, Time), Impact on the productivity gains brought ​(Easier to              

use, Compact representation), ​Products' performance gains brought ​(Computation efficiency,         

Scalability - quantitative)  
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A.2.7 OpenCL ​[27, 28] 

Q2: NATURE OF THE LANGUAGE 

Application Domain: ​CFD​ ​(any application that benefits from GPU), Big Data processing 

Purpose of the language: ​Formalization of the requirements of the problem, Implement the             

solution 

Key advantages: ​Performance, Portability, Easiness of configuration, Orchestration, Usability         

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language:​ ​Object-Oriented 

There is a concrete syntax for the language and the preferred representation type can be both                

Textual and Diagrammatic 

Existing tool support for the language: ​Compilers, Tool suite 

Technologies used to create the language tool suite:​ ​GenERTiCA source code generator 

Execution stack requirements to support the artifacts created with those languages: ​multiple            

OS supported 

Execution model being used: ​Distributed middleware, HPC Libraries, Bytecode for virtual           

machine, Compiled code for CPU, Compiled code for GPU 

The language target specific hardware and GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-user 

Technical knowledge required: ​Tools (detailed knowledge required for using OpenCL for GPUs),            

Languages (OpenCL), Hardware (Clusters with GPUs) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed, ​Algorithms for task scheduling are evaluated, ​Metrics ​(Time), ​Impact on the            

productivity gains brought ​(Learnability, lower cognitive overload, easier to remember, easier           

to use - Qualitative), ​Products' performance gains brought ​(Computation efficiency -           

Quantitative and Evolvability/Maintainability - Qualitative)  
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A.2.8 Python/R​ [18, 25, 26] 

Q2: NATURE OF THE LANGUAGE 

Application domain: ​High-level parallel programming language for scientific computing,         

distributed applications 

Purpose of the language: ​Formalization of the requirements of the problem, Formalization of             

the solution, Simulation of the problem, Simulation of the solution, Implement the solution,             

Data Interpretation 

Key advantages: ​Performance, Portability, Easiness of configuration, Orchestration, Usability         

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Supports multiple programming paradigms        

(Object-Oriented, Imperative, Functional, …) 

There is a concrete syntax for the language and the preferred representation type is both               

Textual and Diagrammatic 

Existing tool support for the language: ​Interpreters, Compilers, Validators, Simulators, Tool           

suite, IDE 

Execution stack requirements to support the artifacts created with those languages: ​OS (Any),             

Message Passing Middleware (BSP model), Libraries for Python 

Execution model that is being used: ​Virtual Execution Model (self-managed), Distributed           

Middleware (self-managed), Compiled code for CPU 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-user and Developer 

Technical knowledge required: ​Languages (Python/R), Hardware (parallel & distributed         

systems; Grids; Clouds) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Explicit comparison with           

competing approaches, Quantitative comparison performed, Metrics ​(Time)​, Impact on the          

productivity gains brought ​(Learnability - Easier to learn and Lower cognitive overload, easier             

to remember, easier to use - Qualitative), ​Products' performance gains brought ​(Computation            

efficiency, Scalability - Quantitative and Scalability - Qualitative)  
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A.2.9 Scout​ [36] 

Q2: NATURE OF THE LANGUAGE 

Purpose of the language: ​Formalization of the solution, Implement the solution, Data            

Interpretation, Compiler description 

Key Advantages: ​Portability, Easiness of configuration, Usability       

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Object-Oriented (​the base language from which Scout           

extends is C*, which is object-oriented​) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Tool support for the language: ​Compilers 

The language target specific hardware and GPUs or multi-core architectures 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Impact on the productivity gains             

brought​ ​(Lower cognitive overload, Easier to use - Qualitative)  
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A.2.10 Selective Embedded Just-In-Time Specialization ​[38] 

Q2: NATURE OF THE LANGUAGE 

Host Language: ​Knowledge Discovery Toolbox (KDT) 

Application Domain:​ ​Semantic Graphs 

Purpose of the language: ​Graph Processing (Implement the solution) 

Key advantages: ​Performance, Easiness of configuration, Usability       

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Functional, Object-Oriented 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Interpreters, Compilers, Tool suite 

Technologies used to create the language tool suite:​ ​DSL frameworks (KDT), compBLAS library 

Execution stack requirements to support the artifacts created with those languages: ​OS (any),             

