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ABSTRACT. Predictive models are sorely needed to guide the management of harvested natural resources worldwide, yet existing
frameworks fail to integrate the dynamic and interacting governance processes driving unsustainable use. We developed a new framework
in which the conflicting interests of three key stakeholders are modeled: managers seeking sustainability, users seeking increases in
harvest quota, and conservationists seeking harvest restrictions. Our model allows stakeholder groups to influence management
decisions and illegal harvest through flexible functions that reflect widespread lobbying and noncompliance processes. Decision making
is modeled through the use of a genetic algorithm, which allows stakeholders to respond to a dynamic social-ecological environment
to satisfy their goals. To provide the critical link between conceptual and empirical approaches, we compare predictions from our model
against data on 206 harvested terrestrial species from the IUCN Red List. We show that, although lobbying for a ban on resource use
can offset low levels of noncompliance, such bias leads to an increased risk of extinction when noncompliance (and therefore illegal
harvesting) is high. Management decisions unaffected by lobbying, combined with high rule compliance, resulted in more sustainable
resource use. Model predictions were strongly reflected in our analysis of harvested IUCN species, with 81% of those classified under
regulated harvest and high compliance showing stable or increasing population trends. Our results highlight the fine balance between
maintaining compliance and biasing decisions in the face of lobbying. They also emphasize the urgent need to quantify lobbying and
compliance processes across a range of natural resources. Overall, our work provides a holistic and versatile approach to addressing
complex social processes underlying the mismanagement of natural resources.
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INTRODUCTION
In the midst of the sixth mass extinction (Ceballos et al. 2017),
sustainable use of the world’s natural resources, including wildlife,
fish stocks, and timber, has become critical (Di Minin et al. 2019,
Ripple et al. 2019). Key to achieving sustainability is the
development of flexible quantitative models with which to
evaluate the consequences of alternative harvest management
scenarios, and in turn support decision making and policy
implementation (Shea and the NCEAS Working Group on
Population Management 1998, Schmolke et al. 2010, Bunnefeld
et al. 2017). Although there is now broad consensus that such
models should integrate both the social and ecological processes
inherent to resource management systems (Milner-Gulland 2012,
Sayles et al. 2019, Schlüter et al. 2019a, b), the resulting complexity
remains daunting (Folke et al. 2010, Bunnefeld et al. 2017). A
major challenge concerns how to best integrate governance
processes and human behavior into existing management models
in a way that optimizes predictive accuracy whilst minimizing
complexity (Müller-Hansen et al. 2017, Schlüter et al. 2019a,
Travers et al. 2019a), and improves applicability to a broad
spectrum of harvesting systems.  

Governance relates to the societal context and processes that
shape collective decision making and action (Bevir 2012). The
term governance is used very broadly across disciplines, but within
the context of natural resource use it typically describes the
interactive processes occurring among different stakeholders
through which decisions relating to resource harvest and
management are made (Lockwood et al. 2010, Cox et al. 2016).

Although collective governance, sometimes referred to as
comanagement, is often sought (Armitage et al. 2009), this is often
impeded by conflicts occurring among stakeholders with
diverging interests (Redpath et al. 2013, Orach and Schlüter 2016,
Bodin 2017, Cumming 2018), such as the exploitation versus the
conservation of a natural resource (Benítez-López et al. 2017).
Such conflicts are widespread and pose a major threat to the
sustainable use of natural resources worldwide. In spite of this,
our ability to integrate the governance processes through which
conflicts operate into existing sustainable management
frameworks is currently very limited.  

A common symptom of conflicts surrounding the use of natural
resources is illegal harvesting behavior, whereby resource users do
not comply with harvesting rules and regulations, e.g., quotas.
Although individual economic and social drivers of
noncompliance have received increased attention over the last
decade (Keane et al. 2008, Gavin et al. 2010, Solomon et al. 2015,
Duffy et al. 2016, Travers et al. 2019b), the behavior of resource
users in relation to other complex and dynamic governance
processes currently lacks theoretical and empirical support. One
such process is lobbying, through which interest groups seek to
directly influence management decision making to bias outcomes
in their favor (Baumgartner et al. 2009, Lute and Gore 2014, Meng
and Rode 2019). Lobbying may attempt to advance the interests
of natural resource users, for example, those of commercial
industries in the case of marketable natural resources (Murray
2003). It may also serve the interests of parties seeking to restrict
resource use, such as conservation organizations (Mace 2014,
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Adams 2017, Baynham-Herd et al. 2018, Challender and
MacMillan 2019). In this latter case, lobbying to impose
restrictions on the use of a natural resource could exacerbate
illegal harvesting pressure (Di Minin et al. 2016), particularly if
the resource is economically valuable, e.g. rhino horn (Biggs et al.
2013) or culturally important, e.g., agarwood from Aquilaria
sinensis (Chen et al. 2019). In turn, noncompliance with
harvesting rules may trigger more intense lobbying, not only from
conservation interest groups, but also from resource user groups
that do harvest legally, thereby creating feedback processes
affecting resource management. Yet, despite the huge potential
for the combined and interlinked effects of conflict,
noncompliance, and lobbying to destabilize sustainable natural
resource use, no modeling frameworks, to our knowledge, have
explicitly accounted for them.  

State-of-the-art modeling frameworks to optimize natural
resource management have been particularly well developed in
the context of commercial fisheries, where harvest allocation is
typically based on close monitoring of fish stocks and catches
(Audzijonyte et al. 2019). One such framework, known as
management strategy evaluation (MSE; Smith et al. 1999, Punt
et al. 2016, Stephenson et al. 2017), enables the entire management
system, including stock dynamics and monitoring, management
decisions, and harvesting activities, to be simulated in search of
a strategy that best addresses management objectives. A key
feature of MSE is its ability to explicitly model the uncertainty
surrounding individual management components (Milner-
Gulland and Shea 2017), such as stock stochasticity, monitoring
error, decision biases, or illegal behavior by harvesters. Using a
fisheries example, Armitage et al. (2019) recently advocated the
widespread integration of governance processes into MSE
frameworks, highlighting in particular the existence of decision-
making thresholds (Harford et al. 2016).  

In contrast, the development of flexible, MSE-based frameworks
encompassing more realistic processes of decision making and
human behavior has been largely absent from terrestrial
harvesting systems (Bunnefeld et al. 2011, Bunnefeld and Milner-
Gulland 2016, Moa et al. 2017). Indeed, modeling frameworks to
date have focused disproportionately on the ecological dimension
of terrestrial harvesting systems (Gamelon et al. 2019), such as
the development of elaborate population and community
response models, e.g. to trophy hunting (Whitman et al. 2007,
Loveridge et al. 2016) or the assessment of harvest-induced
evolution (Kuparinen and Festa-Bianchet 2017). Although often
presented within an adaptive management framework (Kolbe et
al. 2017, Andrén et al. 2020), these approaches tend to overlook
how the implementation of management decisions can be
perturbed by conflicts of interest. Predictive models that can
include these governance processes are now sorely needed to guide
the management of terrestrial harvesting systems (Bunnefeld et
al. 2011, 2017, Dobson et al. 2019), in which mismanagement and
overharvesting have become widespread (Díaz et al. 2019).  

In this study, we develop a flexible and widely applicable form of
MSE model in which the interests of three different stakeholders
are considered: managers seeking sustainability, users seeking
increases in quota, and conservationists seeking harvest
restrictions. All stakeholder groups are able to influence
management decisions and users can harvest illegally through the

implementation of flexible and dynamic functions that govern
lobbying and noncompliance processes. Unlike typical MSE
models that represent human behavior through scenario-based
and static actions, we optimize decision making through the use
of a genetic algorithm, which allows stakeholders to respond to
a dynamic social-ecological environment to satisfy their
(potentially divergent) goals. Using this modeling framework, we
first derive general predictions regarding natural resource
management sustainability in the presence of stakeholder
conflicts. We then demonstrate the ability of our model to predict
population trend patterns observed across a range of harvested
vertebrate species from terrestrial systems. By combining existing
aspects of MSE models with functions describing governance
processes driven by conflicting stakeholder goals, our framework
enables comparison of management strategies within a more
realistic and dynamic social-ecological setting.

METHODS

Modeling framework
Management strategy evaluation models typically comprise four
submodels, each representing one component of the management
system (Fig. 1a; Bunnefeld et al. 2011, Punt et al. 2016). In most
cases, a population submodel, which simulates the dynamics of
the natural resource population under harvest, produces a “true”
value of resource abundance at time step t. A monitoring
submodel subsequently simulates an observation process through
which an estimate of resource abundance, along with associated
uncertainty, is obtained. This estimate is then passed on to a
manager submodel, whose role is to turn the observation into a
harvesting policy that is aligned with the manager’s objective (also
called a performance metric). The resulting policy is then acted
on by a harvesting submodel, which determines the final off-take
from the resource population. This cycle can be repeated over a
desired number of time steps, thus enabling dynamic processes to
be considered when predicting management outcomes over both
short and long time frames.  

For the purpose of this study, the population submodel consists
of a simple discrete logistic resource growth model of the form, 
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in which N(t) is the resource population size at time t, K its
carrying capacity, r(t) its growth rate at t, and H(t) the total
harvest at t (combining legal and illegal off-takes, see below).
Stochasticity is included in the model by sampling from a normal
distribution with mean r (the intrinsic growth rate of the
population) and standard deviation σ. We further assume that the
observation process as implemented within the observation
submodel bears no error, i.e., the resource population size is
estimated perfectly by the manager.  

The observed resource population size N(t) is passed on to the
manager submodel, whose role is to enact a harvesting quota Q
(t) that best minimizes deviations from the manager-specific
target abundance (NM). We choose here to focus on resource
abundance as a performance metric because it is a common
benchmark in the management of harvested species (Sanderson
2006, Serrouya et al. 2011, Blanchard et al. 2014), but also because
it facilitates understanding of our model. Choice of harvest quota
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Fig. 1. Overview of the generalized management strategy evaluation (GMSE) approach used in this study.

by the manager is implemented using a genetic algorithm that
finds an adaptive, but not necessarily optimal, policy, thereby
mimicking a goal-oriented process prone to human error (see
Duthie et al. 2018 for more details). The resulting quota is then
transferred to the harvest submodel, which also calls a genetic
algorithm to determine a harvest that minimizes deviation from
a user-specific target abundance (NU) whilst taking into account
varying levels of user budget (Appendix 1, Fig. A1.1).

