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Abstract
In this paper, a class of resampling techniques for finite populations under 7ps sampling design is
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“pseudo-population” on the basis of sample data; (i7) drawing a sample from the predicted population
according to an appropriate resampling design. From a logical point of view, this approach is essentially
based on the plug-in principle by Efron, at the “sampling design level”. Theoretical justifications based
on large sample theory are provided. New approaches to construct pseudo populations based on various

forms of calibrations are proposed. Finally, a simulation study is performed.
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1. Introduction

The use of resampling methods in survey sampling has a long history, and several different techniques
have been proposed in the literature. The common starting point consists in observing that the classical
bootstrap method, as proposed by Efron (1979), does not work in survey sampling, because of the
dependence among units due to the sampling design itself.

Adaptations taking into account the non i.i.d. nature of the data are required when the sample is
collected through a general sampling design, possibly assigning different probability to every population
unit to be included in the sample. The literature on resampling from finite populations is mainly devoted
to estimate variances of estimators; crf. Mashreghi et al. (2016). The main approaches are essentially
two: ad hoc approaches and plug in approaches (cfr. Ranalli and Mecatti (2012), Chauvet (2007) and
references therein).

The basic idea of ad hoc approaches consists in resampling from the original sample through a special
design, that accounts for the dependence among units. This approach is pursued in McCarthy and
Snowden (1985), Rao and Wu (1988), where the re-sampled data produced by the “usual” i.i.d. bootstrap
are properly rescaled, as well as in Sitter (1992), Beaumont and Patak (2012), Chatterjee (2011), Conti
and Marella (2015), where a “rescaled bootstrap process” based on asymptotic results is proposed. Among
the ad hoc approaches we also quote the recent paper by Antal and Tillé (2011), where an ingenious
mixed resampling design is proposed to account for the dependence among observations.

Plug-in approaches are based on the idea of “expanding” the sample to a “pseudo-population” that
plays the role of a “surrogate” (actually a prediction) of the original one. Then, bootstrap samples
are drawn from such a pseudo-population according to some appropriate resampling design. The most
intuitive choice consists in using the same sampling design used to draw the original sample from the
population; cfr. Gross (1980), Chao and Lo (1985), Booth et al. (1994), Holmberg (1998), Chauvet (2007),
as well as Mashreghi et al. (2016). Applications of resampling methods based on pseudo-populations are
in Marella and Vicard (2017), where the structural learning of graphical models with data coming from
a complex sample survey is dealt with, in Conti et al. (2016), where a statistical matching problem is
studied, and in Lahiri (2003a).

Virtually all resampling techniques proposed for finite populations rest on the same justification: in
case of linear statistics, the variance of the resampled statistic should match (or should be very close
to) the “usual” variance estimator, possibly with approximated forms of the second order inclusion
probabilities; cfr. Antal and Tillé (2011). This is far from the arguments commonly used to justify
the classical bootstrap and its variants, that are based on asymptotic considerations involving the whole
sampling distribution of a statistic (cfr., for instance, Bickel and Freedman (1981) and Lahiri (2003b)): the
asymptotic distribution of a bootstrapped statistic should coincide with that of the “original” statistic.
This argument is actually used in Conti and Marella (2015).

In the present paper a class of resampling techniques for finite populations is proposed. It is based
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on a two-phase procedure. In the first phase, a pseudo-population, that can be viewed as a prediction of
the population, is constructed. In the second phase, a (re)sample is drawn from the pseudo-population.
In a broad sense, this approach parallels the plug-in principle by Efron (2003). The pseudo-population
is plugged in the sampling process, and acts as a surrogate of the actual finite population. In other
terms, the predicted population mimics the real population, and the (re)sampling process from the
predicted population mimics the (original) sampling process from the real population. From a formal
point of view, the main justification of the whole procedure is based on large sample arguments. In this
sense, the approach pursued in the present paper offers a principled framework for resampling from finite
populations that parallels the arguments used for classical Efron’s bootstrap of 4.i.d. data. For this reason,
some preliminary developments of large sample theory for finite populations are needed. The asymptotic
framework considered here is essentially that in Isaki and Fuller (1982), where a sequence of finite
populations of increasing size is considered, and the sample size correspondingly increases. Furthermore,
high entropy sampling designs are considered, similar to those studied in Conti (2014), Conti and Marella
(2015), but with an important addition: the possible relationships between the variable of interest and
the design variables are explicitly taken into account. This dramatically changes the asymptotic results
in Conti (2014). As a matter of fact, the resampling method defined in Conti and Marella (2015), based
on rescaling Efron’s bootstrap, does not apply when there is dependence between the variable of interest
and the design variables, which is often the case in real applications.

The results in Propositions 1-3 have strong connections with other results recently appeared in
the literature: cfr. Boistard et al. (2017), Bertail et al. (2017). In the first paper the authors study
the asymptotic behaviour of the process (25), under fairly general conditions on the sampling design,
including high entropy sampling designs as special cases. In Bertail et al. (2017) empirical processes
indexed by classes of functions are studied for high-entropy sampling designs. However, there are
important differences, that should be highlighted. In the present paper we study our functional central
limit theorems conditionally on the realization of the superpopulation, as both the sample and population
sizes go to infinity. In a sense, they are in the same spirit as limit results in Bickel and Freedman (1981).
Functional central limit theorems in Boistard et al. (2017) are studied unconditionally. The need to
establish conditional results is due to two reasons. First of all, here we consider a design-based approach,
where the only source of variability is the sampling design: see, e.g., Cassel et al. (1977), Ch. 1. In the
second place, the asymptotic study of resampling procedures requires conditioning. The results in Bertail
et al. (2017) are conditional results, in the same spirit as the present paper. However, they are established
for Horvitz-Thompson estimator of the population distribution function, and not for the Héjek estimator
as in the present case. Furthermore, regularity assumptions in Bertail et al. (2017) are slightly different
from ours.

The paper is organized as follows. In Section 2 basic notions are introduced, and in Section 3
different strategies to construct pseudo-populations are discussed. Section 4 contains the main technical

assumptions on which the paper rests. Sections 5, 6 are devoted to asymptotic results for a wide class of
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estimators of appropriate population parameters. Section 7 describes the proposed resampling and the
basic theoretical results. Properties of calibrated pseudo-populations are studied in Section 8. In Section
9, different methods to construct pseudo-populations are compared via a Monte Carlo simulation study.

Conclusions are provided in Section 10. Technical lemmas and proofs are gathered in Appendix.

2. Basics aspects and notation

Let Uy be a finite population of size N. The character of interest is denoted by ), and its value for unit
i by y;; furthermore, let yny = (y1, .-, Yn)-

A sample s is a subset of Uy. Denote by D; the sample membership indicator of unit ¢, namely a
Bernoulli random variable (r.v.), such that i is (is not) in the sample s whenever D; = 1 (D; = 0); clearly,
s ={i €Un: D; =1}. Denote further by Dy the N-dimensional r.v. of components (D,...,Dy). A
(unordered, without replacement) sampling design P is the probability distribution of the random vector
Dy. From now on, the symbols Ep, Vp, Cp will denote expectation, variance and covariance w.r.t. a
sampling design P.