Message Passing Middleware (MPI), Libraries (compBLAS) 

Execution model that is being used: ​HPC Libraries (compBLAS), Compiled code for CPU 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this languages:​ ​End-users 

Technical knowledge required: ​Languages (Python, C++), Libraries (KDT), Hardware (CPU),          

Systems (Clusters), Theoretical Background (Graph Algorithms) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, There is an explicit comparison             

with competing approaches, There is an explicit comparison of the language proposal with             

respect to distinct settings/context/configurations, Quantitative comparison performed,       

Performance and coding complexity evaluation against direct usage of Python interface of KDT             

and direct usage of KDT backend (i.e. compBLAS) on standard graph algorithms and synthetic              

datasets (in-core)​, ​Metrics ​(Lines of Code, Satisfaction, Time), ​Impact on the productivity gains             

brought ​(Learnability, Lower cognitive overload, Easier to remember, Expressiveness, Easier to           

use - Qualitative), ​Product's performance gains brought ​(Memory Efficiency, Computation          

Efficiency, Scalability - Quantitative and  Evolvability/Maintainability - Qualitative) 
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A.2.11 SkIE-CL​ [37] 

Q2: NATURE OF THE LANGUAGE -> ​SkIE-CL, the programming language of the SkIE (SkIE stands               

for skeleton integrated environment​) environment 

Host language: ​C/C++, Fortran, Java 

Application Domain: ​Data mining 

Purpose of the language: ​Implement the solution 

Key Advantages: ​Portability, Easiness of configuration, Orchestration, Usability        

(Effectiveness/Efficiency/Satisfaction), ​Enables high-level parallel programming using skeletons 

Paradigms underlying the language: ​Skeletons are used as basic constructs of coordination            

language (SkIE-CL) 

There is a concrete syntax for the language and the preferred representation type is both               

Textual and Diagrammatic 

Tool support for the language: ​Compilers, Tool suite and IDE 

Execution stack requirements to support the artifacts created with those languages: ​OS            

(Multiple: Linux, ...), Message Passing Middleware (​MPI​) 

Execution model that is being used:​ ​Compiled code for CPU 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-user 

Technical knowledge required: ​Tools (Visual SkIE), Languages (SkIE-CL), Theoretical Background          

(Skeletons) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Explicit comparison with           

competing approaches, Explicit comparison of the language proposal with respect to distinct            

settings/context/configurations, Quantitative comparison performed, ​The language is       

compared with MPI with respect to number of lines of code and development time, ​Metrics               

(Lines of Code, Time), ​Impact on the productivity gains brought ​(Learnability, Lower cognitive             

overload, Easier to use - Qualitative), ​Products' performance gains brought          

(Evolvability/Maintainability - Qualitative; Scalability - Quantitative)  
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A.2.12 Swift ​[23, 24] 

Q2: NATURE OF THE LANGUAGE 

Application Domain: ​Parallel workflow/Distributed parallel scripting 

Purpose of the language: ​Implement the solution 

Key advantages: ​Portability, easiness of configuration, orchestration, usability        

(effectiveness/efficiency/satisfaction) 

Paradigms underlying the language: ​Functional (​application components modelled as         

side-effect free functions) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language:​ ​Interpreters, tool suite 

Execution stack requirements to support the artifacts created with those languages: ​OS (Linux),             

IO architecture (POSIX), Message Passing Middleware (Globus) 

Execution model that is being used: ​Virtual Execution Environment (Cloud), Distributed           

Middleware (​Globus Grid middleware​) 
  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this languages: ​End-users 

Technical knowledge required: ​Languages (Swift) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success evaluated, Quantitative comparison          

performed, Metrics ​(Time, Utilization, Scalability), ​Impact on the productivity gains brought           

(Learnability, Lower cognitive overload, easier to remember, expressiveness, easier to use -            

Quantitative and Qualitative), ​Products' performance gains brought ​(Computation efficiency,         

evolvability/maintainability, scalability, resource utilization - Quantitative and Qualitative) 
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A.3 Domain Specific Languages embedded in General Purpose Languages 

 

A.3.1 Pipeline Composition (PiCo) ​[43] 

Q2: NATURE OF THE LANGUAGE 

Host language:​ ​C++ 

Application Domain: ​Big Data Analytics 

Purpose of the language: ​Formalization of the solution, Simulation of the solution, Implement             

the solution, Data Interpretation 

Key advantages: ​Performance, Portability, Easiness of configuration, Usability        

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language: ​Functional, Object-Oriented 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Compilers, Tool suite 

