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Main Text 
Summary 

  

Sequence learning underlies many uniquely human behaviors, from complex tool use to 

language and ritual. To understand whether this fundamental cognitive feature is uniquely 

derived in humans requires a comparative approach. We propose that the vicarious (but not 

individual) learning of novel arbitrary sequences represents a human cognitive specialization. 

To test this hypothesis, we compared the abilities of human children aged 3 to 5 years and 

orangutans to learn different types of arbitrary sequences (item-based and spatial-based). 

Sequences could be learned individually (by trial and error) or vicariously from a human (social) 

demonstrator or a computer (ghost control). We found that both children and orangutans 

recalled both types of sequence following trial-and-error learning; older children also learned 

both types of sequence following social and ghost demonstrations. Orangutans’ success 

individually learning arbitrary sequences shows that their failure to do so in some vicarious 

learning conditions is not due to general representational problems. These results provide new 

insights into some of the most persistent discontinuities observed between humans and other 

great apes in terms of complex tool use, language, and ritual, all of which involve the cultural 

learning of novel arbitrary sequences.  

  

  



1.  Introduction 
Sequences are pervasive features of human thoughts and actions. As such, they 

underlie many uniquely human traits, including complex tool use, language, and ritual. 

Consider the sequences involved in everyday actions like making tea in the morning, sending 

a text message, and celebrating a friend’s birthday. In some cases, the thoughts and 

corresponding actions are causally yoked (e.g., making tea). In others, they are constrained by 

linguistic rules and communicative norms (e.g., text versus spoken messages). Still others are 

governed by cultural conventions as well as idiosyncratic considerations (e.g., birthday 

celebrations) that are causally opaque and “goal demoted” (i.e., it is difficult for an observer 

to discern the objective (1–3)). Ritual sequences include these last two features, which 

distinguish them from instrumental sequences, such as tool use, that are causally 

meaningful and exhibit clear goals (1,2).  

Learning novel and arbitrary sequences is not unique to humans. In fact, the learning of 

causally opaque, serially organized responses appears to be widely shared in the animal 

kingdom. Animals as different as pigeons, rats, rhesus monkeys (4), chimpanzees (5), and 

orangutans (6) can learn sequences of arbitrarily related items. Macaques and human adults 

learn sequences using the same cognitive and inferential processes (4,7). Like humans, 

macaques evidence increasing expertise when individually learning arbitrary sequences, 

demonstrating greater accuracy and more rapid acquisition with each new list as list length 

increases (7). They also use transitive inference (rather than associative weight) when learning 

the serial position of novel items in a sequence (8). However, all of these studies involved 

individual, direct, trial-and-error learning, not social or vicarious learning. Sensu Bandura et al. 

(9) and Renner et al. (10), vicarious learning happens as a result of exposure to events that are 

neither generated nor directly experienced by the learner, that is, usually from a conspecific or 

the environment. 



Both monkeys and apes can socially learn single or familiar responses, including 

causally relevant sequences of familiar actions (for reviews, see (11,12)). There is a growing 

consensus that when causally irrelevant actions are added to sequences, children faithfully copy 

them, while great apes omit them, copying only the causally relevant intentional actions (13–15). 

To date, only one study has shown the social learning of novel sequences in primates: 

rhesus monkeys, with years of expertise, successfully imitated the serial position of at least 2 

(out of 4) items in a novel arbitrary sequence demonstrated by another monkey (16). The issue 

of expertise raises the question: is the poor performance of non-human primates in novel 

social learning tasks due to issues associated with task difficulty (e.g., encoding and recalling 

particular types of responses)? After all, if one cannot learn how to solve a given task via 

individual learning, one may also be unable to do so vicariously or socially.  

This is not to say that individual and social learning are always interdependent. A 

growing body of research has shown that the social and individual learning of novel sequences 

are dissociable skills in humans (17–21). For example, various studies with preschool-aged 

children have now shown that the imitation of item-based sequences, involving responses to 

distinct items that are arbitrarily related (e.g., Ambulance → Bird → Crown; Fig. 1A), is not 

correlated with the imitation of similarly arbitrary spatial-based sequences (e.g., Right → Bottom 

→ Left; Fig. 1B) within subjects (19,20). Moreover, individual differences associated with 

learning each sequence type by trial and error do not predict variation in learning either 

sequence type by imitation (20). In other words, being a good independent learner does not 

necessarily make one a good imitator. This pattern of results has led Subiaul (11,22) and 

colleagues (20) to hypothesize that while the individual learning of arbitrary sequences may be 

widely shared in the primate order, the ability to vicariously learn such sequences may be 

phylogenetically restricted to humans. Heyes (23) has made a similar point, arguing that “even 

when [animals] get the experience necessary…[they] are limited in their capacity to imitate new 

sequences of action” (p. 4).  