The expectations m; = Ep[D;] and m;; = Ep[D; D;] are the first and second order inclusion
probabilities, respectively. The suffix P denotes the sampling design used to select the sample s. The
sample size is ng = D1+ --- + Dpy.

The first order inclusion probabilities are frequently taken proportional to an auxiliary variable X
In symbols: 7; < x;, where z; is the value of X for unit ¢ (i = 1, ..., N). The rationale of this
choice is simple: if the values of the variable of interest are positively correlated with (or, even better,
approximately proportional to) the values of the auxiliary variable, then the Horvitz-Thompson estimator
of the population mean will be highly efficient. The symbol @y, from now on, will denote the sequence
(1, ..., zN).

For each unit ¢, let p; be a positive number, with p; 4+ --- + py = n. The Poisson sampling design
(Po, for short) with parameters py, ..., py is characterized by the independence of the r.v.s D;s, with

Prpo(D; = 1) = p;. In symbols
N
Prpo(Dy) = [[p7 (1 —pi)' 7.
i=1

The rejective sampling, or normalized conditional Poisson sampling (cfr. Hajek (1964), Tillé (2006))
is obtained from the Poisson sampling by conditioning w.r.t. ns = n. Using the suffix Pg to denote
the rejective sampling design, Ep,[D;] is not generally equal to p;, although they are asymptotically
equivalent, as N and n increase (Hdjek (1964)). In Chen et al. (1994) an algorithm is proposed to
compute p;s in terms of m;s for the conditional Poisson sampling.

The rejective sampling design is characterized by a fundamental property: it possesses maximum

entropy among all sampling designs of fixed size and fixed first order inclusion probabilities (as shown
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in Hé4jek (1981)), where the entropy of a sampling design P is

H(P)=—Ep[log Prp(Dy)| =~ > Prp(Dy) log(Prp(Dy)).

The Hellinger distance between a sampling design P and the rejective design is defined as

an(P. Pr) = Y (VPro(Dn) — VPro D)) - 1)

Di,...,DN

3. Pseudo-population: construction based on calibration

The class of resampling techniques we consider rests on a two-phase procedure. In the first phase, on the
basis of the sampling data a pseudo-population, i.e. a design-based predictor of the actual population,
is constructed. In the second phase, a sample of size n (the same as the “original” one) is drawn from
the pseudo-population, according to a mps sample design P* (the resampling design) with inclusion
probabilities again proportional to x;s. Intuition suggests to use a resampling design of the same type as
the sampling design used to draw the sample s from the population. This point will be discussed later,
in Section 7.2.

Formally speaking, a pseudo-population Uy. is

where Njs are integer-valued r.v.s, with (joint) probability distribution Ppq. In practice, (2) means
that ND; population units are predicted to have y-value equal to y; and z-value equal to z;, for each
sample unit ¢. In the sequel, the symbols y;, ; will be used to denote the y-value and z-value of unit &
of the pseudo-population, respectively. The quantity

N

N* =) N;D.. (3)

i=1
is the size of the pseudo-population.

A relevant aspect that would potentially affect the performance of resampling, is how the pseudo-
population is constructed. The intuition behind pseudo-populations is simple: the pseudo-population
should be as “similar” as possible to the actual finite population. In a sense, the pseudo-population
should be somehow calibrated w.r.t. the population. Such an intuition can be put into practice in several
ways. In the present section, some classical proposals are reviewed, and some new proposals based on

different calibration approaches are illustrated.

3.1. Holmberg pseudo-population

Following the popular Horvitz-Thompson (HT') approach to 7ps sampling and estimation, each unit i € s

should be “predicted” in Uy. a number of times equal to its design weight 1 provided they are all
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integers. For the general non-integer case the following strategy has been proposed by Holmberg (1998).

-1
Let r; = m;

— walL and consider independent Bernoulli r.v.s ;s with Pr(e; =1|Dy, Yy, Xn) = 74
A HT pseudo-population is constructed by replicating every sampled unit i € s N7 = |« -_1J + €
times, with corresponding values y;, ;. The size of a HT pseudo-population is N*#T = Zl 1 NHT D,

which is not generally equal to N.

3.2. Multinomial pseudo-population

For £k =1, ..., N, perform independent trials consisting in choosing a unit from the original sample,
where each unit ¢ is selected with probability
ﬂi_l/Zﬂ'j_l = a:i_l/ij_l
jcs jes
If at trial k£ unit ¢ is selected, unit k& of the pseudo-population will take values y; = y; and z}, = z;. If
N;MUL i ¢ s is the number of replications of unit 7 in the pseudo-population, then (conditionally on

Dy, Yy, Xy) the rv. (NFMUL; j € g) possesses a multinomial distribution, with

N
j=1
N N
V(Ni*MUL |DN7 YN7 XN) =N -Dzﬂ-;l/ZDJﬂ-II 1-— .Dl’iT;l/ZDj’]T;l (5)
2
N
C(N;MUL’ N;N[UL |DNa YN, XN) = —NDiDhﬂ'i_lﬂ';l/ ZDj?Tj_l , h 7& 7. (6)
j=1

This approach goes essentially back to Sverchkov and Pfeffermann (2004) and guarantees by construction

a pseudo-population calibrated w.r.t. the population size.

3.3. Conditional Poisson pseudo-population

The Holmberg scheme in Section 3.1 is essentially based on drawing a Poisson sample from s, with
inclusion probabilities r;s, 7 € s. A simple idea to calibrate such scheme in order to produce a pseudo-

population of exactly IV units, consists in defining the quantities

—1 -1
. T .
i=N—et— |[N—t—|, i€s
Zkes Ty, Zkes Ty,

and in drawing from s a sample sg of

€S 1€ES

units, according to a conditional Poisson sampling design with first order inclusion probabilities 7;s.
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For each unit ¢ € s, let ¢; be equal to 1 iff 7 is in sg, and ¢; = 0 otherwise. Each unit ¢ of the original
sample is replicated in the pseudo-population exactly
-1

NCPP {N T _1J Te (7)
2kes Tk

times.

3.4. Double-Calibrated pseudo-population

The conditional Poisson pseudo-population illustrated in Subsection 3.3 is calibrated w.r.t. the population
size N, but not w.r.t. the mean of the auxiliary variable X. A natural idea would consist in modifying
N;C¢FP defined by equation (7) in order to satisfy a further constraint: the mean of X in the pseudo-
population is equal to the mean of X in the actual population.

Take N;‘CP P i € s, as an “initial” solution for replicates of sample units in the pseudo-population,

and let further N* be the total number of pseudo-population units (cfr. (3)), and
N N
Xy=N"1Y "2, Xy.=N"1"> NaD;. (8)
i=1 i=1

The basic idea is to choose pseudo-population replicates that satisfy both constraints on population
size and mean of X, and that are as close as possible to the initial N}“FFs. More formally, the pseudo-

*DCal
Ni

population replicates are taken equal to s, the solution of the following quadratic problem:

min Zz’es(Ni* o N;CPP)Q

N*=N

. (9)
Xy =Xn

N >1

NjyPCalg obtained by solving (9) are not necessarily integer-valued. In order to obtain

The values
integer values, it is enough to apply to NP Calg 3 randomization device similar to that of CPP pseudo-

population described in Section 3.3.