Simulating conflict
Conflict within our MSE model can be conceptualized as
assigning different objectives between manager and users with
respect to N(t), which the relevant submodels then attempt to
optimize. To increase realism, however, we also include another
key actor, conservation groups, whose primary interest in
management scenarios is often to promote protection of the
resource by restricting harvest. In particular, such groups may
impose considerable pressure on decision makers in the form of
lobbying (Sandbrook 2017). More specifically, we assume that (i)
managers aim to maintain a sustainable population of a given
natural resource over the period of management, i.e., achieve an
average growth rate of zero, (ii) user groups seek unregulated
harvest of the resource, prioritizing year on year versus long-term
harvest, and (iii) conservation groups seek to ban harvesting
altogether (Aryal et al. 2018), enabling the resource population
to grow to carrying capacity. The objectives of users and
conservationists represent opposed extremes, which is useful for
conceptualizing conflicts related to natural resource use (Redpath
et al. 2013). We note, however, that these can be adapted to any
scenario at hand.  

In the following sections, we detail how stakeholders in our model
attempt to meet their respective objectives. To do this, we define

two metrics that underlie levels of lobbying and illegal harvesting.
The first is decision-making bias, defined as whether management
decisions are biased in favor of user or conservation interests. The
second is user compliance with harvesting rules, which governs
the level of illegal harvesting. We note that our approach does
not distinguish between the different drivers of user compliance,
such as increased enforcement or monetary incentives (Cooney
et al. 2017), but instead serves as a general model of behavioral
change.

Lobbying function
In the model, decision making by the manager can be affected by
a lobbying process representing pressure from either conservation
or user interest groups (Fig. 1b and c, respectively). Lobbying
pressure at time t represents the probability that the manager will
disregard the original, unbiased quota derived from the genetic
algorithm, i.e., Q(t), and instead allow either unregulated
harvesting (under user lobbying) or ban harvesting altogether
(under conservationist lobbying). For simplicity, decision-making
biases as a result of user and conservationist lobbying are
simulated separately.  

For conservationists, the probability of successful lobbying for a
harvesting ban is modeled as a function of how far the observed
resource abundance is from the stated conservation target (NC)
and of fixed levels of decision-making bias (IC) toward
conservation interests. IC can be varied between IC = 0 (manager
completely biased) and IC = 1 (manager completely unbiased).
We further assume that lobbying pressure is nonexistent when N
(t) ≥ NC, but expect it to increase exponentially as the resource
population approaches extinction (N(t) → 0). Thus, the
probability of successful lobbying for a harvesting ban by
conservation groups is defined as follows,

https://www.ecologyandsociety.org/vol25/iss2/art13/
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Q'(t), which represents Q(t) postlobbying, is then determined
using a single Bernouilli trial X(t)~B(1,ΦConservation(t)) such that
if  X(t) = 0, Q'(t) = Q(t), and if  X(t) = 1, Q'(t) = 0.  

For users, the probability of successful lobbying for unregulated
harvest is modeled as a function of how far the observed resource
abundance is from the stated user target (NU) and, similarly to
conservation lobbying, decision-making bias toward user
interests (denoted as IU). We further assume that lobbying
pressure is nonexistent when N(t) ≤ NU, but expect it to increase
exponentially as the resource population approaches carrying
capacity (N(t) → K). Thus, the probability of successful lobbying
for unregulated harvest by user groups is defined as, 
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As above, Q'(t) is then determined with a Bernouilli trial X(t)~
B(1,ΦUser(t)), such that if  X(t) = 0, Q'(t) = Q(t), and if  X(t) =
1 then Q'(t) = Hmax(t), where Hmax(t) is the maximum number of
individual resources that can be harvested at time t given the user
budget BU(t) and minimum cost of a harvest cmin, i.e., 
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Q'(t) subsequently determines how many units of the resource
population the user can harvest legally. Both NC and NU can be
varied between zero and K, the resource population carrying
capacity.

Illegal harvesting function
The user can then choose to either implement the legal quota or
harvest illegally, depending on which option maximizes harvest
(Fig. 1d). In a similar way to lobbying, illegal harvesting pressure
represents the probability that the user will successfully remove
one unit from the resource population, and is defined as, 
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E is user compliance with harvesting rules and is varied in
simulations from E = 0 (no compliance) and E = 1 (complete
compliance). A hypothetical illegal harvest, Y(t), is then derived
from a Bernouilli trial Y(t)~B(Hmax,Ψ(t)). The user then
implements a final harvest H(t), defined as the maximum of
either Q'(t) or Y(t).

Simulation and statistical analysis
Model simulations were carried out in R (version 3.4.3) using the
package GMSE (version 0.4.0.11; Duthie et al. 2018). The R code
used to produce simulations is provided in Appendix 2, and the
definition and values for set and derived parameters are presented
in Appendix 3, Table A3.1. Resource population size at t = 0 was
set to 1000 units and the carrying capacity at 2000. We ran
simulations for three values of r—0.1, 0.2, and 0.3 (with σ = r/10

in all cases)—because these represented a range of commonly
measured intrinsic growth rates in the harvested species
considered in our empirical analysis (see below; Sibly and Hone
2002). We varied decision-making bias (I, separately for
conservation and user groups) and user compliance levels (E) to
control lobbying and illegal harvesting levels during each time
step, respectively. For each combination, we ran 100 management
iterations, each lasting 10 time-steps, i.e. years. We chose to carry
out simulations over 10 time steps because this was representative
of real-world management plans. In all simulations, the minimum
cost of a harvest (cmin) was set to 10, the manager budget to 10,000,
and the user budget was varied between 5000 and 10,000 (see
Appendix 1, Fig. A1.1). Management effectiveness was assessed
as the mean resource population growth at time step 10 across
iterations. We then modeled management effectiveness as a
function of decision-making bias and user compliance using
generalized additive models (GAMs) with tensor product
smooths (R package mgcv). We present our findings in the form
of 2-dimensional contour surfaces.  

As a control, we ensured that in the absence of disagreement
among manager, user, and conservation objectives, the simulated
resource population is managed effectively regardless of decision-
making bias and user compliance levels. This was done by setting
user, conservationist, and manager targets to 1000 resource units.

Application to harvested species
We compared predictions from our model against data on 206
terrestrial harvested species from the International Union for the
Conservation of Nature’s (IUCN) Red List of Threatened
Species. We considered species belonging to the orders
Anseriformes (geese and ducks, N = 37), Cetartiodactyla (even-
toed ungulates, N = 90) and Carnivora (carnivores, N = 79)
because these are commonly targeted by subsistence, recreational,
and trophy hunting activities globally (Di Minin et al. 2019, Hill
et al. 2019).  

Using the “advanced search” option on the IUCN Red List web
site (https://www.iucnredlist.org/), we filtered species by criteria
relating to Taxonomy (“Anseriformes,” “Cetartiodactyla,” and
“Carnivora”), Red List Category (“NT or LR/nt” and “LC or
LR/lc”), and Threats (“Intentional use (species is the target)”).
We only considered species listed as Least Concern or Near
Threatened so as to minimize confounding factors associated with
threat status. Filtering resulted in a total of 206 species to which
the classification of decision-making bias and user compliance
shown in Appendix 4 (Fig. A4.1) was applied. More specifically,
we classified each species according to (1) its stated population
trend at the latest assessment (decreasing, stable, or increasing),
(2) the type of harvesting it was most commonly under
(unregulated, regulated, or banned), and (3) the level of illegal
harvest most commonly reported for a population (low, medium,
or high). We then used population trend as a measure of
management outcome, harvesting type as a measure of decision-
making bias (with unregulated and banned taken to reflect pro-
user and pro-conservation biases), and illegal harvest level as a
measure of user compliance. Classifications were carried out by
two of the authors and subsequently compared to ensure
consistency.  

We derived the proportion of species showing a decreasing, stable,
and increasing population trend for each of the different
combinations of decision-making bias and user compliance. We
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also modeled population trend as a function of the interaction
between decision-making bias and user compliance using a
generalized additive model with Gaussian error structure and
tensor product smooth. This resulted in an interpolated surface
showing mean population trajectory (from -1 to 1) as a function
of decision-making bias and user compliance classifications.

RESULTS

Model predictions
When simulated manager, user, and conservation objectives were
identical, reflecting perfect agreement on target abundance for
the harvested resource, mean population growth remained stable
and on target over the course of 10 management years (Fig. 2).
This parameterization is important because it verifies that the
genetic algorithm is operating as intended by producing expected
results of optimal (or near-optimal) harvest decisions over both
short and long time frames. It also reflects a null model of effective
management in the absence of conflicting stakeholder objectives,
against which the effect of lobbying and illegal harvesting can be
compared.

Fig. 2. Mean population growth over a 10-year management
period as a function of decision-making bias and user
compliance when manager, users, and conservationists agree on
the management target. Decision-making bias ranges from
entirely pro-user (-1, harvest is always unregulated) to pro-
conservation (+1, harvest is always banned), with 0
representing a scenario in which manager quota decisions
cannot be lobbied. When user compliance is 0, users will always
partake in illegal harvesting while a value of 1 ensures users will
fully comply with the quota put forward by the manager
(postlobbying). Each point represents the mean population
growth across 100 iterations. The surface represents predictions
from a generalized additive model with decision-making bias
and user compliance specified as tensor product smooths.
Overall, the management target of maintaining a stable
population trend is achieved for all combinations of decision-
making bias and user compliance.

In the presence of conflicting stakeholder objectives, we find that
management outcome is shaped by the interaction between
decision-making bias and user compliance levels (Fig. 3). We
make five predictions from our model. First, when lobbying has
no effect on management decisions, a stable resource abundance
is only achieved at high levels of user compliance (Fig. 3; I = 0
and E = 1). Second, as compliance decreases from high to
moderate levels, i.e., increasing illegal harvest, stable and
increasing resource population trends are possible to maintain if
decision making by the manager is biased toward conservation
objectives (Fig. 3; I > 0 and E > 0.5). Third, the combination of
bias toward conservation objectives and low user compliance
leads to both an increased risk of negative population growth
rates and an increased probability of extinction (Fig. 3; I > 0 and
E < 0.5). This arises because such decision making leads to a
higher likelihood of harvesting being banned and consequently
higher resource abundance, to which users respond by increasing
illegal harvesting pressure when compliance is low. Fourth, as user
compliance tends toward minimum levels, negative growth rates
occur regardless of bias in decision making, although they are
less severe if  decision making is unaffected by lobbying (Fig. 3;
cases when E < 0.5). Last, when management decisions are biased
toward user interests, population abundance declines over the
course of the management period (Fig. 3; cases when I < 0). In
this case, compliance has little effect because lobbying already
satisfies user interests. Importantly, these predicted patterns of
management outcome were not sensitive to choice of resource
population growth rate (Appendix 5, Fig. A5.1).