What exactly is it that makes humans exceptional sequence imitators relative to non-

human species? Do humans have a general facility for vicariously acquiring information from the 

environment, regardless of what is learned or from where? Or is this facility linked to particular 

content types and sources? For example, if a live model or social demonstrator were removed, 

but their actions and/or their effects preserved, would humans learn nonetheless? And would 

learning in such a condition differ from that in one involving a live agent? If humans are 

specialized vicarious/social learners, then learning in social conditions, as well as in a vicarious 

condition without a live agent (i.e., ghost control for affordance learning (24)), should be better 

than that in individual conditions. However, if social and asocial learning are not independent 

(25,26), then there may be no difference between learning in social and individual conditions. 

Alternatively, one might reasonably predict that performance following individual learning may 

be better than that following vicarious learning due to the direct experience of actions and 

feedback. While research has shown significant dissociations between social and individual 

learning in sequencing tasks in human children (19,20,27), to our knowledge there is no 

comparable evidence with non-human primates. Such evidence is necessary to address the 

question of cognitive specialization.   

Here, we investigate these questions using well-established touchscreen-based 

sequence learning tasks. Touchscreen tasks use familiar responses in novel ways and allow for 

within-subject comparisons, something that is impossible to do with object-based tasks involving 

serial actions or events (e.g., (10,14,28)). Given that most complex responses confound 

seriating item-specific information (i.e., which objects are relevant when in an event) with 

spatial-specific information (i.e., when and where in space objects are placed), coupled with the 

fact that the brain independently processes what and where information (29), we employed two 

sequencing tasks that isolate these components. In the item-specific task (hereafter called the 

cognitive task), participants must select three different pictures in an item-specific order, 

ignoring their spatial locations. In the spatial-specific task (hereafter the spatial task), 



participants must select three identical pictures in a spatial-specific order, ignoring their identity. 

By comparing orangutans with preschool children, our study provides unique insights into the 

underlying cognitive similarities and/or differences between species in sequence learning under 

conditions that vary in the amount and type of vicarious input. 

We selected preschool-aged children (3 and 5 years old) as a comparison group 

for two reasons. First, we wanted to minimize the effect of formal education (which 

emphasizes complex sequence learning). Second, previous studies have shown that by the 

age of 4.5, children evidence robust imitation in both the cognitive and spatial tasks. However, 

younger age groups (<3.5 years) evidence a mosaic social learning pattern (e.g., copying in the 

cognitive but not the spatial task). Subiaul (11,22,30) has argued that the social and imitation 

learning skills of non-human primates may show a similar mosaic pattern. 

We examine the following four hypotheses (see Table S7 for a summary). (1.) 

Concerning how vicariously acquired information compares to individually acquired information: 

if humans or orangutans have a specialization for vicarious learning compared to individual 

learning, we would expect an advantage in performance in vicarious (Social or Ghost) over 

individual (Recall) learning conditions. (2.) Regarding the specificity of vicarious learning: if 

human or orangutan vicarious learning is narrowly specified for social information (obtained 

from agents), we would expect an advantage in performance in Social over Ghost conditions. 

(3.) Considering how task difficulty or disinterest (i.e., motivation) may confound social learning 

performance: if orangutans fail to perform at above-chance levels in any learning condition, we 

would conclude that the apes lacked the necessary motivation or the tasks were too difficult to 

be useful in evaluating learning competence. (4) Finally, on the relationship between social, 

vicarious, and individual learning in children and orangutans: if individual or vicarious learning 

scaffolds the development of social learning in particular tasks or conditions, they should predict 

social learning performance. 

  



2.  Experiment 1: Children 

2.1  Methods and Materials 

(a)   Tasks. 

Two touchscreen-based tasks were used in the present study: the cognitive task and the 

spatial task. In the cognitive task (4,31,32), three different images appear on the screen in 

various locations within a 4 × 4 grid (gridlines are not visible). To solve the task, the images 

must be touched in a certain order governed by the contents of the pictures: for example, 

Ambulance → Bird → Crown (Figure 1A). After each trial, the image locations are shuffled 

around in the grid, but the correct order (governed by picture contents) remains the same. 