3.5. Hot-deck pseudo-population

The basic idea of the calibrated pseudo-population introduced in Subsection 3.4 consists in constructing a
pseudo-population that is “similar” for some characteristics of the auxiliary variable X w.r.t. the original
population. This idea is pursued by taking only the sample xz;s values. When z;s are available for all
population units, the notion of pseudo-population can be extended by considering predictors of the form
{(zF, y), it =1, ..., N}, where af = z; for every unit ¢ = 1, ..., N and y} = y; = imputed value for

y:, according to hot-deck imputation. In detail, the hot-deck pseudo-population is composed by N units,
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ie. Uy, =UF. A pair of values (z}, y}) corresponds to each unit ¢ € Uy, with

x; = wm, i=1,...,N (10)
N Yi ifies
y; with j = argmin; g |z; —z;| if i €U\ s
In other terms, for each unit i € U3 a donor unit j(i) is chosen, such that
o iifies
J(i) = . o
’xj(i) - a:i’ = minjep\s|z; — x| if i €UR \ s.
The value y; for unit ¢ is then taken equal to those of its donor, leading to a pseudo-population which
is calibrated by construction w.r.t. both population size N and the entire distribution of the auxiliary

variable X.

4. Basic assumptions

Denote by ) the character of interest, and let y; be its value for unit ¢. 71, ..., T, are the design
variables, and t¢;1, ..., t;;, are their values for unit i. The design variables may include strata indicators,
as well as variables measuring cluster and unit characteristics (cfr. Pfeffermann (1993)). They are used
to construct the sampling design, and to compute the sampling weights, i.e. the reciprocals of the first
order inclusion probabilities.

The basic assumptions on which the present paper relies are listed below.

Al. (Ux; N > 1) is a sequence of finite populations of increasing size N.

A2. For each N, (y;, ti1, ..., tr), ¢ = 1,..., N are realizations of a superpopulation model
{Y;, Ti1, ..., Ti.), i = 1, ..., N} composed by i.i.d. (L + 1)-dimensional r.v.s. The symbol P
denotes the (superpopulation) probability distribution of r.v.s (Y;, T, ..., T;p)s, and E, V are the
corresponding mean and variance, respectively.

A3. For each population Uy, sample units are selected according to a sample design with positive first
order inclusion probabilities 7y, ..., 7y, and fixed sample size n = m; + - -+ 4+ w. The first order
inclusion probabilities are taken proportional to 2; = h(t;1, ..., t;1), h(-) being an arbitrary, strictly
positive function. To avoid complications in the notation, we will assume that m; = nx;/ Ef\il x;
for each unit 1.

Although the sample size n, the inclusion probabilities 7;s, and the r.v.s D;s, as well, depend on
N, in order to use a simple notation the symbols n, 7;, D; are used, instead of the more complete
nN, TN, Di n. It is also assumed that

N’ITiLIEOOE[m(l —m;)] =d>0. (12)

A4. The sample size n increases as the population size N does, with

..n
lim N—f,0<f<1. (13)
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A5. For each population (Uy; N > 1), let Pr be the rejective sampling design with inclusion
probabilities 71, ..., mn, and let P be the actual sampling design (with the same inclusion

probabilities). Then
dy(P, Pp) - 0 as N — co, a.s. —P.

A6. E[X?] < o0, so that the quantity in (12) is equal to:

E[X?] E[X?]
4=7 (1 B E[Xﬂ?) = Dgixpe

Cfr. Further Lemma ?? in the Appendix.

> 0. (14)

Assumptions A2, A3 allow one to take into account the possible dependence between the design
variables and the study variable. Of course, this is a key motivation for using non-simple, probability-
proportional-to-size designs (dubbed 7ps sampling designs), where the dependence between X;s and Y;s
is important for the efficiency of the estimation of the population mean (and other population parameters,
as well). Notice that assumptions A2, A3 do not limit the kind of dependence between X;s and Y;s, that
can be completely general.

Assumption A2 is not as restrictive as it could appear at a first glance. For instance, it allows for
stratification in a simple way. Suppose there is a unique design variable T', taking L values t(y), ..., t(r)-
The stratum [ is composed by all units for which 7" takes the value ¢y (I =1, ..., L), and the distribution

of Y; in each stratum, i.e. the distribution of Y; conditionally on T; = t(;), may vary across strata.

Remark. Assumption A2 is not necessary for the validity of theoretical results in Sections 5-7, and it is
stated in the present form only for the sake of simplicity. In fact, assumption A2 is used to prove Lemmas
?7?-77, that involve the use of the (strong) law of large numbers for appropriate functions of (Y;, X;). But
independence assumption is not necessary for the validity of the strong law of large numbers. Suppose,
for instance, that the population units are clustered into M clusters, where cluster m is of size N,
m=1, ..., M. If the r.v.s (Y;, X;)s are correlated within clusters and independent across clusters, and
if, as N — oo, M — oo and N,;,s remain bounded, then Lemmas ?7-?77 still hold, as well as all other

results of the paper.

An obvious example of sampling designs satisfying A3 are wps sampling designs, where the first order
inclusion probability of unit 7 is proportional to the value of a size measure. Another elementary example
is the stratified design. Assume that the population is subdivided into L strata, composed by Ny, ...,
Ny, units, respectively (N7 + ---+ N = N). Let further w; = N;/N, and let g1, ..., gr be arbitrary
positive numbers such that g; +- - -+ ¢gr, = 1. The stratified design drawing (by simple random sampling)
n; = ng; units from stratum [ (= 1, ..., L) can be considered as a special 7ps sampling design where
the first order inclusion probability for unit ¢ is taken proportional to an auxiliary variable (acting as a

size measure) z; defined as

x; = 9L if unit i is within stratum [. (15)
wy
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In fact, from (15) it easily follows that

n n
™= N—iil = ﬁll if unit 4 is within stratum . (16)

In particular, if g; = w;, then the sampling design reduces to stratified proportional sampling.
As discussed in Conti (2014), assumption A5 implies that the Kullback-Leibler divergence of the actual

sampling design P w.r.t. the rejective design
Akr(P|Pr) = H(Pr)— H(P) (17)

tends to zero as both n, N increase. Hence, the sampling designs satisfying assumption A5 are essentially
“high entropy”, single-stage, sampling designs. The importance of the high entropy property of sampling
designs is discussed in Brewer and Donadio (2003), Grafstrém (2010) and references therein. Examples
of sampling designs satisfying A5, as shown in Berger (1998), Berger (2005), Berger (2011), are simple
random sampling, Rao-Sampford design, Chao design, stratified design (with bounded number of strata).
The systematic sampling design does not satisfy A5, due to its low entropy. However, the randomised
systematic sampling design is a high entropy design satisfying AS5.
The population distribution function (p.d.f., for short) is:

N
1
Fn(y) = N E Iy<y)y YyER (18)
=1

where the indicator function I(,, <, is equal to 1 if ; <y, and is equal to 0 otherwise.

A finite population parameter is a functional (not necessarily real-valued) of the p.d.f.:

The simplest approach to estimate a finite population parameter of the form (19) consists in estimating
first the p.d.f. (18), and then in replacing Fi in (19) by such an estimate. As an estimator of the p.d.f.