Application to harvested species
Of the 206 species considered, 26 (12.6%) showed an increasing
population trend, while 61 (29.6%) and 119 (57.8%) exhibited
stable and decreasing trends, respectively. The proportion of
species showing a stable population trend was highest when user
compliance was high (Fig. 4a-c, Appendix 6, Table A6.1), and
particularly when harvest was regulated (47% stable trends), a
finding that is consistent with our model results (Fig. 3). Species
showing increasing population trends were most strongly
associated with high compliance (23 out of 26 species), and either
regulated (16 out of 23 species) or banned (5 out of 23 species)
harvesting. Eighty-one percent of the species classified under
regulated harvest and high compliance showed stable or
increasing population trends.  

In contrast, species populations were overwhelmingly decreasing
when compliance with harvesting rules was low, regardless of
decision-making bias (Fig. 4g-i). This mirrors the dominant effect
of changes in illegal harvesting over lobbying in driving resource
mismanagement, which our model also predicts. As user
compliance decreased from high to low, however, species were
more likely to exhibit stable and increasing population trends
when harvest was characterized as regulated rather than
unregulated or banned. Overall, predictions from our theoretical
model were strongly correlated with those obtained from
empirical data (Pearson's correlation corrected for autocorrelation: =
0.897, P < 0.05 for a simulated intrinsic growth rate of rmax =
0.1; = 0.853, P < 0.05 for rmax = 0.2; and = 0.821, P < 0.05 for rmax 
= 0.3, respectively; Appendix 7, Fig. A7.1).
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Fig. 3. Mean population growth (a) and extinction probability (b) over a 10-year management period as a function of management
decision-making bias and user compliance with harvesting rules. Panels in (c) relate to different areas of the model prediction
surfaces, and illustrate time series of resource abundance, original quota put forward by the manager, modified quota as a result of
lobbying, and final harvest including legal and illegal off  takes for different combinations of decision-making bias and user
compliance. Decision-making bias ranges from entirely pro-user (-1, harvest is always unregulated) to pro-conservation (+1, harvest
is always banned), with 0 representing a scenario in which manager quota decisions cannot be lobbied (red dashed line). When user
compliance is 0, users will always partake in illegal harvesting, while a value of 1 ensures users will fully comply with the quota put
forward by the manager (postlobbying). The 2D contour surfaces were obtained from generalized additive models with decision-
making bias and user compliance specified as tensor product smooths. Results are shown for a simulation in which the intrinsic
growth rate of the harvested population was 0.2 and the carrying capacity was 2000 individuals.

DISCUSSION

Modeling dynamic governance processes
Our work provides a holistic and versatile resource management
framework that accounts for dynamic governance processes such
as conflict, lobbying, and rule compliance. It highlights the
complex interaction between lobbying and compliance in the
presence of conflicts, and its substantial influence on the
sustainability of natural resource use. Most notably, we find that
lobbying for management decisions that favor conservation
interests can offset medium levels of user noncompliance. Yet this
comes at a risk of increased sensitivity to further reductions in
user compliance, which results in higher probabilities of resource

extinction relative to scenarios in which management decision
making is unbiased. These theoretical predictions are well
supported in real-world systems. Indeed, there is increasing
evidence in the scientific literature that outright harvest bans can
lead to increased levels of illegal harvest (Di Minin et al. 2016,
Raithel et al. 2017). For example, bans on trophy hunting imports
and activities without provision of viable land-use alternatives
can lead to a rise in unregulated killing of wildlife (Lindsey et al.
2017, Dickman et al. 2019).  

We also demonstrate the critical effect of changes in user
compliance on sustainable resource use. Both our theoretical
modeling and empirical analysis show that, when management
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Fig. 4. Proportion of harvested IUCN Red List species with declining, stable, or increasing population trends for different
combinations of decision-making bias and user compliance (panels a-i). N indicates the sample size for each combination. The 2D
contour surface represents the interpolated mean population trend across harvested species (-1 = decreasing, 0 = stable, 1 =
increasing) for varying levels of decision-making bias and user compliance, and was obtained from a generalized additive model
with decision-making bias and user compliance specified as tensor product smooths. The location of letters placed on the prediction
surface relate to data shown in panels (a) to (i).

decisions are unbiased, stable resource trends are most likely to
be achieved when compliance is high. This finding may seem
obvious, but broad consensus between conceptual models and
empirical approaches that encompass a range of species and
incorporate the link with lobbying has been lacking (Travers et
al. 2019b). The pattern we observe arises because user actions
have a direct effect on the resource population, whereas lobbying
targets decision making by the manager. In other words, users
have the “final say” on what harvest will be implemented in a
given time step (Eriksen et al. 2018, Shirley and Gore 2019), thus
emphasizing their potential power to drive resource populations
trends. Increasing user compliance with harvesting rules should
therefore be a priority when seeking to sustainably manage natural
resource use. This could be achieved through increased
enforcement or by reducing demand (Holden et al. 2019) and
implementing bottom-up approaches to management (Duffy et
al. 2016, Cooney et al. 2017), such as the development of
comanagement plans that bring together all parties in search of
an agreement on management targets prior to actions being
carried out (Armitage et al. 2009, Young et al. 2016, Redpath et
al. 2017). Our model parameterization in which all parties agree
on a population target demonstrates the value of compromise in
achieving sustainable natural resource use.

Application to real-world harvesting systems
Our theoretical predictions provided a strong quantitative match
to those obtained from our analysis of IUCN red list data, thus
demonstrating the broad applicability of our approach. Yet the
importance of considering the interaction between decision-
making bias and user compliance can also be emphasized through

a more qualitative assessment of real-world case studies. Many
ungulate and carnivore species are killed illegally in response to
crop damage or livestock depredation, respectively, leading to
declining populations despite high levels of international and
national protection (Soofi et al. 2019). For example, Suutarinen
and Kojola (2017) show how the illegal hunting of protected grey
wolves (Canis lupus) in Finland increases with population size and
strongly regulates population trends, despite the existence of
“exceptional permits” to hunt wolves that cause damage to
livestock. Here, strong protection laws that have enabled the wolf
population to grow may have also influenced rates of illegal
harvesting. In this case, our model could help highlight the
damaging effect of conflict on sustainable management, and
adjust legal harvest quotas based on quantified or expected rates
of illegal harvesting, i.e., compliance.  

Similarly, many species of herbivorous waterfowl in Europe and
North America have experienced exponential increases in
population size partly because of pro-conservation, protective
legislation and high user compliance, yet this trend has started to
occur at the detriment of agricultural crop production on which
these species have become reliant (Lefebvre et al. 2017, Cusack et
al. 2019). On the island of Islay in Scotland, legal harvesting of
the wintering Greenland Barnacle Goose (Branta leucopsis)
population, a species protected under EU law, has now been
enforced because of lobbying pressure from agricultural interest
groups, whose livelihoods are affected by goose grazing and
damage to livestock pastures (McKenzie and Shaw 2017).
However, the lack of evidence-based decision making relating to
hunting quotas has been criticized by conservation organizations,
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which have brought forth lawsuits in an attempt to minimize
culling. Although recent work has been used to derive more
sustainable harvesting quotas based on the GMSE approach
(Bunnefeld et al. 2020), it remains unclear how lobbying by both
conservation and agricultural interests will affect manager
decision making. Our approach could contribute to evidence-
based decision making to minimize the risk of conflict escalation
and dangerous tipping points in goose population trends due to
overharvesting.  

The relevance of our model goes beyond the orders considered in
our IUCN analysis. The management of populations of birds of
prey, for example, is also prone to conflict and governance issues.
In the UK, the Hen Harrier (Circus cyaneus) is of high
conservation concern and, although strictly protected, its
population continues to be heavily impacted by illegal killing
(Ludwig et al. 2017). Hen Harriers prey on Red Grouse (Lagopus
lagopus scotica), a species whose populations and moorland
habitat are intensively managed for shooting. The protection of
the Hen Harrier is viewed as a threat to the Red Grouse shooting
industry, resulting in widespread illegal killing of the raptor
species on grouse moors (Murgatroyd et al. 2019). Here, our
model could help explore how a healthy Hen Harrier population
could be achieved despite conflicting stakeholder population
targets, low compliance, and strong conservation pressure to ban
legal harvesting (Redpath and Thirgood 2009).

Model assumptions and limitations
Our approach aims to portray the functioning of complex and
dynamic harvesting systems often characterized by high levels of
uncertainty (Bunnefeld et al. 2011). In doing so, we have made a
number of assumptions about the ecological and social
components of these systems. In a first instance, we have
implemented a simple logistic population growth model to define
the general trajectory of resource abundance. Such a model
provides a heuristic platform on which to evaluate population
trends whilst minimizing biological complexity (Milner-Gulland
2011). We stress that the GMSE approach used in this study also
enables the application of more elaborate resource growth models
(see Duthie et al. 2018), which may be better suited to particular
case studies, such as a population of a species in a given area, or
be parameterized to include more or less demographic and
environmental stochasticity (Fryxell et al. 2010, Milner-Gulland
2011). Like the assumption of perfect observation, an unlikely
characterization of real-world systems, the simplicity of our
population model allows us to isolate the effect of governance
processes above and beyond structural and measurement
uncertainties (Bunnefeld et al. 2011).  

Our approach employs a genetic algorithm to optimize goal-
oriented quota decision making, which provides a more rapid
alternative to a trial and error method whereby a range of quota
levels are tested sequentially (Duthie et al. 2018). Although the
resulting quotas are derived with a level of variation that is
realistic of management decisions, this variation remains random
and we do not explicitly model the mechanisms driving decision
making for a given manager, e.g., inherent biases. Similarly,
subsequent lobbying actions, i.e., external pressures, affect the
decision provided by the genetic algorithm, but not the simulated
selection process itself. Even though our goal-oriented decision
makers in the model do not reflect the entire complexity of people

in the real world, our approach represents an important step
forward compared to error-free and static decisions used in more
standard harvesting models (Dobson et al. 2019).  