These rules require participants to learn the sequence based on image content rather than 

spatial location. 

The spatial task (Figure 1B; (19,20)) is similar to the cognitive task, with the following 

exceptions: (i) the three picture items are identical within a trial, but change across trials; (ii) the 

images’ locations remain fixed from trial to trial; (iii) the sequence is governed by location.  

Both tasks require participants to attend to, encode, and recall different features: item 

identity in the cognitive task and spatial location in the spatial task. With both tasks, when there 

are three images, the chance of choosing the correct sequence if selecting items at random is 

16.7% (that is, 1/3 × 1/2 × 1/1 = 0.167). 

In both tasks, the relationship between the pictures or locations themselves is arbitrary. 

However, when items are touched in an arbitrarily specified order, a reward (both primary and 

secondary reinforcers) is produced. The order of elements in a ritualized behaviour (e.g., 

praying to a deity) is arbitrary, in that the order itself has no clear causal connection to a 

(presumed) outcome. The order of elements in a linguistic utterance, by contrast, often has a 

clear connection to the utterance’s meaning and therefore a causal connection to an outcome, 

even though the syntactic rules of an individual language are themselves largely arbitrary. For 



example, asking someone to “Cut the bandage” will likely lead to a different outcome than 

asking them to “Bandage the cut”. In this way, the sequences in these tasks are more like 

linguistic ones—with causal effects—than ritualistic ones. The causal link to a detectable 

outcome makes it plausible that apes would be more likely to copy sequences in these 

situations than in tasks examining the copying of causally irrelevant actions in sequences (13–

15). 

  

(b)   Learning conditions. 

Four different learning conditions were used with each task. (i) In the Baseline condition 

(individual learning), participants discovered the correct sequence independently by trial and 

error. (ii) The Recall condition (another individual learning condition) always occurred directly 

after the Baseline condition. Once subjects correctly entered a full three-item sequence during 

Baseline, there was a 30-second delay during which the computer screen was occluded. Then 

participants were presented with the same sequence used in the preceding Baseline condition 

to assess recall of the sequence. (iii) In the Ghost (vicarious) condition, the computer 

demonstrated the correct sequence three times by highlighting individual items on the screen in 

the target order. (iv) In the Social condition, a human experimenter demonstrated the correct 

sequence three times. 

  

(c)   Participants. 

A total of 96 typically developing 3-year-old (N = 44; mean age in months, 41.8; SD, 5.2) 

and 5-year-old (N = 52; mean age in months, 65.3; SD, 3.8) children were recruited at a local 

museum or zoo following IRB-approved protocols.  

  

(d)   Apparatus. 



All tasks were carried out on an iMac computer (Apple, Cupertino, CA) with a 

MagicTouch touchscreen panel (Keytec, Garland, TX) affixed to it. The tasks were custom-

written.  

  

(e)   Procedure. 

The cognitive and spatial tasks were done in blocks to avoid interference, minimize 

training time, and ensure understanding of the rules of the task. The order of tasks was counter-

balanced; half of the children received the spatial block first and the other half received the 

cognitive block first. A brief training phase preceded the first experimental condition for each 

task. After training, the testing phase began. The conditions within each task were 

counterbalanced (but Baseline was always immediately followed by Recall). Four different 

conditions (delineated above), and a total of three different sequences, were used for each task, 

for a 2 (tasks) × 4 (learning conditions) design. A sequence consisted of a set of three images 

(for the cognitive task) or three locations (for the spatial task). A trial consisted of an attempt 

(either correct or incorrect) to enter a sequence. After an incorrect response on a trial, a new 

trial with the same sequence started; in the cognitive task, the spatial locations of the pictures 

were shuffled, and in the spatial task, the identity of the pictures changed. 

For the Baseline and Recall conditions, performance from the first presentation of a 

sequence (first trial, T1), as well as subsequent trials until the correct sequence was entered, 

was measured. Once children selected the items in the correct order in one condition, testing 

was complete in that condition, and a new condition was begun. For additional details on the 

methods, see the Supplementary Material. 

  

(f) Statistical analysis. 