(18) we consider here the Héjek estimator:

= Zfil %Dil( i <Y)
Fu(y) = ZNi N 1;] . (20)
i=1 7, 7t

which is a proper distribution function. It can be considered as the “finite population version” of the

empirical distribution function, that plays a fundamental role in nonparametric statistics. The finite

population parameter (19) is then estimated by
Oy =0 (ﬁH) . (21)

In a sense, (21) is the “finite population version” of statistical functionals.
The main task of Sections 5, 6 is to study the asymptotic properties of (20), (21), respectively. In the
sequel, the joint superpopulation d.f. of (¥;, X;) will be denoted by

H(y, ) = P(Y; <y, Xi <2) (22)
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and the marginal superpopulation d.f.s of Y; and X; by
F(y) = P(Y; < y) = H(y, +00), G(x) = P(X; <) = H(++00, ), (23)
respectively. Furthermore, the notation
Ko,(y) =E[X{|Y1<y], y€R, a=0, £1, £2 (24)

will be used. Note that K, (+o00) = E[X{].

5. Estimating population distribution function

The goal of the present section is to derive the limiting distribution of the Héjek estimator (20),
as the sample size and the population size increase. To this purpose, consider the stochastic process

WH = (WH (y); y € R), where

Wi (y) = Va(Fu(y) — Fn(y)); y € R. (25)

It can be viewed as the finite population sampling version of the well-known empirical process. The
main result of the present section is Proposition 1, that establishes the weak convergence of Wi to a
Gaussian limiting process. Proposition 1 is in spirit similar to the main result in Conti (2014), but with
fundamental differences that will be stressed in the sequel.

Before stating Proposition 1, we stress that in our asymptotic approach the actual population y;s and
x;s values are considered as fized. The only source of variability is the sampling design, namely D y. If we
let the population size N go to infinity, we must also consider corresponding sequences Y., = (y1, ¥2, .- -),
Too = (x1, Ta,...) of y;s and x;s values. The actual yy = (y1, -.-, yn), TN = (21, ..., xx) are the
segments of the first N y;s, x;s in the sequences y,,, oo, respectively. As N increases, y, tends to y.,
and zx tends to Too. By A2, ¥, T live in a probability space ((R?)>°, B(R?)>°, P>°), where B(R?)>
is the product Borel o-field over (R?)>°, and P> is the product measure on (R, B(R)>) generated
by P. The probability statements we consider are of the form Prp(:|yy, n), with N going to infinity.
Conditioning w.r.t. ¥y, €y means that y;s and x;s are considered as fixed (although produced by a
superpopulation model). The suffix P means that the probability refers to the sampling design. The
results we will obtain hold for “almost all” sequences Yy, oo that the superpopulation model in A2 can
produce, i.e. for a set of sequences having P>-probability 1. With a slight lack of precision, but more

simply and intuitively, in the sequel we will use the expression “for almost all y;s, x;s values”.

Proposition 1. If the sampling design P satisfies assumptions A1-A6, with P-probability 1,
conditionally on yy, N the sequence (WH; N > 1), converges weakly, in D[—o0, +00] equipped with

the Skorokhod topology, to a Gaussian process WH = (WH(y); y € R) with zero mean function and
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covariance kernel

_ E[X] B P, Ky K (1)
) = H{F kw1 ren -4 (- 20 (1- ) Fore

B () 4 a0 - B 1] - ) | RO, (26)

with d given by (12), and a A b = min(a, b).

The covariance kernel (26) implies expectation w.r.t. the superpopulation model. This does not
contradict the consideration of sampling design probabilities conditionally on vy, n, but it is only
a consequence of the strong law of large numbers. The set of sequences Y, o for which Proposition
1 holds possesses P°°-probability 1, and is determined by the strong law of large numbers.

When X; and Y; are independent, the covariance kernel (26) reduces to

FLA=D(Fynt) - Fy)F(t))

where
E[X
A= M]E[X;l] (27)
f
is, with P-probability 1, the limit of
151
N e
=1

as N goes to infinity. Taking into account that u A v — uv is the covariance kernel of a Brownian bridge
B = (B(t); 0<t<1) (i.e. a Wiener process tied down at 1), we have thus proved the following corollary

of Proposition 1.

Corollary 1. If the sampling design P satisfies assumptions A1-A6, and if X; and Y; are independent,
with P-probability 1, conditionally on yy, TN the sequence (Wi; N > 1), converges weakly, in
D[—o00, 4+00] equipped with the Skorokhod topology, to a Gaussian process that can be represented in
the form

(f(A-=1)B(F(y)); y €R) (28)

as N goes to infinity, where B is a Brownian bridge and A is given by (27).

Corollary 1 essentially coincides with Proposition 2 in Conti (2014). Proposition 1 is new. Due to the
choice of the inclusion probabilities in A3, i.e. m; < x;, and due to the possible dependence between
X; and Y; (that usually comes true in practice), the limiting Gaussian process is not proportional to
a Brownian bridge. Proposition 1 shows how the dependence between variable of interest and design
variables affects the covariance kernel of the Gaussian limiting law of W . If compared to Proposition

2 in Conti (2014), its main consequence is that, whenever there is some kind of dependence between
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the design variables (or, equivalently, the sampling weights) and the variable of interest, the empirical
process (25) does not converge weakly to a Brownian bridge, but to a Gaussian process with a covariance
kernel having a complicated form, depending on the relationships between the character of interest and
the design variables. The form of such a relationship is usually unknown.

Before ending the present section we note, in passing, that Proposition 1 implies that, with P-

probability 1, conditionally on yy, Tn:
|Fr(y) = Fa(y)] 0 as N — oo (29)

where the symbol % denotes the convergence in probability w.r.t. the sampling design (or better, w.r.t.
the sequence of sampling designs in A3). Using the same arguments as the proof of the Glivenko-Cantelli

theorem, it is not difficult to prove the following further result.

Proposition 2. If the sampling design P satisfies assumptions AI1-A6, with P-probability 1,

conditionally on yy, T, sup,, |E(y) — Fy(y)| converges to 0 in probability w.r.t. the sampling design.

6. Estimating finite population parameters

The goal of the present section is to study the large sample distribution of estimators of the finite
population parameters that are functions of p.d.f. Fy(-). In particular, we concentrate on estimators of
the form (21). In a sense, the results of the present section can be viewed as a finite population version
of the theory of statistical functionals, that mainly refers to the case of i.i.d. observations (cfr. van der
Vaart (1998), Ch. 20).

The appropriate tool to study asymptotic properties of statistical functionals is the notion of
Hadamard-differentiability. Let 6(-) : [°°[—o0, +00] — E be a map having as domain the normed
space [®[—o0, +0o0] (endowed with the sup-norm), and taking values on an appropriate normed space
E with norm || - ||[g. The map 6(-) is Hadamard-differentiable at F' if there exists a continuous linear

mapping 0% : 1°°[—o0, +00] — E such that

—0%(h)|| —0 ast )]0, forevery hy — h. (30)

W@H?om

E

The quantity 0%(-) is the Hadamard derivative of 6 at F. Let us consider the (sequence of) stochastic

process
wzﬁ@mpwwyN%. (31)

In view of Theorem 20.8 in van der Vaart (1998) and Proposition 1, the following result holds.

