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Abstract

We present a comparative analysis of two hybrid algorithms for solving combinatorial
optimisation problems. The first one is a specific variant of an established family of
techniques known as large neighbourhood search (LNS). The second one is a much more
recent algorithm known as construct, merge, solve & adapt (CMSA). Both approaches
generate, in different ways, reduced sub-instances of the tackled problem instance at each
iteration. The experimental analysis is conducted on two NP-hard combinatorial subset
selection problems: the multidimensional knapsack problem and minimum common string
partition. The results support the intuition that CMSA has advantages over the LNS
variant in the context of problems for which solutions contain rather few items. Moreover,
they show that the opposite may be the case for problems in which solutions contain rather
many items. The analysis is supported by a new way of visualising the trajectories of the
compared algorithms in terms of merged monotonic local optima networks.

1 Introduction

Hybrid metaheuristics for combinatorial optimisation [47, 8] have become increasingly popu-
lar in recent years due to their ability to combine the strengths of different ways of solving
optimisation problems within a single algorithm. This holds, in particular, for algorithms
that combine heuristic search with exact techniques. These algorithms are often labelled as
matheuristics [9]. Algorithms related to large neighbourhood search (LNS) [41] and to very
large-scale neighbourhood search [I] are probably among the most well-known techniques
from this field. In this context, note that it is often possible to explain these algorithms using
different terminology. Many LNS-based algorithms can be described, for example, in terms
of ejection chain approaches [22]. In principle there are many ways of generating so-called
large meighbourhoods for a given problem. However, many LNS approaches are based on the
principle of ruin-and-recreate [46], also sometimes found as destroy-and-recreate or destroy-
and-rebuild. At each iteration, first the incumbent solution is partially destroyed. Then,
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either an exact technique or any other appropriate technique is applied for finding—among
all solutions that include the produced partial solution—a solution that improves the incum-
bent solution. Generally, a time limit is imposed on this step. Many examples of this type
of LNS can be found in the literature, including [16, 45} [19], just to name a few. The large
neighbourhoods generated in this context are known as destruction-based large neighbour-
hoods. Note that, for the ease of notation, in the remainder of this paper the term LNS will
refer to LNS variants making use of destruction-based large neighbourhoods. However, keep
in mind that there are alternative ways of defining large neighbourhoods that are used in
algorithms such as local branching [20], the corridor method [10], and POPMUSIC [32]. In
the latter approach (POPMUSIC), a large neighbourhood is—at each iteration—generated
as follows. The incumbent solution is first split into parts. A so-called seed-part is then
chosen and extended by adding other parts that are close to the seed-part in order to form a
sub-problem. This step depends on some distance measure between solution parts. Finally,
the generated sub-problem is solved by an approximate or an exact solution approach. This
process is repeated until the incumbent solution does not contain a sub-problem that can be
improved.

One of the most recent, generally applicable, hybrid metaheuristics that was proposed in
the literature is construct, merge, solve and adapt (CMSA) [7]. The principal idea of CMSA
is very similar to the one found in many LNS variants, namely, the iterative application of an
exact technique to reduced problem instances, that is, sub-instances of the original problem
instanceE] The way, however, in which the sub-instances are produced in CMSA is different
to how this is generally done in LNS. CMSA does not force the existence of a certain partial
solution when using the exact technique. It rather reduces the number of options for building
a feasible solution, and asks the exact technique for the best solution that can be built from
the reduced set of options. Related ideas can be found in the following works. Applegate et
al. [3] and Cook and Seymour [I3] tackle the classic travelling salesman problem (TSP) in
the following way. In a first phase, they generate a set of high-quality TSP solutions using
a metaheuristic. These solutions are then merged, resulting in a reduced problem instance,
which is then solved to optimality by an exact solver. Another example concerns the so-called
generate-and-solve (GS) framework that was originally presented in [36]. The latest appli-
cation of this framework can be found in [I7]. Another prominent example of related work
concerns kernel search [2], which is a heuristic framework based on the identification of a
restricted set of promising solution components (called the kernel) and on the exact solution
of sub-instances by ILP solvers. Applications include [24, [44]. Finally, ideas related to CMSA
can also be found in research on evolutionary algorithms, where solution merging refers to the
idea of exploring the union of two or more solutions by means of a specialised (for example,
exact) technique. One of the latest applications can be found in [5].

Summarising, the common idea of both LNS and CMSA is to identify substantially re-
duced sub-instances that contain high-quality solutions to the original problem instance.
These sub-instances are required to be small enough for the application, for example, of an
exact technique within a reasonable time limit. In other words, both algorithms make use of
techniques for reducing the search space of the considered problem instances.

!Note that the terms reduced problem instance and sub-instance refer to the same concept and will be used
interchangeably.



1.1 Contribution of this Paper and Prior Work

This study is conducted in the context of so-called subset selection problems, which can be
formally defined as follows:

1. C is a finite set of n items.

2. F:2¢ » {TRUE, FALSE} is a function that decides for each subset of C' if the subset
corresponds to a feasible solution. Let X C 2¢ be the set of all feasible solutions.

3. f: X — R is an objective function that assigns a value to each feasible solution.

The goal is to find a feasible solution that minimises (or maximises) the objective function.
Many well-known combinatorial optimisation problems can be expressed in terms of a subset
selection problem. Consider, for example, the symmetric TSP. The set E of edges of the
complete TSP graph G = (V, E) corresponds to the set C' of items. Function F' evaluates a
subset S C FE to be a feasible solution if and only if the edges from S form a Hamiltonian cycle
in G. And finally, the objective function value f(S) of a feasible solution S is determined by
summing the distances of all edges in S. The goal in the case of the TSP is to minimise f.

In prior work [34] we started to study LNS and CMSA in a comparative way, focusing
on the consequences of producing reduced problem instances at each iteration in different
ways. Remember that—in the context of this paper—the term LNS refers to LNS variants
in which a large neighborhood is generated, at each iteration, by the partial destruction of
the incumbent solution. In particular, we started to study the following intuition—in the
context of the multi-dimensional knapsack problem (MDKP) [28], which is a subset selection
problem—in a systematic way.

Intuition: Due to the different ways in which LNS and CMSA generate sub-
instances, CMSA generally works better than LNS in the context of problem
instances for which solutions are rather small, and the opposite is the case in the
context of problem instances for which solutions are rather large.

In the context of the MDKP the size of a solution is measured as the number of items in the
knapsack. In particular, varying the tightness of the capacity constraints the MDKP allows
to generate problem instances over the whole range (from instances with small to instances
with large solutions).

In this paper, we make the following contributions. First of all, we repeat the study
concerning the MDKP. This is because the computational resources and the time that were
available for the initial study from [34] were limited. Therefore, the parameter domains cho-
sen for tuning were quite reduced. Second, we extend our comparative study of CMSA with
the chosen LNS variant to another subset selection problem: minimum common string parti-
tion (MCSP) [23]. This was done with the aim of gathering evidence that would support the
above-mentioned intuition more generally for subset selection problems. Note that the class of
subset selection problems is a prominent class of combinatorial optimisation problems. Apart
from the TSP and the MDKP, many other well known problems such as various knapsack
problems, feature selection, as well as many graph-based problems such as graph colouring,
minimum dominating set problems and maximum independent set problems can be modelled



as subset selection problems [42].