Two measures were used to quantify performance. Performance on the first trial (T1) of 

each condition was a binomial measure, with values of correct (1) or incorrect (0). T1 is the 



strictest measure of learning. In conditions with demonstrations, T1 represents a “pure” 

measure of vicarious learning because success on any trials after the first trial could be due to 

vicarious learning, individual learning, or a combination of both. The only way to perform at 

above-chance levels on this measure is to have prior knowledge of the sequence (by individual 

learning or vicarious learning). However, T1 cannot give information about what happens after 

the first trial. An individual who first enters a correct sequence on trial 2 and one who first enters 

a correct sequence on trial 10 receive the same score on the T1 measure (both score a 0). As 

such, T1 excludes partial learning.  

A second measure, the correct:incorrect (CI) presses measure, is a per-trial 

measurement of performance. It consists of two response variables: out of the first two presses 

in a trial, the number of correct selections and the number of incorrect selections. A fully correct 

trial (Picture 1 → Picture 2 → Picture 3) results in values of [2:0]; a partially correct trial (Picture 

1 → Picture 3) results in values of [1:1]; and an incorrect trial (Picture 2 or Picture 3 selected 

first) results in values of [0:2]. The CI measure can show how quickly an individual finds a 

solution if they do not do so on the first trial, and also how performance changes within a 

condition. For children, CI values for each trial until the first correct trial were calculated for each 

condition; that is, if an individual first entered 2 incorrect trials and then 1 correct trial, a total of 3 

CI values were calculated. The first 4 trials for each condition were included in the statistical 

models, to maintain consistency with the orangutan data structure (see Section 3.1 below); if a 

child entered the correct sequence before they had performed 4 trials, the number of CI values 

corresponded to the total number of trials performed by the child. 

For the main statistical analyses, generalized linear mixed models (GLMMs) 

implemented in lme4 in R (33) were used to examine the fixed effects of condition, age group 

(3- and 5-year-olds), and their interactions. We analyzed the same data with Markov chain 

Monte Carlo GLMMs in a Bayesian framework using the MCMCglmm package (34), to 

determine if analysis method affected the results (see Supplementary Material Section 



1.7). It did not; therefore, we report here the results of the lme4 analyses. Regression 

analyses (general linear models or GLMs) were used to evaluate the degree to which learning in 

certain conditions predicted that in others. 

           

2.2  Results 

(a)   Cognitive task performance by condition and age. 

            We used a binomial GLMM with a response variable of CI; fixed effects of age group 

(two levels: 3 years and 5 years), condition (four levels: Baseline, Ghost, Social, Recall), and 

their interaction; and a random effect of participant (ID). There was no main effect of age group, 

but there was a main effect of condition and an interaction between condition and age group. To 

explore this interaction, we separated the data by age and re-ran the models with condition as 

the only fixed effect. For 3-year-olds, pairwise contrasts between conditions (using Tukey’s 

correction for multiple comparisons) indicated that performance was significantly better in the 

Social condition than Baseline (b = 0.68, SE = 0.23, Z = 3.0, p = 0.013); no other pairwise 

contrast showed a significant difference (all ps > 0.2; Figure 2), including comparisons between 

Social and Recall and between Social and Ghost. For 5-year-olds, pairwise contrasts between 

conditions indicated that when compared to Baseline, performance was significantly better in 

the Social (b = 1.9, SE = 0.27, Z = 7.2, p < 0.001), Ghost (b = 0.64, SE = 0.20, Z = 3.2, p = 

0.0077), and Recall (b = 1.1, SE = 0.21, Z = 5.1, p < 0.001) conditions. Additionally, 

performance in the Social condition was better than that in the Recall (b = 0.81, SE = 0.28, Z = 

2.9, p = 0.017) and Ghost (b = 1.3, SE = 0.27, Z = 4.6, p < 0.001) conditions. 

 

(b)   Spatial task performance by condition and age.         

 We used an analysis analogous to that described above and found that, similarly to the 

cognitive task, there was no main effect of age group, but there was a main effect of condition 



and an interaction between condition and age group. We again separated the data by age to 

explore this interaction, and ran models with condition as the only fixed effect. For 3-year-olds, 

pairwise contrasts between conditions (with Tukey’s correction) indicated that performance was 

significantly better in the Recall condition than in Baseline (b = 0.61, SE = 0.21, Z = 2.9, p = 

0.018); no other pairwise contrast showed a significant difference (all ps > 0.1; Figure 3). For 5-

year-olds, pairwise contrasts between conditions indicated that when compared to Baseline, 

performance was significantly better in the Social (b = 0.95, SE = 0.22, Z = 4.3, p < 0.001), 

Ghost (b = 0.89, SE = 0.20, Z = 4.4, p < 0.001), and Recall (b = 1.2, SE = 0.21, Z = 5.6, p < 

0.001) conditions. In contrast to the cognitive task described above, however, no other pairwise 

contrast showed a significant difference (all ps > 0.6), including the comparisons between Social 

and Recall and between Social and Ghost. 