Proposition 3. Suppose that 0(-) is (continuously) Hadamard-differentiable at F, with Hadamard
deriative 0% (). Under assumptions A1-A6, with P-probability 1, conditionally on yy, N, the sequence

(TH:; N > 1) converges weakly to 0%(WH), as N increases.
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Proposition 3 essentially provides, under mild conditions, an asymptotic approximation for the
sampling distribution of T . In particular, if 6 is real-valued, since 6% (-) is linear and W¥# is a Gaussian

process, the law of 6% (W) is normal with mean zero and variance

of =E [0p(WHT)?]. (32)

7. A class of resampling procedure and its basic properties

The main goal of this section is to provide a sound theoretical justification of the two-phase resampling
approach described in Section 3. Our argument is of asymptotic nature: the probability distribution of
the estimator G(ﬁH) and its approximation based on resampling both converge to the same limit. This is
actually the main argument in favour of the classical (nonparametric) bootstrap for i.i.d. data: cfr., for
instance, Bickel and Freedman (1981). The results of the present section can be viewed as an attempt to
reconciliate the arguments used in sampling finite populations with those used in classical nonparametric
statistics.

The first attempt to define a resampling technique for finite populations based on asymptotic
distribution theory is in Chatterjee (2011) for simple random sampling, and in Conti and Marella (2015)
for general designs. In the latter paper, a technique based on rescaling classical bootstrap is proposed,
and its properties are studied. However, two points have to be stressed. The first one is that the technique
developed in Conti and Marella (2015) is specifically designed to estimate quantiles. The second one is
that it is fully justified from an asymptotic point of view only when there are no relationships between
m;8 (and hence z;s) and y;s. In other words, the rescaled bootstrap proposed in Conti and Marella (2015)
does not work when the dependence between y;s and x;s cannot be neglected.

In view of the above remarks, in this section a new resampling algorithm for finite population is

introduced, that works

(i) for general estimators 6(Fy) of general population parameters 6(Fy );
(#3) when ;s (i.e. the design variables) and y;s (i.e. the variable of interest) are related by some kind

of dependence. No special assumption is made on the relationship between ;s and y;s.

In the sequel, the term sampling design P denotes the sampling procedure drawing n units from the
“original” population Uy . The resampling design P* is the sampling procedure drawing n units from the
predicted (pseudo-)population Uj.. Details of the two phases on which the resampling procedure relies

are in Sections 7.1, 7.2.

7.1. Phase 1: Pseudo-population

Consider a pseudo-population U5;.
{(N}D;, y;, z;); i=1,..., N}
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where N D, population units are predicted to have y-value equal to y; and z-value equal to z;, for each

sample unit 7. The d.f. of the pseudo-population is equal to

1 - NNy
Fr.(y) = N+ Zl(y,iéy) = Z FZDiI(yiéy)’ yeR (33)
k=1

i=1
where N* (3) is the number of pseudo-population units.
As far as the terms N/ are concerned, we will make the following assumptions on expectations,

variances, covariances w.r.t. Ppreq.

Pl. E[N;} |Dn, YN, Xn] =7, 'D;K ny(Dn, Y, XN)
P2. V(N; Dy, Y, Xn) <7 'DiKon(Dn, Y, Xn)
P3. |C(NZ*, N;: |DN7 YN, XN)| < %ﬂ'flﬂ';lDiDhK‘gN(DN, YN, XN) i 75 h

¢ being a (finite) constant, with
Kin(Dn, YN, Xn) — 1 (34)

and K;N(Dn, YN, Xn), j = 2, 3 are bounded in probability, conditionally on Dy, Y n, X, as N
increases. The symbol — in (34) denotes convergence in probability w.r.t. Dy and for almost all y;s,

€I;S.

7.2. Phase 2: Resampling design from the pseudo-population

In phase 2 a sample s* of size n (the same as the original sample) is selected from the predicted
population according to a resampling design P* satisfying the high entropy condition A5 and with first
order inclusion probabilities 7} = nz}/ Egil x;. The most obvious choice is to use a resampling design
of the same kind as the original sampling design, but with first order inclusion probabilities 7}s, even
if the use of a resampling design different from the original one could be justified by reduction of the
computational burden when N, n are large. The Héjek estimator of the d.f. of the predicted population
F3.(y) is equal to

N* D;
~ k=1 T;I(y;:éy)

N* Djp
Zk:l 7775

where D} =1 if the unit k£ of the predicted population is drawn, and D} = 0 otherwise.

(35)

Next proposition shows that, in terms of size N*, the pseudo-population in equivalent to the actual

one.

Proposition 4. Under assumptions A1-A6, P1-P3, for almost all y;s, x;s values, and in probability

w.r.t. Dy,

*

N — 1 in probability w.r.t. Ppreq (36)

as N goes to infinity.
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Constructing the pseudo-population and drawing samples from it essentially adds a further
“randomness layer” to the whole sampling process. The behaviour of such an additional randomness layer
is studied in Proposition 5, where it is shown that sampling from the pseudo-population is asymptotically

equivalent to sampling from the original population. The proof of Proposition 5 is fairly similar to the

Proposition 5. Under assumptions A1-A6, P1-P3, conditionally on yy, xn, DN, as N increases the
statements of Lemmas 77-77 hold true for the predicted population, and for almost all y;s, x;s values,

and in probability w.r.t. Dy and Ppreq.

” means that the set of D ys values, for which Proposition 5

The statement “in probability w.r.t. Dy’
holds, possesses a probability tending to 1 as N increases.

Define now the “resampled version” of the processes W (25) and T# (31), namely

Wit = (VAlFil) - (), y€R), N> (37)

i = Val0(Fy) - 0(Fy.)), N>1. (38)

Proposition 6 contains the main result of the present section and it can be proved essentially with the

same technique as Propositions 1, 3, respectively.

Proposition 6. Suppose that the sampling design P and the resampling design P* both satisfy
assumptions A1-A6, and that conditions P1-P3 are fulfilled. Conditionally on yy, n, Dn,
(DN, ..., DNNY,), the following statements hold.

R1. The sequence (WH*; N > 1) converges weakly, in D[—o0, +oc] equipped with the Skorokhod
topology, to a Gaussian process WH with zero mean function and covariance kernel (26).
R2. If 0(-) is continuously Hadamard differentiable at F, then (TH*; N > 1) converges weakly to

07 (WH), as N increases.

In both R1, R2 weak convergence takes place for a set of y;s, x;s having P-probability 1, and for a set of
Dys and (N, ..., N¥) of probability tending to 1.

Proposition 6 shows that the resampled process W* (TH*) possesses the same limiting law as the
“original” process W]I\}’ (TJI\}[ ) in Proposition 1 (3). In other words, the proposed resampling procedure
asymptotically recovers the probability law of W (-) and TH (-), respectively .

From a technical point of view, Proposition 6 does not require that the resampling design coincides
with the original sampling design, as in Holmberg (1998), even if this is the most intuitive choice. The
essential required conditions are two: (i) the predicted population is constructed as in phase 1; (i)
the first order inclusion probabilities of the resampling design are proportional to the corresponding

x; values, exactly as the original sampling design. Intuitively speaking, this happens because both the
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original sampling design and the resampling design possess high entropy, and in this case their limiting
behaviour essentially depends on the first order inclusion probabilities.