Our above-mentioned intuition about the relative performance of CMSA and LNS is based
on the consideration that, for reaching a high-quality solution, LNS needs to find a trajectory
of overlapping solutions from the starting solution to the high-quality solution. The smaller
the solutions are—that is, the fewer items they contain—the more difficult it should be for
LNS to find such a trajectory. A theoretical validation of our intuition seems, a priori, rather
difficult to achieve. Therefore, empirical evidence is gathered by studying the two subset
selection problems (MDKP and MCSP) mentioned above. As will be outlined later, for both
problems it is possible to generate problem instances over the whole range between instances
with small solutions and instances with large solutions.

In addition to these algorithmic contributions, we study ways of comparing algorithms
based on visualising their search trajectories together for the same problem instance by
means of merged local optimal networks. Local Optima Networks (LONs) [38, 48] are a
coarse-grained model of fitness landscapes inspired by work on energy surfaces in theoretical
chemistry [I8]. The idea is to compress the search space into a smaller mathematical ob-
ject: a graph, where vertices are the local optima in the underlying landscape and edges are
the possible search transitions among optima with a given search operator. LONs capture
the number, distribution and connectivity pattern of local optima in the underlying land-
scape. The original LON models [15] [38] [48] were extracted by fully enumerating the studied
search spaces and considering all possible transitions among optima, that is, deteriorating,
improving and equal-fitness transitions. More recently, and in order to study the funneﬂ
structure of combinatorial landscapes [37, 39} [40], a model called Monotonic LON (MLON)
was introduced. In the MLON model, only the non-deteriorating transitions (ie. improving
and equal) among optima are recorded. As the deteriorating edges are removed, this model
produces less densely connected networks that are easier to analyse and visualise. MLONs
have been studied for both fully enumerated [40] and sampled search spaces [37, [39]. We
therefore consider sampled MLONSs in our analysis of hybrid metaheuristics. Once a MLON
has been constructed, a variety of metrics and visualisation tools can be applied to enlighten
our understanding of its structure. MLONs have been applied to study the search space
of well-known combinatorial optimisation problems in the context of standard local search
neighbourhoods [37, [40}, 39]. Our contributions in this article are twofold. First, to apply the
model to large neighbourhoods within hybrid metaheuristics. Note that, in this setting, the
nodes of the networks are the result of applying an exact solver to the sub-instance under
consideration. The second contribution is to merge the the models representing the trajecto-
ries of two different algorithms, in order to visually contrast their search dynamics.

Finally, note that it is not the aim of this study to develop new state-of-the-art algorithms
for the MDKP and MCSP. The aim is rather to draw general conclusions from the comparative
study of LNS and CMSA in order to be able to decide which algorithm to use when faced
with a new problem.

2 A funnel refers to a grouping of local optima, forming a coarse-level gradient towards a low cost solution at
the end. When sub-optimal funnels exist, search can get trapped and fail to reach the global optimum despite
a large computing time.



1.2 Outline of the Paper

This paper is organised as follows. Section [2|first describes both LNS and CMSA in a general,
problem-independent way. Then, in following subsections, the application of both algorithms
to the MDKP and the MCSP are outlined. The empirical study is presented in Section
while the conclusions and possible lines for future work are provided in Section

2 General Algorithm Descriptions

Both LNS and CMSA are general algorithms for solving combinatorial optimisation problems,
and can therefore be described in a problem-independent manner. However, in order to gain
readability, the description given in the following assumes (1) that the algorithm is applied to
a subset selection problem and (2) that the exact technique used to solve sub-instances is a
general-purpose integer linear programming (ILP) solver. A general instance I of any subset
selection problem consists of a set C' of items, a subset S C 2¢ which contains all subsets of C'
that are feasible solutions to the problem instance, and an objective function f : S — R that
is to be minimised. In the case of the well-known travelling salesman problem, for example,
C consists of all edges of an input graph G. A subset S C C is a feasible solution—that
is, S € S—if and only if the items/edges in S form a Hamiltonian path in the input graph
G. Finally, in the context of CMSA any sub-instance—denoted by C’—is also a subset of C'.
Solutions to C’ may only be formed by items from C’.

2.1 Destruction-Based Large Neighbourhood Search

The pseudo-code of a general destruction-based LNS using an ILP solver for solving the
corresponding sub-instance at each iteration is provided in Algorithm To start with,
the initial solution Scur is generated in function GeneratelnitialSolution(/) (see line 2). A
greedy heuristic is used for this purpose in most cases. At each iteration, the following
actions are performed. First, the current incumbent solution S, is partially destroyed;
see function DestroyPartially(Scur, Dy, destiype) in line 6. The degree of destruction depends
hereby on a parameter D, called destruction rate, while the type of destruction depends
on parameter destiype. There are potentially different ways for the partial destruction of a
solution. The least sophisticated way, which is probably applied in most cases, consists in
doing this randomly. However, one might also think about a heuristically guided way of
partially destructing solutions. In any case, the resulting partial solution Spartial is passed
to the ILP solver; see function Reconstruct(Spartial, tmax) in line 7. This function receives—
apart from Spartial—a time limit .« as input. For the application of this function, the
ILP solver is forced to exclusively consider solutions that contain Spartial. In other words,
the corresponding sub-instance consists of all valid solutions to I that contain Spartial. The
function provides S(’)pt, the best valid solution found within ¢,,,x CPU seconds, as output.
As a computation time limit is used, note that this solution is not necessarily an optimal
solution to the sub-instance. Finally, the better solution between Sépt and Sy is chosen
to be the incumbent solution for the next iteration. This might seem restrictive, because
other—more probabilistic—ways of selecting between S(’)pt and Scyr are possible. However,
the LNS algorithm studied in this work is—in turn—equipped with a variable destruction
rate D! < D, < D", which is handled in the style of the neighbourhood size in variable
neighbourhood search (VNS) algorithms [26]. More in detail, if Sg; is better than Seyr, the



Algorithm 1 Destruction-Based Large Neighborhood Search (LNS)

input: problem instance I, values for parameters D!, D%, D", destiype, and tmax
Secur := GeneratelnitialSolution([7)
Shst = Scur
D, := D!
while CPU time limit not reached do

Spartial := DestroyPartially(Scur, Dy, destiype)

Sgpt := Reconstruct(Spartial; tmax)

if Si,¢ is better than St then Syt := S

if Sépt is better than S.., then

!

— = =
o = o
(@)
W
o O
-
ee M
1
@l
o
S|
o+

D, := D, + D"°

if D, > D" then D, := D!
15:  end if

16: end while

17: return Syt

—_

value of D, is returned to the lower bound D. Otherwise, the value of D, is incremented
by D™, which is also a parameter of the algorithm. If, after this update, the value of D, is
greater than the upper bound DY, it is equally returned to the lower bound D!. A proper
choice of values for the lower bound D' and for the upper bound D% enables the algorithm
to escape from local minima.