 For results of the analyses of both tasks with the T1 measure, see the Supplementary 

Material. 

 

(c)   Differences between tasks. 

 We examined whether children’s overall performance was better in the spatial or the 

cognitive task by using a binomial GLMM with a response variable of CI, a fixed effect of task 

(two levels: cognitive and spatial), and a random effect of participant. There was no main effect 

of task (b = −0.08, SE = 0.073, Z = −1.2, p = 0.25), indicating that children’s performance overall 

was not better or worse in either task. 

 

(d)   Relationships between performance in Social and other conditions. 

 We examined whether performance in the various conditions predicted children’s social 

learning performance in each task using GLMs (see Supplementary Material Section 1.6 for 

details). For the cognitive task, while age group (5-year-olds > 3-year-olds; b = −0.78, SE = 

0.26, Z = −3.0, p = 0.0025) was a significant predictor of performance in the cognitive Social 



condition, performance in the other conditions (cognitive Ghost, cognitive Recall, spatial Ghost, 

spatial Recall, and spatial Social) was not (all ps > 0.08). For the spatial task, age group (5-

year-olds > 3-year-olds; b = −0.40, SE = 0.16, Z = −2.5, p = 0.014) was a significant predictor of 

performance in the spatial Social condition, as was spatial Ghost performance (b = 0.54, SE = 

0.19, Z = 2.8, p = 0.005; all other ps > 0.07). Results are summarized in Supplementary Figure 

S3. 

 

  

3.  Experiment 2: Orangutans 
  

3.1  Methods and Materials 

  

(a)   Tasks. 

The cognitive and spatial tasks described above were used to test the orangutans. 

  

(b)   Conditions. 

The same four learning conditions described above for children were used. 

  

(c)   Participants. 

Three adult orangutans living at Smithsonian’s National Zoo in Washington, DC, 

participated in this study. Demographic details of the orangutans are shown in Table S3 in the 

Supplementary Material. The protocols for this study were approved by the Institutional Animal 

Care and Use Committees of the George Washington University and the Smithsonian 

Institution. 

  

(d)   Apparatus. 

The apparatus used for orangutans was similar to the one used for children, and was 

affixed to a mobile cart that allowed testing in the orangutans’ living enclosures. During testing, 



the screen was placed against the enclosure mesh so that an orangutan could interact with the 

touchscreen and access rewards (grapes) delivered through a feeding tube. 

  

(e)   Procedure. 

Training and testing on the cognitive and spatial tasks were done in blocks to minimize 

training time and between-task interference, and to maximize understanding of the task rules. 

Iris received the cognitive block first, while Batang and Kyle received the spatial block first. For 

additional details, see the Supplementary Material. 

(i) Training. In the training sessions, orangutans were given three demonstrations of a 

two-item sequence by a familiar zookeeper. They then had 4 consecutive opportunities (trials) 

per sequence to enter the correct two-item sequence, and received rewards for correct 

performance. They saw four different sequences per training session. Upon reaching a 

performance criterion, they moved to the testing phase. 

(ii) Testing. Experimental trials used three-item sequences. Conditions within each 

experimental block were counterbalanced, so that each orangutan received the Ghost condition 

first in one block and the Social condition first in the other block. Each condition block consisted 

of 12 sessions; in addition, 12 sessions that comprised both Baseline and Recall conditions 

were interspersed throughout the Ghost and Social sessions, not performed in a block, to 

distribute any potential changes in expertise.  

During testing, as during training, orangutans were given four trials per sequence in the 

Recall, Ghost, and Social conditions. The number of response trials was limited in order to 

ensure that session length was predictable and motivation to respond correctly was high (i.e., 

there were relatively few opportunities for a reward). Orangutans were given up to 35 trials in 

the Baseline condition to discover the correct sequence initially. If they did not do so, no Recall 

condition was begun; instead, the next sequence in a session was begun. 

  



(f) Statistical analysis. 

For orangutans, both T1 and CI values were used. CI values were calculated for trials 1 

to 4 in the Baseline, Recall, Ghost, and Social conditions. 