Despite their evident potential for influencing sustainable use,
reliable measures of decision-making bias and its relationship
with lobbying pressure, as well as of user compliance, are sorely
lacking for most harvested species. For instance, the link between
social norms and illegal behavior has received little attention in
the literature (Nyborg et al. 2016). Although the simulations
presented here assume both lobbying pressure and illegal
harvesting increase exponentially as resource abundance deviates
from a stakeholder’s goal, these functions should be modified and
parameterized based on available real-world data or more detailed
qualitative assessments of social norms and values. Last, our
approach makes the key assumption that resource user behavior
is driven by a desire to maximize harvest in the short term given
a resource abundance goal, i.e., economic gain. Although this
extreme is used to illustrate the breadth of our approach, we
acknowledge that many factors, such as cultural norms and
traditions, can promote self-sustaining harvesting systems
(Ostrom 2009, Struebig et al. 2018). We note that, as a start, our
approach can accommodate social norms by allowing the goal of
resource users to be greater than population extinction, indicating
a desire to maintain abundance in the long term.

CONCLUSION
Although MSE models are often tailored to specific case studies,
our analysis reveals general patterns across theoretical and
empirical analyses. Specifically, although lower compliance may
be offset by increased decision bias toward conservation goals,
extinction risk increases when high levels of such bias are
combined with low user compliance. In addition, management
decisions free from any influence of lobbying can only successfully
achieve sustainable harvesting given low levels of illegal
harvesting and thus buy-in from stakeholders. Given this
balancing act, there is an urgent need for management approaches
that address the underlying social conflicts over the sustainable
use of biodiversity. Such approaches should seek where possible
to promote consensus between stakeholders on population
targets, for instance by investing in detailed assessments of the
views and needs of each interest group, and their overlap. In cases
where consensus proves challenging to achieve, our modeling
approach could help simulate and predict how the resulting
governance processes through which divergence is expressed
could affect the sustainability of harvested populations. In turn,
this would allow management decisions to anticipate the effects
of potential lobbying and noncompliance. Importantly, use of
the proposed approach need not be restricted to natural resource
management. Indeed, individual responses (including compliance)
to conflict, policy, and lobbying are of high relevance to issues
such as climate change mitigation (Chakra et al. 2018) and
sustainable wildlife trade (Nuno et al. 2018), in which the power
of consumers (of carbon and wildlife, respectively) is likely to be
high.

Responses to this article can be read online at: 
http://www.ecologyandsociety.org/issues/responses.
php/11552
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Appendix 1 

Manager and user budget choice 

 

The observed resource population size is passed on to the manager sub-model, whose 

role is to enact a harvesting quota that best minimizes deviations from the manager-

specific target abundance. Choice of harvest quota by the manager is implemented 

using a genetic algorithm that finds an adaptive – but not necessarily optimal – policy, 

thereby mimicking a goal-oriented process prone to human error (see Duthie et al. 

2018 for more details). The resulting quota is then transferred to the harvest sub-

model, which also calls a genetic algorithm to determine a harvest that minimizes 

deviation from an user-specific target abundance whilst taking into account varying 

levels of user budget/ 

 

In the GMSE framework, both manager and user actions are constrained by their 

respective budgets (Duthie et al. 2018). A high budget for the manager increases the 

range of quotas they can set, and therefore enables them to exert more control on 

population management. In contrast, the user budget defines the maximum harvest 

that can be obtained by the user in the absence of management. When the user budget 

is high but the manager budget is low, the user is able to remove more animals from 

the population as the manager is unable to set a high enough quota.  

 

Although interesting in their own right, scenarios in which the manager is unable to 

control the user, or in which the user is unable to fulfil the quotas set by the manager, 

would consistently lead to over- or under-exploitation of the wildlife population, 



respectively. Our focus in this study is to instead consider scenarios in which both 

manager and user possess the means to effectively manage the wildlife population. 

This enables us to focus on quantifying how, and to what extent, conflicting 

objectives prevent the attainment of management targets that would otherwise be met. 

This requires selecting values for manager and user budgets that enable a given target 

to be met in the absence of perturbations caused by potential disagreements. 

 

To evaluate the influence of manager and user budgets on management outcomes, we 

carried out simulations in which both budgets were varied between 0 and 10,000. For 

each budget combination we ran 10 management time steps and recorded wildlife 

population size at the final time step. Simulations were carried out with µ set to 0.2, K 

to 2000, and population target to 1000 individuals.  

 

When user budget is low, the wildlife population grows beyond the population target 

to carrying capacity regardless of manager budget (Fig A1.1). This reflects a situation 

in which even the maximum possible harvesting capacity is insufficient to prevent a 

managed population from growing. In contrast, when manager budget is low and the 

ability of the user to affect the wildlife population increases, extinction becomes more 

likely. This illustrates a situation in which a manager cannot control a highly effective 

harvesting strategy. This could occur, for example, if the manager repeatedly under-

estimated harvesting power.  



 

Fig. A1.1. Natural resource abundance observed as a function of user and manager budgets in the 

absence of conflict over management objectives. Dots denote resource abundance during the final 

management time step for each iteration of a user and manager budget combination. The fitted surface 

was obtained from a Poisson generalized additive model with a smooth tensor product representing the 

interaction between user and manager budgets. The surface colours are indicative of natural resource 

abundance (red = under-exploitation; green = target; blue = over-exploitation). The management target 

remained constant at 1000 individuals across the different combinations of user and manager budget. 

The natural resource population followed a logistic growth with an intrinsic growth rate of 0.2 and a 

carrying capacity of 2000 individuals. 

 

Most importantly, we find that the management target can be achieved only for a 

subset of all manager and user budget combinations. In theory, any combination 

belonging to this subset will result in effective management in the absence of external 

perturbations. Based on these results, we chose to vary user budget each management 



year between 5,000 and 10,000, while maintaining the manager budget at 10,000. 

This accounts for stochastic fluctuations in user budget that may affect harvesting 

capacity. 
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Appendix 2 

R code to simulate natural resource management in the presence of conflict, lobbying 

and non-compliance. 

 

Below we provide an annotated R script that can be used to replicate the simulations 

presented in this study.  

 

The only R package required to run a simulation is GMSE (Duthie et al. 2018). 

 
require(‘GMSE’) 
 
 

The following values can be varied to test the effect of target, budget, decision-

making bias and user compliance on management outcome: 

 
M.TGT = 1000                # Manager target 
U.TGT = 0                   # User target 
C.TGT = 2000                # Conservationist target 
 
MB = 10000                  # Manager budget 
 
decision.bias = 0           # Decision bias level 
user.compliance = 0         # User compliance level  
 
nsteps = 10                 # Number of time steps 
minc = 10                   # Minimum cost of an action 
 

 

The following functions define the population growth model, the observation model, 

lobbying pressure by users and conservationists, and illegal harvesting pressure by 

users. 

 
### Population growth model 
 
pop_model <- function(X, 



                      K, 
                      ig){ 
  Xn <- 
round((X*K*exp(rnorm(1,ig,ig/10)))/(K+X*(exp(rnorm(1,ig,ig/10))-1))) 
  return(Xn) 
} 
 
### Observation model 
 
obs_model <- function(resource_vector){ 
 X_obs <- resource_vector 
 return(X_obs) 
} 
 
### Conservation lobbying function 
 
ClobbyingF <- function(bias_level, 
                       conservation_target, 
                       population_size){ 
  if (population_size > conservation_target){ 
    res <- 0 
  } 
  else{ 
    res <- ((((1-
bias_level)+1)^(1/conservation_target))^(conservation_target-
population_size))-1 
  } 
  return(res) 
} 
 
### User lobbying function 
 
UlobbyingF <- function(bias_level, 
                       user_target, 
                       population_size, 
                       carrying_capacity){ 
  if (population_size < user_target){ 
    res <- 0 
  } 
  else{ 
    res <- ((((1-bias_level)+1)^(1/(carrying_capacity-
user_target)))^(population_size-user_target))-1 
  } 
  return(res) 
} 
 
### Illegal offtake function 
 
IllegalHarvestF <- function(compliance_level, 
                            user_target, 
                            population_size, 
                            carrying_capacity){ 
  if (population_size < user_target){ 
    res <- 0 
  } 
  else{ 



    res <- ((((1-compliance_level)+1)^(1/(carrying_capacity-
user_target)))^(population_size-user_target))-1 
  } 
  return(res) 
} 
 

 

Population parameters are set to: 

Kk = 2000                   # Wildlife population carrying capacity 
rmax = 0.2                  # Wildlife population intrinsic growth 
rate 

 

The code below runs one management iteration of nsteps time steps under user 

lobbying for given values of M.TGT, U.TGT, C.TGT, MB, decision.bias, 

user.compliance and minc specified above. All other values appearing in the 

calls to gmse_apply not defined above are default values as described in 1. 

 
# Sample user budget for the set of time steps  
 
UB <- sample(5000:10000, 
             size=nsteps, 
             replace=T) 
 
# Run initial gmse_apply (the manager calls the genetic algorithm) 
       
sim1 <- gmse_apply(res_mod = pop_model, 
                   obs_mod = obs_model, 
                   K = Kk,  
                   ig = rmax, 
                   X = 1000, 
                   user_budget = UB[1], 
                   minimum_cost = minc, 
                   manager_budget = MB, 
                   manage_target = M.TGT, 
                   scaring = F, 
                   culling = T, 
                   castration = F, 
                   feeding = F, 
                   stakeholders = 1, 
                   manage_freq = 1, 
                   manager_sense = 1, 
                   public_land = 0, 
                   land_ownership = F, 
                   group_think = F, 
                   ga_mingen = 200, 
                   get_res = "Full") 
       



# Extract resource abundance 
       
Nt <- sim1$resource_vector 
 
# Extract cost 
 
c.t <- sim1$manager_vector 
       
# Derive quota 
 
q.t <- floor(UB[1]/c.t) 
       
# Maximum possible quota given user budget 
 
max.q <- floor(UB[1]/minc) 
 
# Slight correction to Kk in the case that stochasticity overshoots 
the 
# carrying capacity 
       
CC <- ifelse(Nt>Kk,Nt+1,Kk) 
       
# Derive probability of unregulated harvest 
       
phi.t <- UlobbyingF(bias_level = decision.bias, 
                    user_target = U.TGT, 
                    population_size = Nt, 
                    carrying_capacity = CC) 
       
# Is harvest unregulated? 
       
P.t <- rbinom(n=1,size=1,prob=phi.t) 
       
# If P(t)=0 
       
if (P.t == 0){ 
  q.prime.t <- q.t 
} 
       
# Otherwise... 
       
if (P.t==1){ 
         
  # The new quota is then derived as 
   
  q.prime.t <- max.q 
         
} 
       
# Derive maximum possible harvest at minimum cost 
       
max.h.t <- floor(UB[1]/minc) 
 