In Proposition 6 the probability distribution of W* ( T#*) is considered conditionally on yy, Zx,
Dy, (D1NY, ..., DyNY). In other terms, the predicted population is considered as fized (as well as
Yn, TN, D), and the only source of variability is the resampling design from the predicted population.
Using Lemmas 1.1, 1.2 in Csérgd and Rosalsky (2003), it is possible to see that the same result also holds
when one considers the distribution of Wi* ( TH*) conditionally on y, y, Dy. In this case only y,
xy, Dy are taken as fixed, and there are two sources of variability: (i) the variability of the process
generating the predicted population and (i7) the variability of the resampling design from the predicted
population. More precisely, the following proposition (that can be proved with the same reasoning as in

Csorgd and Rosalsky (2003), based on Lemmas 1.1, 1.2 in the above paper) holds true.

Proposition 7. Suppose the sampling design P and the resampling design P* satisfy assumptions

A1-A6. Conditionally on yy, N, Dy, the following statements hold.

Ul. The sequence (WH*; N > 1) converges weakly, in D|—o0, +oc] equipped with the Skorokhod
topology, to a Gaussian process W with zero mean function and covariance kernel (26).
U2. If 0(-) is continuously Hadamard differentiable at F, then (TH*; N > 1) converges weakly to

0(WH), as N increases.

In both U1, U2 weak convergence takes place for a set of y;s, x;s having P-probability 1, and for a set of
Dy s of probability tending to 1.

The main consequence of Propositions 6, 7 is that in generating the bootstrap samples two different

approaches can be followed:

1.1 Conditional Approach: construct a predicted population and generate M bootstrap samples s*
from it;
1.2 Unconditional approach: construct M predicted populations and generate one bootstrap sample s*

from each of them.

Clearly, the unconditional approach is more computationally intensive and time consuming than the
conditional one.
The basic steps of the resampling procedure are described below. To simplify the notation, in the sequel

we will assume that 6(-) is real-valued, i.e. we will consider the case of scalar population parameters.

Step 1 Generate M independent bootstrap samples s* of size n on the basis of the two-phase procedure
described above.

Step 2 For each bootstrap sample, compute the corresponding Héjek estimator (35). They will be denoted
by ﬁg}m(y), m=1,..., M.
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Step 3 Compute the corresponding estimates of 6(+):

~

05, = 0(Ffy,n); m=1,..., M.

m

Step 4 Compute the M quantities
Zion =N (B = 0(F3)) = v/ (8(Fy ) = 0(Fi) )5 m=1,..., M, (39)

Step 5 Compute the variance of (39):

where

m=1 m=1
Denote further by
1M
o (2) = i mzz:lf(zn <z 2ER (41)

the empirical distribution function of Z; , s, and by
R 5i(p) =inf{z: R y(2) 2 p} 0<p<1 (42)

the corresponding pth quantile.
The empirical d.f. (41) is essentially an approximation of the (resampling) distribution of TH* as
defined by equation (38). In Proposition 8 it is shown that it converges to the same limit as the d.f. of

TH* and that a similar result holds for the quantiles (42).

Proposition 8. Suppose that assumptions A1-A6 are satisfied, let 0§ be defined as in (32), let @0’03
be a normal distribution function with expectation 0 and variance o3, and let (1)0_;2 (p) be the p-quantile
e

of ©g 42 (i.e. the unique solution of g 42(2) =p), 0 <p<1.

For almost all y;s, x;s values, and in probability w.r.t. Dy, (N{, ..., NX), conditionally on yy, TN,
Dy, (N7, ..., N¥), the following results hold:

sup ‘R\:;M(Z) — g 02(2)] “30; (43)

E;klj]\]/-[(]ﬁ a_5> (I)(;(lj.g(p), V0<p<1 (44)

as M, N go to infinity.
N
In addition, if the sequence (Z* fZM) is dominated by a r.v. U with finite expectation, i.e.

a2
(Z;‘T—ZM) < U for each n, N and M, then in probability w.r.t. yy, xn, Dn, (N7, ..., NX),
conditionally on Yy, TN, Dy, (NT, ..., NX) it yields
§2*—>03 as M, N — oo (45)

where convergence in (45) is in probability w.r.t. resampling replications.
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The main consequences of Proposition 8 are two. First of all, the estimator S2* is a consistent estimator

of the variance of H(ﬁH) In the second place, the confidence intervals
(O =0 PRE (= 0/2), O = n PRI (0)2)] (46)
PH — n_1/2za/2§*, O + n_l/zza/gg*] (47)

both possess asymptotic confidence level 1 — a as N and M increase.

8. Theoretical properties of calibrated pseudo-populations

In view of Proposition 6, all techniques to construct a pseudo-population are asymptotically equivalent,
provided that they satisfy conditions P1-P3 of Section 7.1. In this sense, in the present paper a unified
approach for resampling based on pseudo-populations is given. However in practical applications, i.e.
for finite n, a crucial aspect that would potentially affect the performance of resampling, is how the
pseudo-population is constructed. In the present section, theoretical properties of the (calibrated) pseudo-

populations introduced in Section 3 are studied.

8.1. Holmberg pseudo-population

N*HT is not generally equal

Holmberg pseudo-population has been introduced in Section 3.1. Its size
to N. However, the ratio N*7 /N tends in probability to 1 as N, n increase, as it may be easily
proved. Furthermore, HT pseudo-population satisfies the regularity conditions P1-P3, and hence the

resampling distribution of \/ﬁ(ﬂ(ﬁ}‘_}) — 0(F%.)) tends to the same limit as the sampling distribution of
V(0(F) - 0(Fy)).
8.2. Multinomial pseudo-population

Multinomial pseudo-population has been introduced in Section 3.2. The r.v. (N;MUL; j € s) possesses
a (conditional) multinomial distribution, with moments (4)-(6). Again, conditions P1-P3 are satisfied,
so that the resampling distribution of \/ﬁ(ﬁ(ﬁﬁ) — O(F%.)) tends to the same limit as the sampling
distribution of \/n(8(Fy) — 6(Fy)).

8.3. Conditional Poisson pseudo-population

The Conditional Poisson pseudo-population has been introduced in Section 3.3. It satisfies conditions

P1-P3, as established in the next proposition.
Proposition 9. The conditional Poisson pseudo-population satisfies conditions P1-P3.

As a consequence, the resampling distribution of ﬁ(@(ﬁ;}) —0(F%.)) tends to the same limit as the
sampling distribution of \/n(8(Fy) — 6(Fy)).
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8.4. Double-Calibrated pseudo-population

Double-Calibrated pseudo-population has been introduced in Section 3.4. The main result is in the next

proposition.

Proposition 10. The calibrated pseudo-population with replicates N;‘DC‘” that solves the optimization

problem (9) possesses the following property:

*DCal
Ni

i

Intuitively speaking, Proposition 10 tells us that as N, n increase, the solution of the optimization
problem (9) tends to coincide with NZ»*CP P Hence, for “very large” population and sample size, N;‘CP Py
can be taken as a good approximation of the actual solution of the optimization problem (9). Of course,

*DCal
Ni

this is only an asymptotic result, and for the use of “not too large” n, IV, the use of instead of

Ni*cp P could produce considerably different results in the resampling procedure.