2.2 Construct, Merge, Solve and Adapt

Algorithm [2| provides the pseudo-code of an ILP-based CMSA for subset selection problems.
Before starting with the first iteration, the best-so-far solution Spgs is set to NULL, indicating
that this solution is not yet initialised. Furthermore, the reduced problem instance ¢’ C C
is initialised to the empty set. Each item ¢ € C has a so-called age value denoted by age[c]
indicating for each item for how many iterations it forms already part of the reduced sub-
instance C’. These age values are all initialised to zero. Then, at each iteration of CMSA
the following actions are performed. First, the reduced problem instance C’ is augmented in
the following way (see lines 5 to 11). Function ProbabilisticSolutionGeneration(C') is used to
generate n, solutions in a probabilistic way. Moreover, the items found in the constructed
solutions are added to C’ and their age value is set to zero. Subsequently, the ILP solver is
applied in function SolveSubinstance(C’, ty,ax), with a time limit of ¢;,.x CPU seconds. The
best (and hopefully optimal) solution found within the allowed time (S,) is provided as
output of the function. If S(’)pt is better than the current best-so-far solution Spgf, solution

' . is adopted as the new best-so-far solution. Next, the reduced sub-instance C’ is adapted

opt
in function Adapt(C’, S{., agen,,) depending on Sg; and depending on the age values of
is incremented

the items; see line 14. More specifically, the age value of each item in C"\ Sgpt

by 1, while the age value of each item in S{, C C’ is re-initialised to zero. After that,
those items from C” with an age value greater than age,,,,—which is also a parameter of the
algorithm—are deleted from C’. This has the effect that items that never appear in solutions



Algorithm 2 Construct, Merge, Solve and Adapt (CMSA)

1: input: problem instance I, values for parameters n,, age, .., and tmax
2: Sper := NULL; C/ := ()

3: age[c] :==0forall ce C

4: while CPU time limit not reached do

5. fori:=1,...,n, do

6: S := ProbabilisticSolutionGeneration(C)

7: for all c € S and ¢ ¢ C’ do

8: agelc] :=0

9: C'.=C'U {C}

10: end for

11: end for

12:  Sg, := SolveSubinstance(C’, tyax)

13 if Spgr = NULL or Sf is better than Shet then Sy := Sp¢

14:  Adapt(C’, S]
15: end while
16: return Spet

agemax)

pt?

returned by the ILP solver do not unnecessarily bloat C’ in subsequent iterations. On the
other side, components which appear in the solutions returned by the ILP solver should, of
course, be maintained in C".

2.3 Differences in Generating Reduced Sub-Instances

Although CMSA and (destruction-based) LNS are based on the same principal idea, the way
in which this idea is implemented is quite different. In the case of LNS, the reduced sub-
instance at each iteration is generated by, first, partially destroying the incumbent solution,
which results in a partial solution S?, and then defining the sub-instance such that any feasible
solution must: (1) be a feasible solution to the original problem and (2) contain S?. On the
other side, CMSA produces a reduced sub-instance as follows. A set of solutions is constructed
in a probabilistic way at each iteration. The items found in these solutions are added to the
so-called sub-instance C’, which is initially empty. The sub-instance is then defined such
that any feasible solution must contain, exclusively, items from C’. Note that, since C’ C C,
any feasible solution to the sub-instance is, of course, also a feasible solution to the original
problem instance.

3 Application to Two Different Subset Selection Problems

The comparative study of CMSA with the chosen LNS variant is conducted on two differ-
ent subset selection problems. The first one is the well-known multi-dimensional knapsack
problem (MDKP), and the second one is minimum common string partition (MCSP). These
two problems were chosen due to the different characteristics of their ILP models. While
the number of variables and constraints in the case of the MDKP is linear in the number of
items, the number of variables in the case of the MCSP is exponential in the parameters of a
problem instance. In the following, the application of CMSA and the chosen LNS variant to
both problems is described.



Example 1: Small MDKP instance

Instance data: n = 10 (10 items), and m = 2 (two resources)

p1 =49 ri1 =10 rip=24
p2=48 191 =34 1re9=9
p3 = 95 r31 = 30 T32 = 67
P4 = 73 T41 = 4 T42 = 92
P5 = 35 51 = 18 T2 = 27
P6 = 60 6,1 = 60 T6,2 = 16
pr = 111 1= 68 72 = 92
ps = 93 81 = 66 8,2 = 78
P9 = 51 91 = 40 r92 = 40
P10 =93 71101 =65 11092 =36

Resource capacities: cap; = 79, cap, = 96

The optimal solution is S* = {c1, c3} with objective function value f(S*) =49+ 95 =
144.

3.1 Application to the MDKP

The MDKP is a well studied N P-hard combinatorial optimisation problem belonging to the
class of subset selection problems. Moreover, it is a popular test case for new algorithmic
proposals (see, for example, [12][33,29]). The problem is technically defined as follows. Given
is a set C={cy,...,cp} of n items, and a number of m different resources. Hereby, the k-th
resource (kK =1,...,m) is available in a certain quantity (capacity) cap;, > 0, and each item
¢; € C requires from the k-th resource (k = 1,...,m) a given amount r;;, > 0 (resource
consumption). Moreover, each item ¢; € C' has associated a profit p; > 0.

A solution (subset) S C C is feasible if—for each resource k = 1,...,m—the total con-
sumption over all selected items (3. .g7ik) does not exceed the resource capacity capy,.
Moreover, a valid solution S is called non-extensible, if no ¢; € C'\ S can be added to S with-
out destroying its property of being a valid solution. The aim is to find a feasible solution
S of maximum total profit (3_.cgpi). The standard ILP formulation of the MDKP is as
follows:

maximize Z Di - X (1)
c,eC
subject to:
Zri,k‘xifcapk VE=1,...,m (2)
c,eC
x; € {0,1} Ve, € C (3)

Note that this model is based on a binary variable for each item from C. The inequal-
ities limit the total consumption for each resource and are called knapsack constraints.
Example [I| shows a small example instance.



Algorithm 3 Greedy Heuristic for the MDKP

1: input: a MDKP instance 7

2: 5«0

3: fori<1,...,ndo

4. if (ches erg) + 7k < capy, Yk =1,...,m then
5: S+ SuU {CZ}

6 end if

7: end for

8: return S

3.1.1 Solving Sub-instances to Optimality

Remember that LNS defines a sub-instance based on a partial solution Spartial at each iter-
ation. In order to solve such a sub-instance, the following constraints must be added to the
ILP model for the MDKP that was outlined above:

ri=1 V¢ € Spartial (4)

For solving a sub-instance in the context of CMSA to optimality, the ILP model must be
restricted to using items from C’, instead of considering the complete set C.

3.1.2 Constructing Solutions to the MDKP

Another algorithmic component needed by LNS and by CMSA is a greedy algorithm. This
algorithm is used by LNS in a deterministic way for generating the initial solution. CMSA
makes use of this algorithm in a probabilistic way for generating solutions at each iteration.
For the description of this greedy heuristic, we henceforth assume that the items in C' are
ordered with respect to the following wutility values in a non-increasing way:

DI
F ST o/ cany

To clarify, the items in C' are ordered such that u; > ue > ... > u,. The greedy algorithm
which is pseudo-coded in Algorithm [3|uses the utility values as a static greedy weight function.
More specifically, the greedy heuristic simply adds items—in the order as determined by the
utility values—to an initially empty partial solution S until the solution is non-extensible.

u

Ve eC. (5)

While the initial solution of LNS is generated by applying this heuristic as shown in Algo-
rithm 3] CMSA makes use of this heuristic—in function ProbabilisticSolutionGeneration(C') of
line 6 of Algorithm [2—in a probabilistic way. More specifically, CMSA also adds iteratively
an item to an initial solution until the solution is non-extensible. At each construction step,
an item is chosen as follows. Let S denote the current partial solution and let ¢; denote the
item that was added to S in the previous construction step. In case S = (), let [ = 0. In order
to choose the next item i* to be added to S, the first—up to ls,e—items starting from c; 14
that can be added to S with respect to the capacity constraints are added to a candidate list
L. Note that the order between the items (as given in ') is maintained in L. Parameter
lsize is called the candidate list size. Then, a real number v € [0,1) is chosen uniformly at
random. In case v < diate, ¢° is chosen to be the first item from L. Otherwise—that is, in