Execution stack requirements to support the artifacts created with those languages: ​OS (PiCo             

application can be compiled to any target platform supporting a modern C++ compiler) 

The language target GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-users 

Technical knowledge required: ​Languages (C++), Frameworks (FastFlow), Theoretical        

Background (Batch and Streaming Applications) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success of the language evaluated, Explicit            

comparison with competing approaches ​(They have compared PiCo to two state-of-the-art           

frameworks: Spark and Flink) ​and language proposal with respect to distinct           

settings/context/configurations, Quantitative comparison performed, ​They have compared       

PiCo to two state-of-the-art frameworks (Spark and Flink) execution times in shared memory             

for both batch and stream applications​, ​Metrics ​(Time), ​Productivity gains brought by the             

languages ​(Expressiveness, Easier to use - Qualitative)​, ​Products' performance gains brought           

(Memory Efficiency, Computation efficiency, Scalability - Quantitative)  
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A.3.2 Spark Streaming and Spark SQL​ [41] 

Q2: NATURE OF THE LANGUAGE 

Host language: ​Spark applications can be written in Java, Scala, Python, R 

Application Domain:​ ​Streaming analytics 

Purpose of the language: ​Simulation of the problem, Implement the solution 

Key advantages: ​Performance, Portability, Easiness of configuration, Orchestration, Usability         

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language:​ ​Functional (Scala), Object-Oriented (Scala) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Compilers 

Execution stack requirements to support the artifacts created with those languages: ​OS (Linux,             

MS Windows, macOS), IO architecture (Spark Core), Libraries (MLlib Machine Learning Library) 

Execution model that is being used: ​Distributed Middleware (Hadoop Distributed File System            

(HDFS), OpenStack Swift,..) 

The language target GPUs or multi-core architectures 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-users 

Technical knowledge required: ​Frameworks (Apache Spark) 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Presented experimental results for three datasets,            

Metrics ​(Time), ​Products' performance gains brought ​(Computation efficiency, scalability -          

Quantitative) 
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A.3.3 Weaver ​[42] 

Q2: NATURE OF THE LANGUAGE -> ​A DSL built on top of Python which allows researchers to                 

construct scalable scientific data-processing workflows 

Host language: ​Python 

Application Domain: ​Scientific workflows 

Purpose of the language: ​Formalization of the solution, Implement the solution 

Key advantages: ​Performance, Portability, Easiness of configuration, Usability        

(Effectiveness/Efficiency/Satisfaction) 

Paradigms underlying the language:​ ​Functional and Object-Oriented (built on top of Python) 

There is a concrete syntax for the language and the preferred representation type is Textual 

Existing tool support for the language: ​Compilers, Tool suite 

  

Q3: TYPICAL USER PROFILES FOR THE LANGUAGE 

Roles of the users of this language: ​End-users 

Technical knowledge required:​ ​Python 

  

Q4: EFFECTIVENESS OF THE LANGUAGE -> ​Success of the language evaluated, Explicit            

comparison with competing approaches and language proposal with respect to distinct           

settings/context/configurations, Quantitative comparison performed, ​They provided four       

applications constructed using Weaver and evaluated its effectiveness in the context of            

scripting scientific workflows for distributed systems​, ​Metrics ​(Lines of Code, Time),           

Productivity gains brought by the languages ​(Learnability, Easier to use - Qualitative)​, Products'             

performance gains brought ​(Computation efficiency, scalability - Quantitative and         

Evolvability/Maintainability - Qualitative)  
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APPENDIX B - Survey 
 

This survey is being carried out within the scope of the dissertation "Big Data and High                

Performance Computing DSLs - A Systematic Literature Review", associated to the student            

Beatriz Norberto no. 42653, from Faculdade de Ciências e Tecnologia - Universidade Nova de              

Lisboa. For that, it is important to question people within that area. 

The questionnaire is of short duration and all your answers are totally confidential. 

Thank you for your attention. 
 

1. Are you involved in the SLR? 
 

O  Yes, I am O  No, I’m not 
 

2. How long have you been working on High Performance Computing? 
 

O  Less than 2 years O  Between 2 and 5 years 
 

O  Between 5 and 10 years O  More than 10 years 
 

3. In what areas of engineering have you worked? (e.g. Bioinformatics, telecommunications) 
 

4. Does your High Performance Computing activity consist primarily of developing support            

tools or of using existing tools? 
 