# If the maximum possible harvest is smaller or equal to the lobbied 
quota 
# No need to poach as harvesting is unregulated 
 



if (max.h.t <= q.prime.t){      
  h.t <- max.h.t                
} 
       
else{ 
 
  # Slight correction to Kk in the case that stochasticity overshoots 
the 
  # carrying capacity 
      
  CC <- ifelse(Nt>Kk,Nt+1,Kk) 
         
  # Derive probability of illegal harvest 
         
  psi.t <- IllegalHarvestF(compliance_level = user.compliance, 
                           user_target = U.TGT, 
                           population_size = Nt, 
                           carrying_capacity = CC) 
         
  # Derive illegal harvest based on max harvest and probability 
         
  Y.t <- sum(rbinom(n=max.h.t,size=1,prob=psi.t)) 
         
  if (Y.t==q.prime.t){ 
    h.t <- q.prime.t 
  } 
         
  else{ 
    h.t <- max(c(q.prime.t,Y.t)) 
  } 
 
} 
       
# Create results data.frame 
       
results   <- matrix(dat = NA, nrow = nsteps, ncol = 9) 
 
results[1,1] <- sim1$resource_vector;                 # Number of 
resources 
results[1,2] <- sim1$observation_vector;     # Observed number of 
resources 
results[1,3] <- q.t                      # Harvesting quota before 
lobbying 
results[1,4] <- q.prime.t                 # Harvesting quota after 
lobbying 
results[1,5] <- h.t                         # Harvest after illegal 
offtake 
results[1,6] <- decision.bias                           # Manager 
bias level 
results[1,7] <- user.compliance                     # User compliance 
level 
results[1,8] <- 1                                               # 
Time step 
results[1,9] <- UB[1]                                         # User 
budget 
       
# Apply harvest 



 
sim1$X <- sim1$resource_vector-h.t 
       
##################################### 
### Run through rest of time steps ## 
##################################### 
       
for (time_step in 2:nsteps){ 
         
  # Run gmse_apply 
         
  sim_new <- tryCatch(gmse_apply(old_list = sim1, 
                                 res_mod = pop_model, 
                                 obs_mod = obs_model, 
                                 get_res = "Full", 
                                 user_budget = UB[time_step]), 
                      error=function(err) NA) 
         
  if (is.na(sim_new)==T){     # If the resource goes extinct  
           
    # Add results to data.frame 
           
    results[time_step:nsteps,1] <- 0 
    results[time_step:nsteps,2] <- 0 
    results[time_step:nsteps,3] <- NA 
    results[time_step:nsteps,4] <- NA 
    results[time_step:nsteps,5] <- NA 
    results[time_step:nsteps,6] <- decision.bias 
    results[time_step:nsteps,7] <- user.compliance 
    results[time_step:nsteps,8] <- time_step:nsteps 
    results[time_step:nsteps,9] <- NA 
           
    print("Extinction") 
           
    break 
           
  } 
         
  if (class(sim_new)=="list"){     # If the resource does not go 
extinct 
           
    # Extract resource abundance 
           
    Nt <- sim_new$resource_vector 
           
    # Extract cost 
           
    c.t <- sim_new$manager_vector 
           
    # Derive quota 
           
    q.t <- floor(UB[time_step]/c.t) 
           
    # Maximum possible quota given user budget 
           
    max.q <- floor(UB[time_step]/minc) 
 



    # Slight correction to Kk in the case that stochasticity 
overshoots the 
    # carrying capacity 
       
    CC <- ifelse(Nt>Kk,Nt+1,Kk) 
           
    # Derive probability of unregulated harvest 
           
    phi.t <- UlobbyingF(bias_level = decision.bias, 
                        user_target = U.TGT, 
                        population_size = Nt, 
                        carrying_capacity = CC) 
           
    # Is harvest unregulated? 
           
    P.t <- rbinom(n=1,size=1,prob=phi.t) 
           
    # If P(t)=0 
           
    if (P.t == 0){ 
      q.prime.t <- q.t 
    } 
           
    # Otherwise... 
           
    if (P.t==1){ 
             
      # The new quota is then derived as 
             
      q.prime.t <- max.q 
             
    } 
           
    # Derive maximum possible harvest at minimum cost 
           
    max.h.t <- floor(UB[time_step]/minc) 
           
    # If the maximum possible harvest is smaller or equal to lobbied 
quota 
    # No need to poach as harvesting is unregulated 
 
    if (max.h.t <= q.prime.t){      
      h.t <- max.h.t                
    } 
           
    else{ 
 
      # Slight correction to Kk in the case that stochasticity 
overshoots  
      # the carrying capacity 
             
      CC <- ifelse(Nt>Kk,Nt+1,Kk) 
             
      # Derive probability of illegal harvest 
             
      psi.t <- IllegalHarvestF(compliance_level = user.compliance, 
                               user_target = U.TGT, 



                               population_size = Nt, 
                               carrying_capacity = CC) 
             
      # Derive illegal harvest based on max harvest and probability 
             
      Y.t <- sum(rbinom(n=max.h.t,size=1,prob=psi.t)) 
             
      if (Y.t==q.prime.t){ 
        h.t <- q.prime.t 
      } 
             
      else{ 
        h.t <- max(c(q.prime.t,Y.t)) 
      } 
             
    } 
           
    # Add results to data frame 
    results[time_step,1] <- sim_new$resource_vector; 
    results[time_step,2] <- sim_new$observation_vector; 
    results[time_step,3] <- q.t 
    results[time_step,4] <- q.prime.t 
    results[time_step,5] <- h.t 
    results[time_step,6] <- decision.bias 
    results[time_step,7] <- user.compliance 
    results[time_step,8] <- time_step                         
    results[time_step,9] <- UB[time_step] 
           
    # Apply harvest 
 
    sim_new$X <- sim_new$resource_vector-h.t; 
           
    sim1 <- sim_new 
           
  } 
         
} 

 

The following code runs one management iteration of nsteps time steps under 

conservationist lobbying for given values of M.TGT, U.TGT, C.TGT, MB, 

decision.bias, user.compliance and minc specified above. All other 

values appearing in the calls to gmse_apply not defined above are default values as 

described in 1. 

 
# Sample user budget for the set of time steps  
 
UB <- sample(5000:10000, 
             size=nsteps, 



             replace=T) 
 
# Run initial gmse_apply (the manager calls the genetic algorithm) 
       
sim1 <- gmse_apply(res_mod = pop_model, 
                   obs_mod = obs_model, 
                   K = Kk,  
                   ig = rmax, 
                   X = 1000, 
                   user_budget = UB[1], 
                   minimum_cost = minc, 
                   manager_budget = MB, 
                   manage_target = M.TGT, 
                   scaring = F, 
                   culling = T, 
                   castration = F, 
                   feeding = F, 
                   stakeholders = 1, 
                   manage_freq = 1, 
                   manager_sense = 1, 
                   public_land = 0, 
                   land_ownership = F, 
                   group_think = F, 
                   ga_mingen = 200, 
                   get_res = "Full") 
       
# Extract resource abundance 
       
Nt <- sim1$resource_vector 
 
# Extract cost 
 
c.t <- sim1$manager_vector 
       
# Derive quota 
 
q.t <- floor(UB[1]/c.t) 
       
# Minimum possible quota 
 
min.q <- 0 
 
# Derive probability of harvest ban 
       
phi.t <- ClobbyingF(bias_level = decision.bias, 
                    conservation_target = C.TGT, 
                    population_size = Nt) 
       
# Is harvest banned? 
       
P.t <- rbinom(n=1,size=1,prob=phi.t) 
       
# If P(t)=0 
       
if (P.t == 0){ 
  q.prime.t <- q.t 
} 



       
# Otherwise... 
       
if (P.t==1){ 
         
  # The new quota is then derived as 
   
  q.prime.t <- min.q 
         
} 
       
# Derive maximum possible harvest at minimum cost 
       
max.h.t <- floor(UB[1]/minc) 
 
# If the maximum possible harvest is smaller or equal to the lobbied 
quota 
# No need to poach as harvesting is unregulated 
 
if (max.h.t <= q.prime.t){      
  h.t <- max.h.t                
} 
       
else{ 
 
  # Slight correction to Kk in the case that stochasticity overshoots 
the 
  # carrying capacity 
      
  CC <- ifelse(Nt>Kk,Nt+1,Kk) 
         
  # Derive probability of illegal harvest 
         
  psi.t <- IllegalHarvestF(compliance_level = user.compliance, 
                           user_target = U.TGT, 
                           population_size = Nt, 
                           carrying_capacity = CC) 
         
  # Derive illegal harvest based on max harvest and probability 
         
  Y.t <- sum(rbinom(n=max.h.t,size=1,prob=psi.t)) 
         
  if (Y.t==q.prime.t){ 
    h.t <- q.prime.t 
  } 
         
  else{ 
    h.t <- max(c(q.prime.t,Y.t)) 
  } 
 
} 
       
# Create results data.frame 
       
results   <- matrix(dat = NA, nrow = nsteps, ncol = 9) 
 



results[1,1] <- sim1$resource_vector;                 # Number of 
resources 
results[1,2] <- sim1$observation_vector;     # Observed number of 
resources 
results[1,3] <- q.t                      # Harvesting quota before 
lobbying 
results[1,4] <- q.prime.t                 # Harvesting quota after 
lobbying 
results[1,5] <- h.t                         # Harvest after illegal 
offtake 
results[1,6] <- manager.bias                           # Manager bias 
level 
results[1,7] <- user.compliance                     # User compliance 
level 
results[1,8] <- 1                                               # 
Time step 
results[1,9] <- UB[1]                                         # User 
budget 
       
# Apply harvest 
 
sim1$X <- sim1$resource_vector-h.t 
       
##################################### 
### Run through rest of time steps ## 
##################################### 
       
for (time_step in 2:nsteps){ 
         
  # Run gmse_apply 
         
  sim_new <- tryCatch(gmse_apply(old_list = sim1, 
                                 res_mod = pop_model, 
                                 obs_mod = obs_model, 
                                 get_res = "Full", 
                                 user_budget = UB[time_step]), 
                      error=function(err) NA) 
         
  if (is.na(sim_new)==T){     # If the resource goes extinct  
           
    # Add results to data.frame 
           
    results[time_step:nsteps,1] <- 0 
    results[time_step:nsteps,2] <- 0 
    results[time_step:nsteps,3] <- NA 
    results[time_step:nsteps,4] <- NA 
    results[time_step:nsteps,5] <- NA 
    results[time_step:nsteps,6] <- decision.bias 
    results[time_step:nsteps,7] <- user.compliance 
    results[time_step:nsteps,8] <- time_step:nsteps 
    results[time_step:nsteps,9] <- NA 
           
    print("Extinction") 
           
    break 
           
  } 



         
  if (class(sim_new)=="list"){     # If the resource does not go 
extinct 
           
    # Extract resource abundance 
           
    Nt <- sim_new$resource_vector 
           
    # Extract cost 
           
    c.t <- sim_new$manager_vector 
           
    # Derive quota 
           
    q.t <- floor(UB[time_step]/c.t) 
           