Example 2: Solution construction step of CMSA for the MDKP

The items from Example [I| are already sorted according to non-increasing utility val-
ues. When starting from an empty partial solution S = (), the greedy algorithm
(Algorithm [3)) adds component ¢; in the first construction step (because it fits into the
knapsack). In contrast, assuming that ls,e = 3, CMSA builds a candidate list L that
contains the first s, = 3 items after position [ = 0 that fit into the knapsack. These
are items ¢y, cg, and c3, that is, L = [c1, c2, c3]. Then, with probability dyate, the first
item (c¢1) from L is chosen and added to S. Otherwise, one of the items from L is
chosen uniformly at random. Let us assume that cy was added to S. Then, [ := 2,
and the second construction step is started. In this second step, the candidate list is
L = [e3,c5,c9]. Note that ¢4, cg, ¢7, and cg would not fit into partial solution S = {ca}.

case v > dpate—1" is chosen from L uniformly at random. Just like lgje, drate 1S an input
parameter—called determinism rate—of CMSA’s solution construction mechanism. In order
to clarify this construction procedure, an illustration is provided in Example

3.1.3 Partial Destruction of Solutions in LINS

Finally, it remains to outline the way in which a solution is partially destroyed in LNS. T'wo
variants of a solution destruction mechanism were implemented for this purpose. Given an
incumbent solution S, both variants iteratively choose max{3, | D, - |S]]} items from S, and
subsequently remove them. In the first variant, the choice of an item to be removed is made
at each step uniformly at random. The second variant orders the items in S in an inverse-
proportional way according to the utility values, that is, the order of the items in S is inverted
with respect to the order of the items in C'. Then, at each step, an item from the first destigize
items of S is chosen uniformly at random and then removed from S. The parameter that
determines which variant is applied is destiype € {R,B}, where R stands for random (first
variant) and B for biased (second variant).

3.1.4 Example of LNS and CMSA

In order to clarify the different ways in which sub-instances are generated and solved in LNS
and CMSA, we illustrate the first iteration of both algorithms in the following for the small
MDXKP instance from Example [I, This illustration is provided in Example

3.2 Application to the MCSP

The MCSP is a string-based, N P-hard, combinatorial optimisation problem that was defined
in the context of genome rearrangement [I1]. Given are two input strings s; and sg, both com-
posed of letters from a finite alphabet ¥. Furthermore, the input strings fulfils the property
of being related, meaning that each letter of ¥ has the same number of occurrences in each
of the two input strings. Note that the property of being related implies that |s1| = |s2| = n,
that is, the two strings have the same length n. A candidate solution to the MCSP problem is
obtained by cutting s1, respectively ss, into a set of pieces Pp, respectively P». Such a candi-
date solution (Pp, P») is a valid solution, if P; = P,. The objective function to be minimised

10



Example 3: First iteration of LNS and CMSA for the MDKP

LINNS: LNS starts by applying the greedy algorithm, which results in the following
initial solution: Scy, = {c1,c2,c5} (that is, the initial solution includes items 1, 2, and
5)). The objective function value is 49+48+35=132. Now let us assume a destruction
rate D, = 0.6, using the random destruction mechanism. Accordingly, two out of three
items from S¢,r must be randomly chosen and removed. Let us assume that items co
and ¢ are randomly removed, resulting in a partial solution Spartial = {c1}. Finally,
the ILP solver is applied to solve the resulting sub-instance, using the ILP model for
the MDKP as outlined above, with the following additional restriction: z; = 1, that
is, ¢1 is forced to form part of any considered solution.

CMSA: CMSA starts with an empty sub-instance C’ = (). Let us assume that n, = 2,
that is, two solution are generated by the randomised greedy heuristic at each iteration.
Moreover, let us assume that the two solutions generated in the first iteration are the
following ones:

1. S1 ={c1,c5,c9} with objective function value 49+35+51=135.
2. Sy = {c9,c3} with objective function value 484+95=143.

After the construction of these solutions, the items they contain are added to C’, result-
ing in C" = {c1,ca,c¢3,¢5,c9} and their age values are initialised to zero. Afterwards,
the ILP solver is applied to the resulting sub-instance, using the ILP model for the
MDKP as outlined above, after replacing all occurrences of C' (the complete item set)
in this model by C’.

is defined as f(Pp, P2) := |P1|E| Example 4| shows a small example instance.

At this point, it is not obvious why the MCSP belongs to the class of subset selection
problems. This will become clear after having introduced the ILP model for this problem
(originally proposed in [6]). For this purpose we first introduce the notion of a common block.
Given s1 and s9, a common block cb; = (¢;, k1;, k2;) consists of a string ¢; which is found as
a substring of s; starting at position 0 < k1; < n and as a substring of sy starting at position
0 < k2; < n. Let C denote the set of all possible common blocks concerning s; and so. With
this definition, the MCSP can be cast as a subset selection problem in the following way.
Any subset S C C is a candidate solution. Moreover, a candidate solution S C C is a valid
solution if the following conditions are fulfilled:

L. > h,es [til = n. In other words, summing the length of the substrings corresponding to
the common blocks in S must result in n, that is, the length of the input strings.

2. The substrings represented by two common blocks cb; # cb; € S neither overlap in s;
nor in Ss.

With this transformation of the problem, the objective function can be defined as the size
of a solution, that is, f(S) := |S| for all valid solutions S C C. The optimisation goal is

3Note that the function could be equivalently defined as f(P1, P2) := |Ps|.
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Example 4: Small MCSP instance

The two input strings are based on alphabet ¥ = {A,C, T, G}.
1. s1 = AAGACTG
2. s = ACTAGGA

The trivial solution is obtained by cutting both input strings into substrings of length
one:

P =P ={AAAC,T,G,G}
The objective function value is f(P1, P2) = |P1| = 7.

The optimal solution of this example instance is obtained by cutting s; after the 37¢,
the 5" and the 6 letter, and by cutting s, after the 1%, the 3¢ and the 6 letter:

P, = P, = {ACT, AG, G, A}

The objective function value of the optimal solution is f(P1, P2) = |Pi| = 4.

minimisation. Coming back to the example from Figure 7?7, the optimal solution from (c) can
be represented as {(ACT,4,1),(AG,2,4),(G,7,6),(A,1,7)}. With this definition, the ILP
model for the MCSP can be expressed as follows.

€I
minimise Z T (6)
=1

subject to:

Z ;=1 forj=1,....n (7)
cb;eC s.t. k1;<j<kl;+|t:|

Z x;=1 forj=1,...,n (8)
cb;eC S.b. k2, <j<k2;+|t;|

xz; € {0,1}  for cb; € C

The ILP model consists of exactly one binary variable per common block from C, while
the objective function @ counts the number of selected common blocks. Furthermore, Equa-
tions and ensure that (1) each position j = 1,...,n of input strings s; and s is
covered by exactly one selected common block and that (2) selected common blocks do not
overlap. Note that, in this ILP model, the number of variables is exponential and the number
of constraints is linear in the length of the input strings. A problem instance with n = 1000
and |X| = 4, for example, generates an ILP model with |C| ~ 334.000 variables.