5. Which programming languages do you use for High Performance Computing? 
 

6. What made you use these languages in relation to the alternatives you know? (this may                

include language properties and contextual factors, etc) 
 

7. What are the key advantages of these languages? 
 

8. How do you rate the existing tool support for the languages you use for HPC? (e.g. tool suite,                   

IDE, simulators, etc.) 
 

O  Very Poor       O  Poor       O  Neutral       O  Good       O  Excellent 
 

9. In relation to the previous question, what are the existing support tools you know? 
 

10. For the domain where you are, how do you rate the effectiveness of the languages you                 

use? 
 

O  Very Poor       O  Poor       O  Neutral       O  Good       O  Excellent 
 

11. What are the fundamental language mechanisms that justify your previous answer? 
 

12. What is the impact on the performance brought by the languages reported? 
 

13. What are the limitations/difficulties of the languages you use? 
 

14. How do you rate your level of technical knowledge for languages used for HPC? 
 

O  Very Poor       O  Poor       O  Neutral       O  Good       O  Excellent  
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APPENDIX C - Articles that are included in the final review 

 

SLR Publication ID Publication Reference 

P003 [82] 

P004 [83] 

P006 [84] 

P007 [85] 

P008 [86] 

P010 [87] 

P018 [77] 

P023 [49] 

P030 [78] 

P031 [88] 

P046 [89] 

P049 [90] 

P051 [50] 

P052 [37] 

P055 [21] 

P056 [20] 

P060 [91] 

P062 [92] 

P064 [59] 

P065 [23] 

P066 [93] 

P070 [94] 

P073 [60] 
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P076 [79]  

P077 [95] 

P078 [96] 

P079 [11] 

P080 [12] 

P082 [97] 

P084 [80] 

P085 [98] 

P086 [44] 

P090 [99] 

P093 [25] 

P095 [100] 

P096 [101] 

P097 [102] 

P101 [103] 

P102 [104] 

P103 [105] 

P104 [106] 

P105 [107] 

P106 [108] 

P107 [109] 

P109 [46] 

P110 [110] 

P111 [111] 

P114 [112] 

P115 [113] 
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P117 [114] 

P118 [27] 

P119 [30] 

P120 [41] 

P134 [31] 

P135 [115] 

P138 [15] 

P139 [13] 

P141 [26] 

P142 [116] 

P143 [117] 

P145 [19] 

P146 [61] 

P147 [62] 

P149 [118] 

P150 [119] 

P151 [22] 

P153 [120] 

P154 [121] 

P155 [122] 

P156 [36] 

P157 [63] 

P158 [123] 

P159 [64] 

P160 [124] 

P161 [125] 

P162 [33] 
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P163 [126] 

P164 [127] 

P165 [128] 

P166 [129] 

P167 [130] 

P168 [131] 

P169 [132] 

P171 [133] 

P172 [134] 

P176 [135] 

P177 [72] 

P178 [136] 

P179 [137] 

P180 [138] 

P181 [139] 

P182 [140] 

P184 [141] 

P186 [65] 

P188 [66] 

P190 [67] 

P192 [142] 

P194 [68] 

P195 [45] 

P196 [143] 

P199 [28] 

P200 [144] 

P203 [145] 
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P204 [146] 

P209 [147] 

P211 [18] 

P230 [148] 

P234 [149] 

P235 [150] 

P236 [151] 

P237 [152] 

P238 [69] 

P243 [153] 

P246 [52] 

P247 [24] 

P248 [154] 

P250 [155] 

P251 [156] 

P257 [70] 

P258 [53] 

P261 [71] 

P262 [35] 

P274 [130] 

P359 [32] 

P360 [157] 

P361 [16] 

P364 [17] 

P365 [38] 

P367 [48] 
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P370 [54] 

P371 [158] 

P372 [34] 

P374 [159] 

P375 [160] 

P376 [161] 

P377 [162] 

P378 [163] 

P379 [164] 

P380 [42] 

P383 [14] 

P387 [165] 

P388 [166] 

P412 [73] 

P413 [40] 

P414 [29] 

P415 [167] 

P416 [39] 

P417 [74] 

P418 [75] 

P419 [76] 

P420 [51] 

P421 [43] 
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