    # Minimum possible quota 
           
    min.q <- 0 
           
    # Derive probability of harvest ban 
           
    phi.t <- ClobbyingF(bias_level = decision.bias, 
                        conservation_target = C.TGT, 
                        population_size = Nt) 
           
    # Is harvest banned? 
           
    P.t <- rbinom(n=1,size=1,prob=phi.t) 
           
    # If P(t)=0 
           
    if (P.t == 0){ 
      q.prime.t <- q.t 
    } 
           
    # Otherwise... 
           
    if (P.t==1){ 
             
      # The new quota is then derived as 
             
      q.prime.t <- min.q 
             
    } 
           
    # Derive maximum possible harvest at minimum cost 
           
    max.h.t <- floor(UB[time_step]/minc) 
           
    # If the maximum possible harvest is smaller or equal to lobbied 
quota 
    # No need to poach as harvesting is unregulated 
 
    if (max.h.t <= q.prime.t){      
      h.t <- max.h.t                
    } 



           
    else{ 
 
      # Slight correction to Kk in the case that stochasticity 
overshoots  
      # the carrying capacity 
             
      CC <- ifelse(Nt>Kk,Nt+1,Kk) 
             
      # Derive probability of illegal harvest 
             
      psi.t <- IllegalHarvestF(compliance_level = user.compliance, 
                               user_target = U.TGT, 
                               population_size = Nt, 
                               carrying_capacity = CC) 
             
      # Derive illegal harvest based on max harvest and probability 
             
      Y.t <- sum(rbinom(n=max.h.t,size=1,prob=psi.t)) 
             
      if (Y.t==q.prime.t){ 
        h.t <- q.prime.t 
      } 
             
      else{ 
        h.t <- max(c(q.prime.t,Y.t)) 
      } 
             
    } 
           
    # Add results to data frame 
    results[time_step,1] <- sim_new$resource_vector; 
    results[time_step,2] <- sim_new$observation_vector; 
    results[time_step,3] <- q.t 
    results[time_step,4] <- q.prime.t 
    results[time_step,5] <- h.t 
    results[time_step,6] <- decision.bias 
    results[time_step,7] <- user.compliance 
    results[time_step,8] <- time_step                         
    results[time_step,9] <- UB[time_step] 
           
    # Apply harvest 
 
    sim_new$X <- sim_new$resource_vector-h.t; 
           
    sim1 <- sim_new 
           
  } 
         
} 
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Appendix 3 

Definition and value of set and derived parameters. 

	
Table A3.1. Definition and value of set and derived parameters. 

Parameter Definition Value(s) used 

Set parameters 

T Number of management years 10 

Ni Initial resource population size 1000 

K Resource population carrying capacity 2000 

r Resource population intrinsic growth rate 0.1, 0.2, 0.3 

σ Growth rate standard deviation r/10 

NM Manager target abundance 1000 

NU User target abundance 0 

NC Conservation target abundance 2000 

BM 
Manager budget - an abstract quantity that controls 

the ability of the manager to set higher quotas 
10000 

BU 
User budget - an abstract quantity that controls the 

ability of the user to harvest resources 

Varied between 5000 and 

10000 (see Appendix 1) 

IC 
Level of decision-making bias in favor of 

conservation objectives 

Varied between 0 (no bias) 

and 1 (complete bias) 

IU 
Level of decision-making bias in favor of user 

objectives 

Varied between 0 (no bias) 

and 1 (complete bias) 

cmin 
Arbitrary quantity representing the minimum cost of 

harvesting a resource 
10 

E 
Level of user compliance with harvest quota set by 

the manager 

Varied between 0 (no 

compliance) and 1 (full 

compliance) 

   

Derived parameters 

N Resource population size. See Equation 1 in main text 



Q Harvest quota set by the manager prior to lobbying 
Derived from the genetic 

algorithm 

Q’ Harvest quota set by the manager post lobbying 0, Q or Hmax (see main text) 

Hmax 
Maximum number of resources that can be harvested 

by the user 
See Equation 4 in main text 

ΦConservation 
Probability of successful lobbying for a harvesting 

ban by conservation groups 
See Equation 2 in main text 

ΦUser 
Probability of successful lobbying for unregulated 

harvest 
See Equation 3 in main text 

Ψ 
Probability that the user will successfully harvest one 

individual resource unit from the population 
See Equation 5 in main text 

Y 
Hypothetical illegal harvest that the user compares to 

Q’ in order to decide on final harvest  
B(Hmax, 𝛹) 

H Final user harvest max(Y, Q’) 

   

 



Appendix 4 

Classification protocol used to assign decision-making bias and user compliance 

levels to harvested IUCN Red List species. 

 

We compared predictions from our model against data on 206 terrestrial harvested 

species from the International Union for the Conservation of Nature’s (IUCN) Red 

List of Threatened Species. We considered species belonging to the orders 

Anseriformes (geese and ducks, N=37), Cetartiodactyla (even-toed ungulates, N=90) 

and Carnivora (carnivores, N=79) as these are commonly targeted by subsistence, 

recreational and trophy hunting activities globally (Di Minin et al. 2019, Hill et al. 

2019). 

 

Using the “advanced search” option on the IUCN Red List website 

(https://www.iucnredlist.org/, accessed 14th January 2019), we filtered species by 

criteria relating to Taxonomy (“Anseriformes”, “Cetartiodactyla” and “Carnivora”), 

Red List Category (“NT or LR/nt” and “LC or LR/lc”), and Threats (“Intentional use 

(species is the target)”). We only considered species listed as Least Concern or Near 

Threatened so as to minimize confounding factors associated with threat status. 

Filtering resulted in a total of 206 species to which the classification of decision-

making bias and user compliance shown in Fig. A3.1 was applied (see below). More 

specifically, we classified each species according to 1) its stated population trend at 

the latest assessment (decreasing, stable or increasing), 2) the type of harvesting it 

was most commonly under (unregulated, regulated or banned), and 3) the level of 

illegal harvest most commonly reported for a population (low, medium or high). We 



then used population trend as a measure of management outcome, harvesting type as a 

measure of decision-making bias (with unregulated and banned taken to reflect pro-

user and pro-conservation biases), and illegal harvest level as a measure of user 

compliance. Classifications were carried out by two of the authors and subsequently 

compared to ensure consistency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A4.1. Classification protocol used to assign decision-making bias and user 

compliance levels to harvested IUCN Red List species. 

A
ns

er
if

or
m

es
 

C
et

ar
tio

da
ct

yl
a 

C
ar

ni
vo

ra
 

Is
 th

e 
sp

ec
ie

s 
lis

te
d 

as
 h

av
in

g 
a 

ha
rv

es
t m

an
ag

em
en

t?
 

Th
e 

sp
ec

ie
s 

is
 p

ro
te

ct
ed

 
by

 la
w

 a
nd

 n
o 

ha
rv

es
t 

is
 p

er
m

itt
ed

 in
 th

e 
m

aj
or

ity
 o

f i
ts

 r
an

ge
 Th

er
e 

ar
e 

no
 r

ul
es

 
go

ve
rn

in
g 

ha
rv

es
tin

g 
ou

ts
id

e 
of

 p
ro

te
ct

ed
 

ar
ea

s 
in

 th
e 

m
aj

or
ity

 o
f 

th
e 

sp
ec

ie
s’

 r
an

ge
 

“R
eg

u
la

te
d

” 
“B

an
n

ed
” 

“U
n

re
gu

la
te

d
” 

N
O

 
Y

E
S

 

Is
 p

oa
ch

in
g 

m
en

tio
ne

d 
as

 a
 th

re
at

? 

M
en

tio
ne

d 
as

 a
 m

in
or

 
th

re
at

 

M
en

tio
ne

d 
as

 a
 m

aj
or

 
th

re
at

 

“H
ig

h
” 

“M
ed

iu
m

” 
“L

ow
” 

Y
E

S
 

N
O

 

D
ec

is
io

n
-m

ak
in

g 
b

ia
s 

U
se

r 
co

m
p

li
an

ce
 

Th
is

 in
fo

rm
at

io
n 

is
 li

st
ed

 u
nd

er
: 

- 
C

on
se

rv
at

io
n 

A
ct

io
ns

 in
 P

la
ce

 
- 

In
-p

la
ce

 s
pe

ci
es

 m
an

ag
em

en
t 

- 
H

ar
ve

st
 m

an
ag

em
en

t p
la

n 

Th
is

 in
fo

rm
at

io
n 

ca
n 

be
 fo

un
d 

in
 th

e 
”C

on
se

rv
at

io
n 

A
ct

io
ns

 in
 d

et
ai

l”
 s

ec
tio

n.
  

Th
is

 in
fo

rm
at

io
n 

ca
n 

be
 fo

un
d 

in
 th

e 
”C

on
se

rv
at

io
n 

A
ct

io
ns

 in
 d

et
ai

l”
 s

ec
tio

n.
  

Th
is

 in
fo

rm
at

io
n 

ca
n 

be
 

fo
un

d 
in

 th
e 

“T
hr

ea
ts

 in
 

de
ta

il”
 s

ec
tio

n.
 



Appendix 5  

Mean population growth and extinction probability surfaces for simulated resource 

population growth rates of 0.1 and 0.3.  

 

Predicted patterns of management outcome for different combinations of management 

bias and user compliance are similar to those shown for a population growth rate of 

0.2 in Fig. 3 in the main text. This indicates that predicted patterns are not sensitive to 

choice of resource population growth rate. 

 

Fig. A5.1. Mean population growth and extinction probability over a 10-year 

management period as a function of decision-making bias and user compliance for 

simulated intrinsic population growth rates (r) of 0.1 and 0.3. Decision-making bias 

ranges from entirely pro-user (-1, harvest is always unregulated) to pro-conservation 



(+1, harvest is always banned), with 0 representing a scenario in which manager quota 

decisions cannot be lobbied. When user compliance is 0, users will always partake in 

illegal harvesting while a value of 1 ensures users will fully comply with the quota put 

forward by the manager (post-lobbying). The 2D contour surfaces were obtained from 

generalized additive models with decision-making bias and user compliance specified 

as tensor product smooths. Dashed vertical lines (light grey and red) denote unbiased 

management decisions. 