3.2.1 Solving Sub-instances to Optimality

This is done in exactly the same way as in the case of the MDKP (see Section |3.1.1]). The
only difference is that, while C' is a set of items in the context of the MDKP, it is a set of
common blocks in the context of the MCSP problem.

12



3.2.2 Constructing Solutions to the MCSP Problem

Both LNS and CMSA make use of the following greedy algorithm from [27]. However, before
introducing this algorithm we provide the definition of a walid partial solution. A subset
S C C is a valid partial solution, if and only if the substrings represented by two common
blocks cb; # cb; € S neither overlap in s; nor in s3. Given a valid partial solution S C C,
let N(S) C C denote the set of common blocks that can be added to S such that the result
is again a valid (possibly still partial) solution. The greedy algorithm starts with an empty
partial solution, that is, S := (). At each iteration, one of the common blocks cb; € N(S) is
selected such that

cb; := argmax{|t;| | cb; € N(S5)} . 9)

This block is then added to S, and the process is continued until S is a complete—in the
sense of non-extensible—solution. Thus, the algorithm stops once N(S) is empty.

LNS uses this algorithm for generating the initial solution in function GeneratelnitialSolu-
tion(Z). Hereby, at each construction step, one of the common blocks that maximise Eqn. @]
is chosen uniformly at random. On the other side, CMSA utilizes this algorithm—in function
ProbabilisticSolutionGeneration(C') of line 6 of Algorithm [2—in order to generate solutions in
a probabilistic way. Hereby, the choice of a common block cb; € N(S) (where S is the current
partial solution under construction) is done as follows. First, the common blocks in N(S) are
ordered with respect to the size of the corresponding substrings in a decreasing way. The first
min{|N(S5)], lsize} common blocks are stored in the candidate list L. Then, a real number
v € [0,1) is chosen uniformly at random. In case v < dyate, cb; is chosen to be the first
common block from L. Otherwise—that is, in case v > d;ate——cb; is chosen from L uniformly
at random. Both I, and drate are important parameters of CMSA’s solution construction
mechanism.

3.2.3 Partial Destruction of Solutions in LINS

In the case of the MCSP problem we only implemented the solution destruction mechanism
that, given a solution S, randomly removes max{3, | D, - |S||} common blocks from S. This
is because making use of the inverse of the greedy criterion in order to select the common
blocks to be removed—as done in the case of the MDKP—does not seem to make sense.

4 Empirical Study

For both problems, the described LNS variants and CMSA were coded in ANSI C++ using
GCC 7.4.0 for compilation. The experimental evaluation was performed—in single-threaded
mode—on a cluster of computers with “Intel® Xeon® CPU 5670” CPUs of 12 nuclei of 2933
MHz and (in total) 32 Gigabytes of RAM. Moreover, all ILPs in LNS and CMSA were solved
with IBM ILOG CPLEX V12.8.

This section is structured as follows. First, the generation of the MDKP and MCSP
benchmark instances is described. Second, the parameter tuning process (both concerning
CMSA and LNS) is outlined. Finally, the experimental results are provided and analysed in
detail.
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4.1 Problem instances

As mentioned before, both the MDKP and the MCSP problem were selected for this study
because they are parameterizable. This means that, in both cases, it is possible to produce
problem instances from the whole range between instances in which solutions are rather small
(that is, instances in which valid solutions contain rather few items, respectively common
blocks) and instances in which solutions are rather large (that is, instances in which solutions
contain rather many items, respectively common blocks). The type of a problem instance
(with respect to the solution size) is determined by the resource capacities in the context of
the MDKP, and by the alphabet sizes in the context of the MCSP problem. In particular, low
resource capacities (respectively, small alphabet sizes) lead to instances with small solutions,
while high resource capacities (respectively, large alphabet sizes) lead to instances with large
solutions. This is easy to see in the case of the MDKP. The lower the resource capacities, the
less items fit into the knapsack, and vice versa. In the case of the MCSP, instances based on
small alphabet sizes lead to much larger sets of common blocks. Therefore, solutions will be
rather small—in relation to the size of the set of common blocks—in the context of instances
based on rather small alphabets. This claim will be confirmed at the end of this subsection
by a set of experiments.

MDKP instances. We used the methodology as described in [25] [12] for the generation
of MDKP instances. In particular, five different values for n (the number of items) were con-
sidered: n € {100, 500, 1000, 5000, 10000}. Moreover, the number of resources (m) was fixed
to 3017_[] The tightness of a problem instance is determined by the resource capacities. The
methodology from [25] 12] allows to determine the instance tightness by means of a parameter
« which may take values between zero and one. The lower the value of a—that is, the tighter
the generated problem instance—the smaller are the solutions, and vice versa. In order to
generate instances over the whole tightness range we chose o € {0.1,0.2,...,0.8,0.9}. Finally,
the resource requirements r; ; were always chosen uniformly at random from {1, ...,1000}. In
total, 30 instances were generated for each combination of n and «, and the whole benchmark
set consists of 1350 problem instances.

MCSP instances. We considered input string lengths (n) from {400, 800, 1200, 1600, 2000}
and alphabet sizes (|X|) from {4, 8,12, 16, 20,24, 28,32,36}. For each combination of n and
|X], 30 problem instances were randomly generated. This makes again a total of 1350 prob-
lem instances. In order to support our claim that instances based on smaller alphabets are
characterised by smaller solutions, we applied the greedy algorithm outlined in Section
to all instances with input string lengths n = {400,2000}. The graphics in Figure || show the
resulting solution sizes (in percent with respect to the size of the complete sets of common
blocks) in terms of barplots over 30 instances.

Note that all problem instances are provided at http://iiia.csic.es/~christian.
blum/repo_CMSA_vs_LNS/. The material comes with READVME files that explain the file for-
mats.

4Note, in this context, that the complete experimentation was also repeated for instances with m = 10 and
m = 50 resources. The outcome was qualitatively the same as for m = 30 resources.
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Figure 1: Solution sizes (in percent of the total number of common blocks) for the MCSP
instances with input string lengths n = 400 (a) and n = 2000 (b) over the whole range of
considered alphabet sizes. The barplots (including the variance) show that solution sizes grow
approx. linearly with increasing alphabet size.

4.2 Tuning

The automatic configuration tool irace [35] was used for tuning both algorithms for both
problems. In order to be sure to obtain the best possible algorithm performance, irace was
applied for each combination of n (number of items, respectively input string length) and
«a, respectively |X|. More specifically, for each combination of n and « (in the context of
the MDKP) and each combination of n and |X| (in the context of the MCSP problem) we
generated three additional random instances for tuning. The budget of irace was set to 1000
algorithm runs. Moreover, the following computation time limits were chosen for both LNS
and CMSA:

1. MDKP: 60 CPU seconds for instances with n = 100 , 120 CPU seconds for those with
n = 500, 210 CPU seconds for those with n = 1000, 360 CPU seconds for those with
n = 5000, and 600 CPU seconds for those with n = 10000.

2. MCSP: 60 CPU seconds for instances with n = 400 , 120 CPU seconds for those with
n = 800, 210 CPU seconds for those with n = 1200, 360 CPU seconds for those with
n = 1600, and 600 CPU seconds for those with n = 2000.