8.5. Hot-deck pseudo-population

Hot-deck pseudo-population has been introduced in Section 3.5. It satisfies conditions P1-P3, as

established in the next proposition.

Proposition 11. If the pseudo-population is constructed via hot-deck imputation of ys values, then,
as n, N increase, the resampling distribution of \/ﬁ(e(ﬁ;,) — 0(F%.)) tends to the same limit as the
sampling distribution of \/ﬁ(O(ﬁH) —0(Fn)).

9. Simulation Study

Main goal of the simulation is to empirically evaluate the effects that different choices for constructing
the pseudo-population 5. (where resampling is actually performed) may have upon the accuracy of the
resulting inference in practical applications. The simulation has been designed by focusing on three key

points:

a) exploration of small to moderate n and N in order to highlight differences due to finite sizes as
well as to evaluate the asymptotic approximations provided in the first part of the present paper;

b) analysis of specific features of the pseudo-population U3 due to different construction choices;

¢) investigation of the statistical properties of the final estimates provided by resampling from different

pseudo-populations.

The simulated scenarios, parameters and estimators are summarized in Table 1.
In addition to the five strategies proposed in Section 3, the direct bootstrap (Antal and Tillé (2011))

is also considered in the simulation, since it is a recent competitor based on a non-predictive resampling
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approach. For the sake of comparability, the variates Y, X have been simulated under the same model

as in Antal and Tillé (2011). In more details, a finite population of size N was generated from the model
yi = (Bo+ Pra;? +oe) +c (49)

where z; = |j;| and j; ~ N(0,7), ¢ ~ N(0,1) and ¢ = 15. The model regression parameters are
Bo = 12.5, 1 = 3 and ¢ = 4000. As far as the inclusion probabilities are concerned, they are taken
proportional to the value of a variable Z, generated from the equation Z = Y9%2W where W has a

lognormal distribution (InN(u,o?)) with parameters i = 0 and o2 = 0.025.

Table 1. Simulated scenarios, population parameters and estimators

Scenarios

N =200, 400 n = (0.2N) = 40, 80

correlation between Y and X ~ 0.8

Parameters Hdjek Estimators HT Estimator

7]\1 :Zi\le yi/N ?H :25\’:1 Diﬂ';lyi/zlg\;l Dﬂl’[l VHT =Nt Zj\il Dz‘ﬂ';lyi
Qn(p) = inf{y : Fx(y) > p} Qu(p) = inf{y : Fu(y) > p}

with p = 0.5,0.75

Samples have been simulated under two different fixed size mps designs of increasing entropy: Pareto
sampling and (normalized) conditional Poisson sampling (CPS for short), this latter already mentioned
in Section 4 as a maximum entropy design. Notice that Pareto design is high entropy, although not
yet proved asymptotically maximum entropy; however it is heuristically recognized to be very close
to the asymptotically maximum entropy Rao-Sampford design (Bondesson et al. (2006), Lundqvist
(2007)). Moreover, unlike the CPS design, the Pareto sampling is very simple to implement, and can
be used in simple acceptance-rejection rules to produce CPS samples with a significant reduction of
computational burden. Simulation has been implemented partly in Mathematica code and partly in the
R environment. 1000 Monte Carlo (MC) runs, simulating the sample space, have been combined with
M = 1000 resampling runs from each generated sample. The M C' error deriving from these choices has
been controlled via the empirical bias of the (unbiased) Horvitz-Thompson estimator Y ur, and it has
been kept under 1% (relative to the true population mean Y).

Simulation results are gathered in Tables 2-5 where the simulated methods to construct the pseudo-
population are indicated by the following acronyms: HT illustrated in subsection 3.1; MUL for the
Multinomial pseudo-population in 3.2; C PP for the conditional Poisson pseudo-population in 3.3; DCal
for the double-calibrated pseudo-population in 3.4; HD for the hot-deck pseudo-population in 3.5; and
Dir for the direct bootstrap by Antal and Tillé (2011).
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Results in Table 2 offer indications about the ability of the pseudo-population U}. as a predictor of
the actual population Uy, according to key point b) above. Except for the direct bootstrap involving no
pseudo-population, it has been checked in two respects: i) the pseudo-population size N* and mean of
the auxiliary variable X* as predictors of (known) population N and Xy respectively, as measured via
empirical (relative) bias RB [N*; N] = 100 x [Eprc(N*) — N] /N (where Epj¢ indicates the average over
all the Monte Carlo runs and RB [)_( X N] follows accordingly); and i7) how able the pseudo-population
is to reproduce the actual p.d.f. as measured by the maximal MC value of the Kolmogorov statistic
maxysc sup,, |[Fa.(y) — Fn(y)|, y € R.

A clear connection appears between the conservation of both N and X and the ability of reproducing
the entire population d.f.: HD and DCal pseudo-populations emerge as the best performers, uniformly
in all the simulated scenarios. Also, this reflects on the ability of the resampling algorithm based on such

pseudo-populations, to reproduce the estimator distribution.
skl A BLEs 3 & 4 ABOUT HERE *#%kiorsosksosst koo tokoksfokokok

According to key point ¢) above, both kinds of confidence intervals (CI) illustrated in section 7 have
been simulated. Table 3 concerns CI (46) which basically correspond to bootstrap percentile method,
and Table 4 refers to CI (47). Performances at (nominal) confidence level 95% has been investigated
via empirical coverage (EC), with respect to the true population parameter, and average length (AL).
Notice that although the percentile method is the crudest available for producing CI via resampling,
we rate it appropriate for the goals of the present simulation because it allows the evaluation of the
ability of the resampling algorithm to produce p-values, and ultimately to reproduce the estimator
sampling distribution particularly in its tails. In Table 3 all the methods investigated for constructing
Uy« provide acceptable levels of empirical coverage based on the 0.025 and 0.975 percentiles of the
resampling distribution. Moreover they all tend to improve for increasing sizes N and n, as expected
according to asymptotic results in Section 7. However HD and DCal, which provide the best predictor
of Uy, also give the best coverage probabilities, uniformly in all scenarios simulated for both linear and
non linear estimators. Notably, H D shows the largest average lengths in addition to the largest empirical
coverages, which suggests a tendency to supply conservative CI.

A similar behaviour can be observed in Table 4, although the resampling plays here a minor role,
limited to the (point) bootstrap estimate (40) for the estimator variance then coupled with standard
normal distribution percentiles, also named bootstrap-t CI. Notice that this is also the method for interval
estimation suggested for the non-predictive direct bootstrap. However, Dir exhibits lower empirical
coverage probabilities than the predictive pseudo-population based methods, seemingly due to systematic
smaller lengths. The notable exception of DCal may be explained by its weaker ability to produce
accurate point bootstrap estimates than the other predictive methods simulated. Still HD emerges as

the best performer for uniformly giving the larger empirical coverages in all scenarios simulated and for
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maintaining its conservative peculiarity.