GLMMs implemented in lme4 in R were used to examine the fixed effect of condition. 

As for the children’s data, we also created GLMMs for the orangutan data using the 

MCMCglmm package (34); see Supplementary Material Section 2.9. The method of 

analysis did not affect the results, so we report here the results of the lme4 analyses. To 

evaluate the degree to which performance in other conditions predicted that in the Social 

conditions, we used MCMCglmm because the lme4 models did not converge. 

 

  

3.2  Results 

 

(a)   Cognitive task performance by condition. 

            We used a binomial GLMM, with a response variable of CI, a fixed effect of condition 

(four levels: Baseline, Ghost, Social, Recall), and random effects of participant and 

demonstrator. There was a main effect of condition; pairwise contrasts between conditions 

(using Tukey’s correction) indicated that performance was significantly better in the Recall 

condition than in the Baseline (b = 0.35, SE = 0.096, Z = 3.7, p = 0.0013), Social (b = 0.27, SE = 

0.087, Z = 3.2, p = 0.0086), and Ghost (b = 0.41, SE = 0.090, Z = 4.6, p < 0.001) conditions. No 

other contrasts were significantly different. Results are summarized in Figure 2 and Figure S4 in 

the Supplementary Material. 

 

(b)   Spatial task performance by condition. 

We repeated the analysis described above for the spatial task and found a main effect 

of condition. Pairwise contrasts between conditions (using Tukey’s correction) indicated that 



when compared to Baseline, performance was significantly better in the Recall (b = 1.0, SE = 

0.098, Z = 10, p < 0.001), Social (b = 0.45, SE = 0.10, Z = 4.5, p < 0.001), and Ghost (b = 0.37, 

SE = 0.10, Z = 3.7, p = 0.0013) conditions. Additionally, performance in the Recall condition was 

better than that in both the Social (b = 0.55, SE = 0.091, Z = 6.0, p < 0.001) and the Ghost (b = 

0.63, SE = 0.089, Z = 7.1, p < 0.001) conditions. There were no other significant differences, 

including between the Social and Ghost conditions. Results are summarized in Figure 3 and 

Figure S5 in the Supplementary Material. 

 

(c)   Differences between tasks. 

 We examined whether orangutans’ overall performance was better in the spatial or the 

cognitive task by using a binomial GLMM with a response variable of CI, a fixed effect of task, 

and a random effect of participant. There was a main effect of task (b = 0.28, SE = 0.045, Z = 

6.2, p < 0.001), indicating that orangutans performed better in the spatial than the cognitive 

task. 

 

(d)   Relationships between performance in the Social and other conditions. 

We examined whether performance in the various conditions predicted orangutans’ 

social learning performance in each task using MCMCglmm (see Supplementary Material 

Section 2.8). For the cognitive task, the model indicated that performance in the other 

conditions (cognitive Ghost, cognitive Recall, spatial Ghost, spatial Recall, and spatial Social) 

did not significantly predict performance in the cognitive Social condition (all ps > 0.14). For the 

spatial task, performance in the other conditions (spatial Ghost, spatial Recall, cognitive 

Ghost, cognitive Recall, and cognitive Social) did not significantly predict performance in 

the spatial Social condition (all ps > 0.06). One condition, cognitive Social, had a marginal 

negative relationship with spatial Social performance (see Supplementary Table S4). See 

Figure S3 for a summary. 



 

(e)   Comparing Recall performance with chance. 

 To compare the performance of orangutans with chance levels, we performed chi-

square tests on the distribution of first-trial (T1) responses (correctly pressing all three items 

[ABC], correctly pressing the first but not the second item [AC], or pressing an initial incorrect 

item [B or C]) for each individual. The full results are reported in Table S6 in the Supplementary 

Material. For the Recall conditions, Batang’s responses in both the cognitive and spatial tasks 

included more ABC responses than expected by chance; Iris’s responses in the spatial task (but 

not the cognitive task) included more ABC responses than expected by chance; and Kyle’s 

responses in the cognitive task included fewer ABC responses than expected by chance. Kyle’s 

responses in the Ghost condition of the spatial task also included fewer ABC responses than 

expected by chance. No other result differed significantly from chance. 

 

 

4.  Discussion 

 
Several uniquely human traits, such as language and ritual, involve arbitrary sequences 

that are culturally rather than causally specified, and vicariously rather than individually learned. 