Parameters of CMSA. In the following we provide a short summary of the parameters of
CMSA that are considered for tuning: (1) the number of solution constructions per iteration
(na), (2) the maximum allowed age (age,,,,) of solution components, (3) the determinism
rate (drate), (4) the candidate list size (lsiz), and (5) the maximum time (in CPU seconds)
allowed for CPLEX per application to each sub-instance (tpax). The following parameter
value ranges were chosen concerning the five parameters of CMSA (for both problems).

e n, € [2,20]

e age, .. € {1,5,10,20,50,inf}, where inf means that no item (respectively, common
block) is ever removed from the sub-instance.
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® dpate € {0.0,0.1,...,0.8,0.9}, where a value of 0.0 means that the selection of the next
item (respectively, common block) to be added to the partial solution under construction
is always done randomly from the candidate list, while a value of 0.9 means that solution
constructions are nearly deterministic.

o lsize S [3, 20]

o tmax € {1,2,3,4,5,6) for n = 100 (MDKP), resp. n = 400 (MCSP), tmax € {1,2,4,6,8,10}
for n = 500 (MDKP), resp. n = 800 (MCSP), tmax € {3,6,9,12,15,18} for n = 1000
(MDKP), resp. n = 1200 (MCSP), tmax € {4,8,12,16,20,24} for n = 5000 (MDKP),
resp. n = 1600 (MCSP), tmax € {6,12,18,24,32,36} for n = 10000 (MDKP), resp. n =
2000 (MCSP).

Parameters of LNS. The following LNS parameters were considered for tuning: (1) the
lower and upper bounds—that is, D' and D%—of the destruction rate, (2) the increment of
the destruction rate (D™°) , and (3) the maximum time #y. (in CPU seconds) allowed for
CPLEX per application to a sub-instance. Moreover, in the case of the MDKP problem,
destiype (the destruction type) and destigize (the size of the candidate list for destruction) are
tuned. The following parameter value ranges were chosen concerning the LNS parameters
(for both problems, if not otherwise indicated).

e D!, D" € {0.1,0.2,...,0.8,0.9} under the condition that D' < D%. Note that when
D! = DU, the destruction rate D, is fixed throughout the algorithm run.

e D™ € {0.01,0.02,...,0.08,0.09}
e The value range for t,.x was chosen in the same way as for CMSA (see above).
e Only in the case of the MDKP:

1. destiype € {R,B} (where R stands for random, and B for biased).
2. destisize € {2,3,5,10}.

The tuning results—that is, the algorithm parameters that were used for the final experimen-
tal evaluation—are provided in Appendix A (MDKP) and Appendix B (MCSP problem).

4.3 Results

Both LNS and CMSA were applied to all 1350 MDKP instances and to all 1350 MCSP in-
stances exactly once, with the computation time limits as indicated in Section 4.2 Figure
provides the results for both problems by means of boxplots. In particular, there is exactly
one graphic for each value of n, which refers to the number of items in the context of the
MDKP, and to the length of the input strings in the context of the MCSP problem. The
x-axes of the graphics range from the instances with the smallest solutions on the left, to
the instances with the largest solutions on the right. Remember that the solution size is
determined by the value of o € {0.1,0.2,...,0.8,0.9} in the context of the MDKP, and by
the alphabet size |X| € {4,8,...,32,36} in the context of the MCSP problem. In the for-
mer, « is also called the instance tightness. The boxes in the boxplots of Figure [2] show
the improvement of CMSA over LNS (in percent). In other words, when a data point is
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Figure 2: Improvement of CMSA over LNS (in percent). Each box shows the differences
for the corresponding 30 instances. Note that negative values indicate that LNS obtained a
better result than CMSA, and vice versa.
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positive (a value greater than zero) CMSA has obtained a better result than LNS, and vice
versa. In order to ease the readability of these graphics, the positive area has a shaded back-
ground. Note that the output of both LNS and CMSA for each problem instance is provided
at http://iiia.csic.es/~christian.blum/repo_CMSA_vs_LNS/. The material comes with
README files that explain the format of the algorithms’ output.

The following main observation can be made:

e Concerning the MDKP, the performance of CMSA and LNS is very much comparable
for the smallest three instance sizes (n € {100,500,1000}). However starting from
n = 5000, a clear advantage of CMSA over LNS arises in the context of instances with
small solutions, that is, instances generated with a € {0.1,0.2}. The results concerning
the MDKP only partially support our intuition that CMSA generally works better than
LNS in the context of problem instances for which solutions are rather small, and that
the opposite is the case in the context of problem instances for which solutions are
rather large. This is because the second part of the intuition (about the advantage of
LNS over CMSA) cannot clearly be identified.

e In contrast to the MDKP, the results concerning the MCSP problem strongly support
our intuition. Moreover, as it could have been expected, the empirical support for our
intuition becomes stronger and more convincing with growing problem size (input string
length).

Finally, note that these observations only hold for the relation of CMSA to the chosen LNS
variant. CMSA might behave differently in relation to other LNS variants.

4.4 Analysis of Solution Sizes

In order to shed some further light on the differences between CMSA and LNS, we also
measured the percentage of items (in the context of the MDKP), respectively common blocks
(in the context of the MCSP), that appeared in at least one of the solutions visited by the
algorithm within the allowed computation time. This information is provided in the graphics
of Figure [3] by means of barplots. Again, we present one graphic per combination of n and
m, respectively n and |X|. In the following we say that the higher this percentage the more
explorative is the corresponding algorithm. The following observations can be made:

e First of all, the percentage of used items is—for both problems—always higher for CMSA
than for LNS. This means that, with the optimised parameter settings as determined
by irace, CMSA is more explorative than LNS. This, apparently, pays off in the context
of problems with small solutions.

e On the downside, to be explorative does rather not seem to be beneficial—at least not
in the context of the MCSP—when problems are characterised by large solutions.

e The difference between the two problems is that, with growing solution size, the per-
centage of explored items approaches the maximum of 100% in the case of the MDKP,
while this is not the case in the context of the MCSP. In order to understand that,
remember that the number of common blocks in a MCSP instance is exponential in the
instance parameters, while the number of items of an MDKP instance is linear in the
problem size.
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in at least one visited solution. Each bar shows the average over the respective 30 problem
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4.5 Analysis of Local Optima Networks

To further understand the differences between the search behaviour of the two algorithms,
we studied their search trajectories by means of analysing the corresponding local optima
networks. Specifically, we adapted the Monotonic LON (MLON) model [40] to analyse the
trajectories of the considered hybrid metaheuristics. Another novelty in this article is the
idea of merging the MLON models induced by two different algorithms, CMSA and LNS in
our study, in order to compare their trajectories with a graphical support.

4.5.1 Definitions

In order to define a network model, we need to specify the nodes and edges. The relevant
definitions are given below, as well as a description of the sampling process to construct the
network models.

Nodes. The nodes correspond to (near-)optimal solutions to the considered sub-instances,
obtained by the application of the exact solver CPLEX to these sub-instances. Specifi-
cally, nodes are the solutions denoted as Sépt after applying the functions Reconstruct and
SolveSubinstance in Algorithms [1] and [2] respectively. The set of nodes is denoted as L.

Monotonic Edges. Edges are directed and connect two consecutive solutions in a search
trajectory of the studied algorithms. Edges are called monotonic as they record only non-
deteriorating transitions between nodes (i.e improving or equal evaluation). Specifically, there
is a directed edge between solution Se,, and solution Si,; (in Algorithms (1] and , if S{ps
is better than or equal to Scy;. Edges are weighted with estimated frequencies of transition.
The weight is the number of times a transition between two given nodes occurred during the
process of sampling and constructing the MLON. The set of edges is denoted by FE.