Finally, a popular property of the classic i.i.d. Efron’s bootstrap has been investigated, i.e. the ability
of the resampled distribution of an estimator of the population mean to match the (original) sample
mean as its empirical first moment. Such property, dubbed bootstrap unbiasedness, has been measured
by the (percentage) relative bias RB [é;‘n,é] = 100 x Eyc { [E*(é;“n) — é} /é} where E* indicates
the empirical average over the M resampling runs and by taking 6 =Y and é;,m =1---M as its
resampled distribution. Table 5 reports simulation results with respect to both Horvitz-Thompson and
Hajek estimation of population mean. Empirical evidence highlights that HT and Dir perform better
under the conventional Horvitz-Thompson estimation of linear parameters, as it is expected by their

construction.
kR kR A BLE 5 ABOQUT HERE *¥%%%sssssrkiikkkikkkkkk

As a final remark concerning the actual implementation of specific algorithms, note that all the
simulated populations have been checked to ensure m; < 1, ¢ =1, ..., N. However, for MUL it may
still occur 73 > 1 for one or more (sampled) unit &k included in the pseudo-population. This empirically
appears to be often the case as the number of MC runs increases. As a consequence, an ad hoc routine
has to be implemented on top of the resampling algorithm, aiming at including such units in each
bootstrap sample and sequentially recomputing the resampling inclusion probability until they are all
strictly smaller than 1, and by simultaneously reducing the (re)sample size accordingly (see, for instance,

Tillé (2006) for details).

10. Conclusions

In this paper a new class of resampling methods applying to non-i.i.d. finite population sampling
is proposed under a principled predictive approach. The proposed resampling unifies any method
based on pseudo-populations, i.e. according to the plug-in principle upon which the original Efron’s
bootstrap is based. A large sample theory is derived for the predictive resampling, in the Héjek finite
population asymptotic setup, and according to the classical asymptotics for i.i.d. bootstrap by Bickel and
Freedman (1981). It is also proved that all techniques producing the pseudo-population are asymptotically
equivalent, under mild regularity conditions.

In addition, five strategies for constructing the pseudo-population have been illustrated. Two of
them go back to results already appeared in the literature and the remaining three are new proposals
with improved performance, as shown in the simulation study. Empirical evidence confirms that how
to construct the pseudo-population is a crucial choice for small to moderate population and sample
sizes, under general sampling designs such as mps designs. As a general recommendation such choice

should be guided by enforcing the ability of the pseudo-population to be a good predictor of the actual
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population. The simulation study indicates the pseudo-population based on hot-deck imputation (H D)
as the soundest method, provided that auxiliary x;s values are available for all population units. When
x;s are known only for sample units, as it might be the case in applications, good results are offered
by a pseudo-population calibrated w.r.t. both the population size and the mean (total) of the auxiliary

variable (DCal), when combined with percentile confidence intervals.
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Table 2. Uy« as a predictor of Uy (N =200 400)

RBIX*;Xn] RBIN%N]  Supmc [Fa-(y) — Fn(y)]
PARETO sampling design

HT 0.03 0.04 -0.44 0.38 0.87 0.51
MUL 5.46 3.39 0 O 0.93 0.54
CPP 5.46 3.38 0 O 0.88 0.52
DCal 0.02 -0.02 0.003 -0.01 0.55 0.46

HD 0 O 0 O 0.47 0.37

CPS sampling design

HT -0.02 0.02 -1.05 -1.40 0.50 0.52
MUL 5.06 3.39 0 O 0.53 0.55
CPP 5.04 3.88 0 O 0.51 0.52
DCal 0.06 -0.04 0.04 -0.04 0.46 0.47

HD 0 o 0 o0 0.48 0.33

Table 3. 95% Resampling CI - percentile method (N =200 400)

PARETO % Qu(0.5) Qu(0.75)
EC AL EC AL EC AL
HT 0.89 0.90 0.23 0.17 0.88 0.91 0.33 0.22 0.91 0.93 0.37 0.28
MUL 0.87 0.89 0.23 0.17 0.67 0.79 0.33 0.14 0.82 0.79 0.38 0.28
CPP 0.89 0.90 0.23 0.17 0.89 0.92 0.33 0.22 0.92 0.94 0.38 0.29
DCal 0.95 0.95 0.24 0.18 0.95 0.97 0.33 0.23 0.95 0.95 0.39 0.30

HD 097 0.98 027 0.20 095 095 036 0.26 099 0.99 043 0.33
CPS
HT 0.90 0.91 0.24 0.17 091 0.92 033 0.22 090 0.93 0.38 0.29

MUL 0.89 0.92 0.24 0.17 0.73 0.81 0.34 0.22 082 0.79 0.39 0.29
CPP 090 0.90 024 0.17 091 0.92 034 0.22 091 0.94 0.38 0.29
DCal 096 0.96 025 0.18 098 0.97 034 0.23 095 0.94 040 0.30
HD 098 0.98 027 0.20 096 0.95 037 0.26 099 0.99 044 0.33
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Table 4. 95% Standard Normal CI with resampling variance estimate (N =200 400)

PARETO Y Qu(0.5) Qu(0.75)
EC AL EC AL EC AL
HT 0.90 0.91 0.24 0.17 0.90 0.91 0.36 0.24 0.93 0.91 0.40 0.30
MUL 0.90 0.91 0.24 0.17 0.89 0.92 0.36 0.24 0.92 0.91 0.41 0.30
CPP 0.91 0.92 0.24 0.17 0.89 0.92 0.36 0.24 0.93 0.92 0.40 0.30
DCal 0.84 0.86 0.25 0.18 0.85 0.89 0.38 0.25 0.88 0.90 0.43 0.33

HD 091 0.93 027 0.20 092 0.94 040 0.27 095 0.96 044 0.34
Dir 0.89 0.90 0.22 0.16 086 0.87 0.32 0.21 092 0.90 0.38 0.28
CPS

HT 091 0.91 024 0.17 0.89 090 037 0.24 092 0.90 0.40 0.30

MUL 0.90 0.92 0.24 0.17 0.89 0.92 038 0.24 090 0.90 0.41 0.31
CPP 0.91 0.92 0.24 0.17 090 0.91 0.37 0.24 092 0.91 0.40 0.31
DClal 0.85 0.87 0.25 0.19 087 0.87 039 0.25 0.89 0.89 0.44 0.33
HD 0.94 0.95 0.27 0.20 090 0.93 040 0.27 097 0.95 0.45 0.34
Dir 090 0.90 023 0.16 085 0.88 0.33 0.21 0.92 0.88 0.38 0.28

Table 5. Bootstrap-unbiasedness (N =200 400)

PARETO CPS

RB [YHT — YHT] RB [YH - YH] RB [Y/HT - YHT] RB [YH - Y/H}
HT 0.06 -0.16 087 0.72 20.16 -0.13 097 0.63
MUL 557 3.11 0.92 0.65 196 3.74 1.07 0.65
CPP 546 3.15 0.84 0.70 484 3.73 1.0l 0.64
DCal 1.66 1.12 2033 0.20 1.38 1.36 2034 -0.11
HD 317 2.07 0.35 0.59 255 2.27 034 0.28
Dir 001 -0.01 070 0.41 20.02 0.01 068 0.41
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