 



Appendix 6  

Harvested IUCN Red List species. 

 

Table A6.1. List of IUCN Red List species and associated population trend, decision-

making bias and user compliance levels. 

Order Species Scientific Name Red List 
Category 

Population 
Trend 

Management 
Bias 

User 
Compliance 

Cetartiodactyla Natal red duiker Cephalophus 
natalensis LC Decreasing Unregulated High 

Cetartiodactyla Maxwell's duiker Philantomba 
maxwellii LC Decreasing Unregulated Low 

Cetartiodactyla Common wildebeest Connochaetes 
taurinus LC Stable Unregulated Medium 

Cetartiodactyla Waterbuck Kobus ellipsiprymnus LC Decreasing Unregulated Medium 

Cetartiodactyla Red flanked duiker Cephalophus rufilatus LC Decreasing Unregulated Medium 

Cetartiodactyla Bohor reedbuck Redunca redunca LC Decreasing Unregulated Medium 

Cetartiodactyla Wild boar Sus scrofa LC Stable Unregulated High 

Cetartiodactyla Alpine ibex Capra ibex LC Increasing Regulated High 

Cetartiodactyla Pyrenean chamois Rupicapra pyrenaica LC Increasing Regulated High 

Cetartiodactyla Moose Alces alces LC Increasing Regulated High 

Cetartiodactyla Tufted deer Elaphodus 
cephalophus NT Decreasing Unregulated Medium 

Cetartiodactyla Nilgai Boselaphus 
tragocamelus LC Stable Regulated High 

Cetartiodactyla Bongo Tragelaphus 
eurycerus NT Decreasing Regulated Medium 

Cetartiodactyla Sitatunga Tragelaphus spekii LC Decreasing Regulated High 

Cetartiodactyla Muskox Ovibos moschatus LC Stable Regulated High 

Cetartiodactyla Markhor Capra falconeri NT Decreasing Regulated Low 

Cetartiodactyla Himalayan goral Naemorhedus goral NT Decreasing Regulated High 

Cetartiodactyla Himalayan tahr Hemitragus 
jemlahicus NT Decreasing Unregulated Low 

Cetartiodactyla Sulawesi warty pig Sus celebensis NT Decreasing Unregulated High 

Cetartiodactyla Gray brocket Mazama gouazoubira LC Decreasing Banned Medium 

Cetartiodactyla Southern pudu Pudu puda NT Decreasing Banned Medium 

Cetartiodactyla Blue duiker Philantomba 
monticola LC Decreasing Unregulated Medium 

Cetartiodactyla Black duiker Cephalophus niger LC Decreasing Unregulated Medium 

Cetartiodactyla Klipspringer Oreotragus 
oreotragus LC Stable Unregulated High 

Cetartiodactyla Common warthog Phacochoerus 
africanus LC Decreasing Unregulated Medium 

Cetartiodactyla European roe deer Capreolus capreolus LC Increasing Regulated High 

Cetartiodactyla Japanese serow Capricornis crispus LC Increasing Regulated High 

Cetartiodactyla Guanaco Lama guanicoe LC Increasing Regulated High 

Cetartiodactyla Oribi Ourebia ourebi LC Decreasing Unregulated High 



Cetartiodactyla Topi Damaliscus lunatus LC Decreasing Unregulated Medium 

Cetartiodactyla Southern lechwe Kobus leche NT Decreasing Unregulated Low 

Cetartiodactyla Roan antelope Hippotragus equinus LC Decreasing Unregulated Medium 

Cetartiodactyla Rothschild's giraffe Giraffa 
camelopardalis NT Increasing Banned High 

Cetartiodactyla Hartebeest Alcelaphus 
buselaphus LC Decreasing Unregulated Medium 

Cetartiodactyla Salt's dikdik Madoqua saltiana LC Stable Unregulated High 

Cetartiodactyla Kirk's dikdik Madoqua kirkii LC Stable Unregulated High 

Cetartiodactyla Northern red muntjac Muntiacus vaginalis LC Decreasing Regulated Low 

Cetartiodactyla Sika deer Cervus nippon LC Increasing Regulated High 

Cetartiodactyla Lesser kudu Tragelpahus imberbis NT Decreasing Regulated Medium 

Cetartiodactyla African buffalo Syncerus caffer LC Decreasing Regulated Medium 

Cetartiodactyla Bushbuck Tragelaphus scriptus LC Stable Unregulated High 

Cetartiodactyla Pronghorn Antilocapra 
americana LC Stable Regulated High 

Cetartiodactyla Peter's duiker Cephalophus 
callipygus LC Decreasing Unregulated Medium 

Cetartiodactyla Bay duiker Cephalophus dorsalis NT Decreasing Unregulated Low 

Cetartiodactyla Eastern tur Capra cylindricornis NT Decreasing Regulated Low 

Cetartiodactyla Reeves' muntjac Muntiacus reevesi LC Decreasing Unregulated Low 

Cetartiodactyla Vicuna Vicugna vicugna LC Increasing Regulated High 

Cetartiodactyla Siberian roe deer Capreolus pygargus LC Decreasing Regulated Low 

Cetartiodactyla White tailed deer Odocoileus 
virginianus LC Stable Regulated High 

Cetartiodactyla Red serow Capricornis rubidus NT Decreasing Banned Low 

Cetartiodactyla Suni Nesotragus moschatus LC Stable Unregulated High 

Cetartiodactyla Common duiker Sylvicapra grimmia LC Decreasing Unregulated High 

Cetartiodactyla Thomson's gazelle Eudorcas thomsonii LC Decreasing Regulated Medium 

Cetartiodactyla American bison Bison bison NT Stable Regulated High 

Cetartiodactyla White bellied duiker Cephalophus 
leucogaster NT Decreasing Unregulated High 

Cetartiodactyla Grant's gazelle Nanger granti LC Decreasing Unregulated Medium 

Cetartiodactyla Comon eland Tragelaphus oryx LC Stable Regulated Medium 

Cetartiodactyla Tarim red deer Cervus hanglu LC Increasing Regulated Medium 

Cetartiodactyla Argali Ovis ammon NT Decreasing Regulated Low 

Cetartiodactyla Collared peccary Pecari tajacu LC Stable Regulated Medium 

Cetartiodactyla Red river hog Potamochoerus 
porcus LC Decreasing Unregulated High 

Cetartiodactyla Red deer Cervus elaphus LC Increasing Regulated High 

Cetartiodactyla Mongolian gazelle Procapra gutturosa LC Stable Regulated Medium 

Cetartiodactyla Wapiti Cervus canadensis LC Increasing Regulated Medium 

Cetartiodactyla Chiru Pantholops hodgsonii NT Increasing Banned Medium 

Cetartiodactyla Nyala Tragelaphus angasii LC Stable Regulated High 

Cetartiodactyla Palawan bearded pig Sus ahoenobarbus NT Decreasing Banned Low 

Cetartiodactyla Harvey's duiker Cephalophus harveyi LC Decreasing Unregulated Medium 



Cetartiodactyla Mongalla gazelle Eudorcas albonotata LC Stable Unregulated High 

Cetartiodactyla Greater oriental 
chevrotain Tragulus napu LC Decreasing Regulated Low 

Cetartiodactyla Pampas deer Ozotoceros 
bezoarticus NT Decreasing Banned High 

Cetartiodactyla Himalaya serow Capricornis thar NT Decreasing Banned Low 

Cetartiodactyla Black fronted duiker Caphalophus 
nigrifrons LC Decreasing Banned High 

Cetartiodactyla Southern red muntjac Muntiacus muntjak LC Decreasing Regulated Medium 

Cetartiodactyla Blesbok Damaliscus pygargus LC Stable Regulated High 

Cetartiodactyla Mountain goat Oreamnos americanus LC Stable Regulated High 

Cetartiodactyla Amazonian brown 
brocket Mazama nemorivaga LC Decreasing Unregulated High 

Cetartiodactyla Bornean yellow 
muntjac Muntiacus atherodes NT Decreasing Banned Medium 

Cetartiodactyla Forest hog Hylochoerus 
meinertzhageni LC Decreasing Unregulated Medium 

Cetartiodactyla Ogilby's duiker Cephalophus ogilbyi LC Decreasing Unregulated Medium 

Cetartiodactyla Steenbok Raphicerus 
campestris LC Stable Unregulated High 

Cetartiodactyla Cape grysbok Raphicerus melanotis LC Stable Regulated High 

Cetartiodactyla Chinkara Gazella bennettii LC Decreasing Banned High 

Cetartiodactyla Generuk Litocranius walleri NT Decreasing Unregulated Medium 

Cetartiodactyla Tibetan gazelle Procapra picticaudata NT Decreasing Banned High 

Cetartiodactyla Chinese serow Capricornis 
milneedwardsii NT Decreasing Unregulated Medium 

Cetartiodactyla Weyn's duiker Cephalophus weynsi LC Decreasing Unregulated Medium 

Cetartiodactyla Southern reedbuck Redunca arundinum LC Stable Unregulated High 

Cetartiodactyla Puku Kobus vardonii NT Decreasing Unregulated Low 

Cetartiodactyla Sharpe's grysbok Raphicerus sharpei LC Stable Unregulated High 

Anseriforme Common goldeneye Bucephala clangula LC Stable Unregulated High 

Anseriforme Garganey Spatual querquedula LC Decreasing Unregulated High 

Anseriforme Harlequin duck Histrionicus 
histrionicus LC Increasing Banned High 

Anseriforme Brown teal Anas chlorotis NT Increasing Banned High 

Anseriforme Surf scoter Melanitta 
perspicillata LC Decreasing Unregulated High 

Anseriforme Greater scaup Aythya marila LC Decreasing Regulated High 

Anseriforme Ferruginous duck Aythya nyroca NT Decreasing Banned Low 

Anseriforme King eider Somateria spectabilis LC Decreasing Unregulated High 

Anseriforme Bean goose Anser fabalis LC Decreasing Regulated Medium 

Anseriforme Northen pintail Anas acuta LC Decreasing Regulated High 

Anseriforme African pygmy goose Nettapus auritus LC Decreasing Unregulated High 

Anseriforme Northern shoveler Spatula clypeata LC Decreasing Regulated High 

Anseriforme Greylag goose Anser anser LC Increasing Regulated High 

Anseriforme Common shelduck Tadorna tadorna LC Increasing Banned High 

Anseriforme Pink footed goose Anser brachyrhynchus LC Increasing Regulated High 

Anseriforme Brent goose Branta bernicla LC Increasing Regulated High 

Anseriforme Baikal teal Sibirionetta formosa LC Increasing Banned High 



Anseriforme Barrow's goldeneye Bucephala islandica LC Increasing Regulated High 

Anseriforme Red breasted merganser Mergus serrator LC Stable Unregulated High 

Anseriforme Blue billed duck Oxyura australis NT Stable Unregulated High 

Anseriforme Southern pochard Netta 
erythrophthalma LC Decreasing Unregulated High 