Monotonic LON (MLON). The MLON is the directed graph MLON = (L, E), with
node set L, and monotonic edge set E as defined above.

Sampling and MLON model construction. The MLONs were generated for a repre-
sentative set of the studied instances. For each of these instances a MLON was constructed by
aggregating all the unique nodes and edges encountered across 10 independent runs (search
trajectories) of each algorithm. For the MDKP, instances with n € {5000, 10000} (number
of items) and o € {0.1,0.5,0.9} (tightness) were considered. For the MCSP, instances with
n € {1600, 2000} (input string lengths) and |X| € {4,20,36} (alphabet sizes) were used. For
each problem and parameter combination, the benchmark set consists of 30 instances.

4.5.2 Network Metrics

For each combination of problem, instance parameters, and algorithm, a MLON model is
created. Each MLON aggregates 10 runs of the given algorithm for the given instance. The
MLON model is formally defined as a directed graph MLON = (L, F), where L is the set
of nodes and E the set of edges. The following metrics were computed for all the generated
MLON:Ss.
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o Number of nodes: The number of nodes in the MLON, which corresponds to the number
of unique solutions visited. More formally, this metric measures the cardinality of the
set of nodes (|L|).

e Proportion of improving edges: Computed as the number of edges that are improving
(i.e edges that link a solution with inferior quality to one with higher quality) divided
by the total number of edges (which, in the MLON model, includes those edges be-
tween solutions with equal quality). This measure gives an indication of the amount of
neutrality (i.e. solutions of equal evaluation) in the search space. More formally, this
metric is computed as the ratio @"", where F; is the set of edges that are improving,
and FE is the whole set of edges.

e Mean Hamming distance: The average of the pairwise Hamming distances between all
consecutive nodes in the MLON. More formally, this metric is computed as

Z‘ji'l Hamming(sj, ej)
|E]

(10)

where s;,e; are the incident (start and end) solutions of edge j in the MLON.

e Hamming distance to best: Calculates the total pairwise Hamming distance in the short-
est path from a starting solution to the solution with the best quality found. More for-
mally, let us assume sg, ..., sp is the shortest path of length [ (measured as the number
of edges) between a starting solution s in the sampling process, and the best solution
found sp. This metric is computed as: Zé;ll Hamming(s;,sj+1), where s; and s;41
refer to adjacent solutions in the shortest path.

e Delta fitness to best: Calculates the fitness difference between a starting solution and
the best solution found. As in general there are several starting solutions, the starting
solution that produces the shortest path towards the best solution is considered to
compute this metric. More formally, let us assume sg,...s; is the shortest path of
length [ (measured as the number of edges) between a start solution s, in the sampling
process, and the best solution found s,. This metric is computed as: |f(ss) — f(sp)l,
where f is the objective function.

4.5.3 Network Visualisation

Visualisation plays a fundamental role in network analysis, often revealing structural features
that are difficult to asses by computing statistical metrics only. Most previous work on
local optima networks visualised the models arising from a single local search neighbourhood
(defining the nodes), and a single transition operator (defining the edges). Here, we propose
to combine the models arising from the sampling processes of two different algorithms. More
formally, let MLONcmsa = (Lomsa, Ecmsa) and MLONpNs = (Lins, Prns) be the graph
models of the two studied algorithms for a given instance. We then construct MLON yerged
as the union of the two graphs. Specifically, MLONperged = (Lomsa U Lins, Ecmsa U Erns).
The merged graph contains nodes and edges which are present in at least one of the algorithm
graphs. Attributes are kept for the nodes and edges indicating whether they were visited by
both algorithms or by one of them only.
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Figure 4: Merged MLON visualisation for an MDKP instance with n = 50, m = 30 and
tightness a = 0.5. The visualisation legend is shown at the top.
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To produce network plots we use the R statistics package and the graph layout methods
implemented in the igraph library [14]. Specifically, we considered a force-directed layout
algorithm, Fruchterman-Reignold [2I]. Other layout algorithms could be used; for example,
when there are no cycles or very few cycles, a tree-layout algorithms can be useful. Example
visualisations using the Reingold-Tilford [43] tree layout algorithm for the MCSP problem can
be found in the accompanying document on supplementary material. Force-directed layout
algorithms are based on physical analogies and do not rely on any assumptions about the
structure of the networks. These algorithms strive to satisfy the following generally accepted
criteria [21]:

e Vertices are distributed roughly evenly on the plane (a circle in the igraph implemen-
tation).

e The number of crossing edges is minimised.
e The lengths of the edges are approximately uniform.

e The inherent symmetries in the networks are respected, i.e., sub-networks with similar
inherent structure are usually laid out in a similar manner.

As an example, Figure [4] shows the graph visualisation of the merged MLON model for
a small instance of the MDKP problem with n = 50, m = 30 and tightness a = 0.5. For
illustrative purposes 3 runs for each algorithm were used to construct the two MLONSs in
this example. The features of nodes and edges in the merged MLON plot (Fig. reflect
properties of the search dynamics. The size of the nodes is proportional to their incoming
weighted degree (also called strength), which indicates how often a node was visited and thus
‘attracts’ the search process. The nodes and edges visited by only one of the two algorithms
are displayed in different colours; light orange for CMSA, and blue for LNS. The initial
solutions for all runs are visualised as yellow nodes. The red node illustrates the best solution
found. A legend summarising the visualisation features is shown in Figure

Looking at the network plot (Fig. [4b)), we can appreciate that the three LNS runs, visu-
alised in blue, start from the same initial solution (yellow node) at the bottom right. From
these three runs, one is successful and reaches the best-found solution (red node), while the
other two runs follow different trajectories that converge at the end to the same final solution
(dark grey node), indicating that this is an end solution with inferior fitness than the best
solution found. The CMSA runs start from three different initial solutions visualised in yel-
low. All CMSA trajectories converge to the best found solution. The node in green identifies
a solution that was visited by both algorithms. The plot illustrates that, in this example,
the CMSA trajectories are much shorter (in terms of the number of edges) than the LNS
trajectories.

4.5.4 Results of the Network Analysis

The distributions of the network metrics described in section above, across the 30 in-
stances of each problem and parameter combination, are provided in Figure [5| for the MDKP
(left column) and the MCSP (right column). The merged MLONS of representative instances
are displayed in graphical form in Figure[6] (for the MDKP) and in Figure [7] (for the MCSP).
These network visualisations correspond to the merged MLONS generated by 10 independent
runs of both algorithms.
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As discussed above in Section the features of the nodes and edges in the MLON
visualisations (Figures |§| and @ reflect properties of the search dynamics of the two algorithms.
Remember that the visualisation legend is summarised in Fig. [dal Notice that for the MDKP
(Figure @, the LNS runs start from the same initial deterministic greedy solution, whereas
the CMSA runs start from 10 different solutions, that is, the best solutions generated for the
creation of the initial sub-instances. Red nodes illustrate the best solution(s) found across all
the runs and algorithms. Notice that there might be more than one red node (Fig. , which
indicates that several different solutions share the best evaluation found. Solid transition
edges indicate improving moves, while dashed edges indicate intended transitions to solutions
with equal fitness. The star-like shapes observed in the MCSP MLON for alphabet size 36
(Fig. , indicate solutions with equal fitness that were explored during the search process.
Only improving moves are accepted by the algorithms, therefore, the search progresses only
when a solution with better fitness is achieved. Finally, nodes in green (Fig. @ indicate
solutions that were visited (shared) by both algorithms in their combined search trajectories,
while dark grey nodes represent the end points of trajectories, i.e. those nodes without
outgoing edges (having an inferior evaluation than the best solution found).