The ubiquity of both language and ritual in human activities prompts the question: Do humans 

have a specialization for vicariously learning arbitrary sequences across tasks and problem 

domains? Consider that ritual, for example, includes arbitrary sequences of actions that are 

causally opaque and goal demoted (35). Language—syntax specifically—similarly consists of 

arbitrary sequences of words, but in contrast to ritual, words and phrases can be clearly linked 

to causal outcomes (36). In addition to their sequential features, the abstract and symbolic 

nature of the tokens (i.e., ritual acts and words)—representing unobservable concepts or absent 

entities—used in both domains links the evolution of ritual and language (37,38).  



Here we present evidence that humans at an early age, but not orangutans, possess a 

specialization for vicariously learning some arbitrary sequences (Table S7). In each task, 

participants received individual (Recall) or vicarious information either from a social agent 

serving as the model (Social) or provided only by a computer, an artificial agent (Ghost). The 

performance of orangutans and young children on the tasks diverged. Regardless of task, 

orangutans learned sequences best in the Recall condition. They also evidenced some limited 

vicarious learning in the spatial task, with performance following the pattern of Recall > Social ≈ 

Ghost > Baseline. Such results show that the orangutans had both the motivation and ability to 

encode and recall novel arbitrary sequences in individual learning conditions, and in some 

vicarious conditions. In contrast, 5-year-old children showed proficient learning in all individual 

and vicarious conditions, regardless of task. Like orangutans, 3-year-old children’s performance 

in the spatial task was best in the Recall condition. However, unlike orangutans, in the cognitive 

task their performance was best in the Social condition. 

To our surprise, orangutans appeared to learn spatial-based sequences (spatial task) 

better than item-based sequences (cognitive task), despite the fact that they had less expertise 

in the former than the latter. This pattern differs from that observed in monkeys (who evidenced 

social learning in the cognitive task (16)) and the developmental pattern in children observed 

here and in other studies (19,20). There are several possible explanations for this result. First, 

there is empirical evidence that captive (39) as well as wild (40,41) orangutans have excellent 

spatial memory, as evidenced by the ability to form cognitive maps of complex habitats, which 

includes avoiding previously depleted sites in experimental tasks and revisiting preferred sites in 

the wild. Second, in search tasks, orangutans, like all other non-human great apes (gorillas, 

chimpanzees, and bonobos) and 1-year-old infants, favored the use of a spatial rather than a 

feature-based memory strategy, while 3-year-olds showed the reverse strategy (42). Finally, in a 

previous study by Swartz and colleagues (43), the orangutans (one of which was involved in this 

study) spontaneously used a spatial strategy (selecting items from right to left) when encoding 



and recalling unordered items on a touchscreen task similar to the cognitive task used here. 

These factors may explain orangutans’ comparatively better performance in the spatial than the 

cognitive task.  

Children did not show any overall performance differences between the tasks, and the 

pattern of their performance differences by age replicates and extends previously reported 

results (19,20,44,45). 

Species differences are further highlighted by our predictive analyses (Tables S1, S2, 

S4, and S5 and Figure S3 in the Supplementary Material). These show that children’s spatial 

Social performance is predicted by their spatial Ghost performance (consistent with children 

being adept vicarious learners, regardless of source). However, neither orangutans’ spatial 

Social performance nor their cognitive Social performance is significantly predicted by 

either their individual learning (Recall) or their vicarious learning (Ghost). Neither 

orangutans’ nor children’s Social performance across tasks was predicted by their Recall 

performance. Together these results suggest that social and individual learning may be 

dissociable in both humans and orangutans, consistent with previous studies (19,20) and 

theories of a mosaic architecture of social learning (11,22,30). 

Some limitations of the present study should be considered for designing future 

research. In addition to testing other great apes, it would be useful to expose participants to 

incorrect as well as correct responses. Errors, executed by conspecifics, have been associated 

with more robust social learning in both children (19,20,46) and monkeys (47,48). This would 

reveal whether the pattern of results reported here would change if apes and children were 

provided with models that showed both correct and incorrect responses. Additionally, the 

copying of non-arbitrary causal sequences by orangutans should be tested, for example in 

physical tasks that visibly require certain orders of actions. This would indicate whether it is the 

(arbitrary) relationship between elements that makes it difficult for orangutans to vicariously 

learn sequences in these tasks. 