Anseriforme American comb duck Sarkidiornis sylvicoal LC Decreasing Unregulated High 

Anseriforme Fulvous whistling duck Dendrocygna bicolor LC Decreasing Unregulated High 

Anseriforme African black duck Anas sparsa LC Decreasing Unregulated High 

Anseriforme Orinoco goose Neochen jubata NT Decreasing Unregulated High 

Anseriforme Flying steamerduck Tachyeres 
patachonicus LC Decreasing Unregulated High 

Anseriforme Sunda teal Anas gibberifrons NT Stable Regulated High 

Anseriforme Falcated duck Mareca falcata NT Decreasing Unregulated High 

Anseriforme Siberian scoter Melanitta stejnegeri LC Decreasing Unregulated High 

Anseriforme African comb duck Sarkidiornis 
melanotos LC Decreasing Unregulated High 

Anseriforme Spectacled eider Somateria fischeri NT Decreasing Unregulated High 

Anseriforme Barnacle goose Brenta leucopsis LC Increasing Regulated High 

Anseriforme Northen screamer Chauna chavaria NT Decreasing Banned Medium 

Anseriforme Hartlaub's duck Pteronetta hartlaubii LC Decreasing Unregulated High 

Anseriforme Emperor goose Anser canagicus NT Decreasing Unregulated High 

Anseriforme Black scoter Melanitta americana NT Decreasing Unregulated High 

Anseriforme White winged scoter Melanitta deglandi LC Decreasing Unregulated High 

Carnivora African clawless otter Aonyx capensis NT Decreasing Unregulated High 

Carnivora Pine marten Martes martes LC Stable Regulated Medium 

Carnivora Beech marten Martes foina LC Stable Unregulated High 

Carnivora Northern racoon Procyon lotor LC Increasing Unregulated High 

Carnivora Common palm civet Paradoxurus 
hermaphroditus LC Decreasing Regulated Medium 

Carnivora Wolverine Gulo gulo LC Decreasing Regulated Medium 

Carnivora Bengal fox Vulpes bengalensis LC Decreasing Banned High 

Carnivora Margay Leopardus wiedii NT Decreasing Banned Medium 

Carnivora Eurasian otter Lutra lutra NT Decreasing Banned Medium 

Carnivora White nosed coati Nasua narica LC Decreasing Regulated Medium 

Carnivora Striped hyaena Hyaena hyaena NT Decreasing Regulated Low 

Carnivora American black bear Ursus americanus LC Increasing Regulated High 

Carnivora Banded mongoose Mungos mungo LC Stable Unregulated High 

Carnivora Eurasian lynx Lynx lynx LC Stable Regulated High 

Carnivora Wild cat Felis silvestris LC Decreasing Regulated High 

Carnivora Asiatic golden cat Catopuma temminckii NT Decreasing Banned Medium 

Carnivora Brown bear Ursus arctos LC Stable Regulated High 

Carnivora Spotted necked otter Hydrictis maculicollis NT Decreasing Unregulated High 

Carnivora Malay civet Viverra tangalunga LC Stable Unregulated High 

Carnivora Leopard cat Prionailurus 
bengalensis LC Stable Regulated High 



Carnivora Geoffroy's cat Leopardus geoffroyi LC Stable Banned High 

Carnivora Pallas's cat Otocolobus manul NT Decreasing Regulated High 

Carnivora Bat eared fox Otocyon megalotis LC Stable Unregulated High 

Carnivora Kinkajou Poto flavus LC Decreasing Unregulated High 

Carnivora Western polecat Mustela putorius LC Decreasing Regulated Low 

Carnivora South american coati Nasua nasua LC Decreasing Unregulated High 

Carnivora Eurasian badger Meles meles LC Stable Regulated High 

Carnivora Molina's hog nosed 
skunk Conepatus chinga LC Decreasing Unregulated High 

Carnivora Bobcat Lynx rufus LC Stable Regulated High 

Carnivora Ocelot Leopardus pardalis LC Decreasing Regulated Medium 

Carnivora Pampas cat Leopardus colocolo NT Decreasing Banned Medium 

Carnivora Kit fox Vulpes macrotis LC Decreasing Regulated High 

Carnivora Marbled cat Pardofelis marmorata NT Decreasing Banned Medium 

Carnivora Serval Leptailurus serval LC Stable Regulated High 

Carnivora Pampas fox Lycalopex 
gymnocercus LC Stable Regulated High 

Carnivora Culpeo Lycalopex culpaeus LC Stable Regulated Medium 

Carnivora American marten Martes americana LC Decreasing Regulated High 

Carnivora Brown palm civet Paradoxurus jerdoni LC Stable Unregulated High 

Carnivora Short tailed mongoose Herpestes brachyurus NT Decreasing Unregulated High 

Carnivora Spotted linsang Prionodon pardicolor LC Decreasing Banned Medium 

Carnivora Aardwolf Proteles cristata LC Stable Unregulated High 

Carnivora Masked palm civet Paguma larvata LC Decreasing Unregulated Medium 

Carnivora Arctic fox Vulpes lagopus LC Stable Regulated High 

Carnivora Honey badger Mellivora capensis LC Decreasing Banned Medium 

Carnivora Banded linsang Prionodon linsang LC Decreasing Banned High 

Carnivora Large indian civet Viverra zibetha LC Decreasing Banned Low 

Carnivora Long nosed mongoose Herpestes naso LC Decreasing Unregulated High 

Carnivora Stripe necked 
mongoose Herpestes vitticollis LC Stable Banned High 

Carnivora Crab eating mongoose Procyon cancrivorus LC Decreasing Unregulated High 

Carnivora Steppe polecat Mustela eversmanii LC Decreasing Banned Medium 

Carnivora Marsh mongoose Atilax paludinosus LC Decreasing Unregulated High 

Carnivora Brown mongoose Herpestes fuscus LC Stable Unregulated High 

Carnivora Humboldt's hog nosed 
skunk Conepatus humboldtii LC Stable Banned High 

Carnivora Ansorge's cusimanse Crossarchus ansorgei LC Decreasing Unregulated Medium 

Carnivora Small toothed ferret 
badger Melogale moschata LC Stable Unregulated High 

Carnivora Sable Martes zibellina LC Increasing Regulated High 

Carnivora Common genet Genetta genetta LC Stable Banned Medium 

Carnivora Fennec fox Vulpes zerda LC Stable Banned High 

Carnivora Small toothed palm 
civet 

Arctogalidia 
trivirgata LC Decreasing Banned High 

Carnivora American badger Taxidea taxus LC Decreasing Unregulated Medium 



Carnivora Gambian mongoose Mungos gambianus LC Stable Unregulated High 

Carnivora Common slender 
mongoose Herpestes sanguineus LC Stable Unregulated High 

Carnivora Striped skunk Mephitis mephitis LC Stable Regulated High 

Carnivora Hooded skunk Mephitis macroura LC Increasing Unregulated High 

Carnivora Puma Puma concolor LC Decreasing Regulated Medium 

Carnivora Northern hog badger Arctonyx albogularis LC Decreasing Unregulated High 

Carnivora Sumatran hog badger Arctonyx hoevenii LC Stable Unregulated High 

Carnivora Chilla Lycalopex griseus LC Stable Regulated Medium 

Carnivora North american river 
otter Lontra canadensis LC Stable Regulated High 

Carnivora Small indian civet Viverricula indica LC Stable Regulated Medium 

Carnivora American mink Neovison vison LC Stable Regulated High 

Carnivora Western spotted skunk Spilogale gracilis LC Decreasing Unregulated High 

Carnivora Greater grison Galictis vittata LC Stable Banned Medium 

Carnivora Black legged mongoose Bdeogale nigripes LC Decreasing Unregulated High 

Carnivora Ring tailed vontsira Galidia elegans LC Decreasing Unregulated Medium 

Carnivora Alexander's cusimanse Crossarchus 
alexandri LC Decreasing Unregulated High 

Carnivora Jungle cat Felis chaus LC Decreasing Banned Medium 

Carnivora Swift fox Vulpes velox LC Stable Banned High 

Carnivora Canada lynx Lynx canadensis LC Stable Regulated High 

 



Appendix 7  

Comparison of mean population growth predictions from generalized additive models 

based on theoretical simulations and empirical data. 

 

Our classification of IUCN Red List species enabled us to derive the proportion of all 

species showing a decreasing, stable and increasing population trend for each of the 

different combinations of decision-making bias and user compliance. We then 

assigned numerical values to each of the three population trends (-1 for decreasing, 0 

for stable and 1 for increasing) and modeled this variable as a function of the 

interaction between decision-making bias and user compliance using a generalized 

additive model with Gaussian error structure and tensor product smooth. This resulted 

in an interpolated surface showing mean population trajectory (from -1 to 1) as a 

function of decision-making bias and user compliance classifications. This surface 

was then compared to the theoretical surfaces obtained using growth rates of 0.1, 0.2 

and 0.3 (see main text and Figure A4.1).  

 

Figure A6.1 shows the relationship between predictions based on theoretical and 

empirical data for the different tested growth rates and how it compares to the x=y 

line (i.e. perfect match). The overall deviation from the x=y line is low for theoretical 

growth rates of 0.1 and 0.2 as these values are more representative of the growth rates 

found in the IUCN species considered (Anseriformes, Carnivore and Certatiodactlya).  

 



 

Fig. A7.1. Comparisons are shown for simulated intrinsic population growth rates of 

0.1, 0.2 and 0.3. In each case, full grey circles denote a set of 200 random prediction 

coordinates, and the dashed line represents the x=y line. 2D contour plots show the 
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deviation from the x=y line for varying levels of decision-making bias (-1 = pro-user 

interests, 0 = unbiased and +1 = pro-conservation interests) and user compliance (-1 = 

low compliance, 0 = medium compliance and +1 = high compliance). 
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