In sum, these results show that humans, from an early age, have a facility to learn novel 

arbitrary sequences from others in a way that orangutans do not. Is this due to the fact that 

humans are exposed to more (and perhaps more dependent on) sequences of actions than 

orangutans? Consider that wild orangutans perform some serial actions such as the daily 

construction of their nests for night-time sleep. This involves selecting a site for the nest, making 

a foundation of larger branches, and sometimes adding embellishments (49). While the seriation 

of some of these actions is instrumental (e.g., a nest could not be constructed in a different 

order), other behaviors appear to have less of an instrumental role (e.g., adding a “rim” around 

the edge of the nest, or other embellishments called “artistic” features (50,51)). While wild 

orangutans may sometimes be exposed to and use sequences in cases like this, sequences are 

ubiquitous in children’s lives. In fact, from the moment children wake up in the morning to when 

their heads are placed on a pillow at night, children’s days are organized into a series of 

elaborate routines that include hierarchically organized sequences. Might such experiences 

explain the species differences observed here? Or do humans rely on and use such elaborate 

sequences and routines because learning them comes so easily and naturally?  

While most developmental research has focused on the unique pressures faced by 

human children to learn new instrumental skills by imitation (52–54), less attention has been 

paid to the challenges associated with the vicarious and social learning of arbitrary 

sequences, critical for both language and ritual (55,56). The evidence that does exist suggests 

that placing serial responses in a “ritual” context enhances imitation fidelity (56,57). For 

example, making sequences causally opaque and without an obvious end goal—two core 

features of rituals (35)—increases, rather than decreases, imitation fidelity. But the fact is that 

children in general excel at imitating all types of sequences (58–60). While our results confirm 

that humans and orangutans share various individual sequence learning skills, the faithful 

copying of socially demonstrated arbitrary sequences is highly developed in humans relative to 

orangutans. This is consistent with the hypothesis that imitation of novel arbitrary sequences is 



a human cognitive specialization (22,61). From a developmental perspective, we do not have 

enough information to determine the extent to which this specialization is acquired via 

experience (26). And from an evolutionary perspective, we cannot say conclusively whether this 

skill precipitated complex tool use, language, and symbolic rituals; whether an increasing 

dependence on these skills placed unique pressures on the ability to vicariously learn novel 

arbitrary sequences; or even whether these suites of skills coevolved (23,37,57,62,63). 

Regardless, the interdependence between the ability to vicariously learn sequences and these 

uniquely human behaviors is unmistakable.  

  

5.  Conclusion 

 
Do humans possess a cognitive specialization for vicariously learning novel sequences? 

The evidence presented here is consistent with the specialization hypothesis showing that at a 

young age, children are particularly adept, when compared to orangutans, at faithfully imitating 

arbitrary sequences. Orangutans’ comparatively poor performance on the same tasks and 

conditions cannot be explained by some general representational deficit or a lack of interest (or 

motivation), as they showed significant learning in individual conditions and even some 

vicarious conditions. However, differences may be explained by the fact that vicarious sequence 

learning underlies many uniquely human behaviors that range from complex tool use to 

language and ritual. These results raise the question: is the relative facility by which humans 

vicariously learn novel sequences a cause of the emergence of ritual and language or, as 

Heyes (26) has suggested, is the specialization a product of these cultural activities? We may 

never know for sure. What we can say, however, is that the few apes that have been raised in 

human homes or given language training do not show the same facility for learning complex 

sequences as young human children, whether imitating novel actions on objects (22) or the 

sequencing of signs to communicate (64).  
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Figure captions 
 

Figure 1. Examples of three trials each of the cognitive task (A) and the spatial task (B). 

Reproduced from (65).  

 

Figure 2. Summary of child and orangutan performance in the cognitive task by condition. 

Asterisks inside of the bars denote a condition in which performance was better than Baseline 

for that group; horizontal lines above bars indicate which conditions are significantly different 

from each other. The y axis shows the first variable in the CI measure (mean correct presses). 

For all participants, this statistic was for up to the first four trials in a condition. Error bars 

indicate standard errors. 

 

Figure 3. Summary of child and orangutan performance in the spatial task by condition. 

Asterisks inside of the bars denote a condition in which performance was better than Baseline 

for that group; horizontal lines above the bars indicate which conditions are significantly different 

from each other. The y axis shows the first variable in the CI measure (mean correct presses). 

For all participants, this statistic was for up to the first four trials in a condition. Error bars 

indicate standard errors. 

 

 

 



 

 

Tn 

(A) 

(B) 

1 2 3

T1 T2 

3

2

1

 
 



 

 
 



 

 