After studying both the MLON metric values for each algorithm and the graphical rep-
resentations of the merged MLONSs, the following observations can be made for the MDKP
problem:

e In the case of large and tight MDKP instances—see, for example, Figure [6a] for the case
n = 10000 and o« = 0.1—LNS seems, in a sense, to be lost, because all 10 runs (1) lead to
different final solutions, (2) there is no overlap of the trajectories of the 10 runs, and (3)
there is no overlap with the 10 trajectories of CMSAH On the other side, the 10 CMSA
trajectories seem to be attracted by high-quality solutions (as indicated by the overlap
of the 10 trajectories in later stages of the search). As shown in the bottom graphic of
Figure CMSA generally outperforms LNS in this case. This analysis is supported
by the fact that (1) the mean Hamming distance between successive solutions in the
trajectories of CMSA is higher than in the case of LNS, and (2) the number of nodes
in the MLONs of CMSA is higher than the one in the MLONSs of LNS (see Figure |5]).

e The analysis described above for MDKP instances with n = 10000 and « = 0.1 becomes
inverted when moving to instances with o = 0.5 (see Figure and o = 0.9 (see Fig-
ure[6c). The search trajectories of CMSA and LNS for a = 0.5 (medium tight instances)
look quite similar, showing some overlap between them (green nodes in Figures [ (b)
and (c)). For instances with a = 0.9 (non-tight instances), the overlap between the
10 LNS trajectories is clearly higher than the overlap between the CMSA trajectories
(seen as nodes of increased size). Moreover, the LNS trajectories are, on average, clearly
longer.

In summary, even though our initial intuition was only partially supported by the results
obtained for the MDKP, the differences that are shown in the MLON metrics and graphics
clearly indicate the different search behaviour of both algorithms for what concerns tight
vs. non-tight instances. Moreover, one reason why the MDKP results do not fully support
our intuition might be grounded in the fact that it is rather easy to find high-quality solutions

5In this context, note that all 10 LNS runs start from the same initial solution, because a deterministic
greedy heuristic is used to generate the initial LNS solution.
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0.5 (medium tight).

0.1 (very tight).

(a)

0.9 (non-tight).

Figure 6: Merged MLONs for MDKP instances with n = 10000 and three values of instance

tightness .
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for MDKP instances, while it is not easy at all to find the best (or near-optimal) solutions.

Next, studying the merged MLONSs as well as the metric values of the individual MLONs
for the MCSP problem allows to draw the following conclusions:

e First, remember that the results obtained for the MCSP problem fully supported our
intuition about the relative performance of LNS and CMSA over the range between
instances with small solutions and instances with large solutions. The clear picture
shown by the results in Figure 2D is largely reflected by the metric values displayed in
Figure [5| (see the left column of graphics). The Hamming distance to best, for example,
is smaller for the MLONSs corresponding to LNS for instances with |X| = 4 (small
solutions), while this is generally inverted for |X| € {20,36}. The same holds for Delta
fitness to best.

e Concerning the merged MLONs in Figure [7 the change of algorithm behaviour can
clearly be observed when moving from the case with small solutions (Figure , over the
case with medium-size solutions (Figure, to the case with large solutions (Figure.
In the first case, the search trajectories of CMSA are substantially longer (in terms of
the number of steps) than those of LNS. Moreover, this also holds for the total Hamming
distance from the initial solutions to the final solutions of the search trajectories (see
measure Hamming distance to best in Figure . In fact, LNS has often difficulties in
finding a solution that improves over the initial Greedy solution. One of the reasons
for this is the fact that LNS does not really solve a reduced ILP model. It solves the
original problem in which some of the variables have fixed values. However, for instances
with small solutions this concerns only very few variables. In contrast, the ILP model
solved by CMSA at each iteration is—especially in the case of instances with small
solutions—a substantially reduced version of the original ILP model.

e The situation described for instances with |X| = 4 (small solutions) is already reversed
when moving to the case with |X| = 20| (medium-size solutions). Here, LNS generally
outperforms CMSA. The search trajectories of LNS are longer both in terms of the
number of steps, and in terms of the total Hamming distance from the initial solution
to the end of a trajectory. Finally, in the case of large solutions (case |X| = 36), LNS
performs clearly better than CMSA, as indicated by much longer search trajectories.
In fact, CMSA has difficulties to improve over the solutions found in the first iteration.
The reason for this might be as follows. In general, the larger the sub-instances in
CMSA (that is, the more components they contain) the better is the chance that the
sub-instances contain improving solutions. Therefore, the tuning procedure adjusts the
parameters for each instance type such that the size of the sub-instances is (1) large
enough to contain improving solutions and is (2) still small enough in order to be
solved efficiently by the ILP solver. With growing solution size (which implies also a
growing sub-instance size) this becomes more and more difficult. This is indicated by
the increase of the value of parameter dyae (determinism rate) with growing alphabet
size (see Table . This means that, with growing alphabet size, the CMSA algorithm
is forced to work with an increasing value of d,te which causes the sub-instance size
to decrease and, at the same time, the chances to find an improving solution in the
sub-instance to decrease as well. Finally, note that the search space in the case |X| = 36
is characterised by a high degree of neutrality, which is indicated by the clusters of
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solutions (remember that our merged MLON graphics show both, transitions to better
solutions, and non-accepted transitions to solutions with the same quality than the
current solution).

Finally, in addition to observing the changing behaviour of both CMSA and LNS over the
range of different instances (from those with small solutions to those with large solutions)
both in the MLON metrics and in the merged MLON graphics, it is also possible to observe
differences between the algorithms that are maintained over all considered instances. This
concerns, for example, the Mean Hamming distance of the transitions in the studied MLONSs.
CMSA shows always a higher mean Hamming distance than LNS, that is, CMSA is generally
able to perform larger jumps in the search space. This seems to pay off in the case of instances
with rather small solutions, while this does not seem to be the case in for instances with rather
large solutions.

In summary, we can state that our initial intuition about the differences in algorithm
behaviour between CMSA and LNS are supported by the obtained experimental results.
Moreover, merged MLON graphics and the metrics of the individual MLLONs are useful tools
for the (comparative) study of algorithm behaviour.

4.6 Algorithm Performance without Specialised Tuning

The results presented so far were based on a fine-grained tuning of both algorithms for each
combination of instance size and instance tightness (in the case of the MDKP), respectively
alphabet size (in the case of the MCSP problem). This was done in order to obtain the best
possible performance of each algorithm for each case. However, in practise algorithms are
generally tuned for larger subsets of instances. In order to see if the relative performance of
the two algorithms changes when adopting this general practise, we decided (1) to produce
one single parameter setting per algorithm and problem (MDKP and MCSP problem), and
(2) to repeat the experimentation from Figure For the purpose of tuning we first used
again irace with the same parameter value domains as outlined in Section A total of 2000
algorithm runs were used as budget in irace for each of the four tuning runs (combination of
algorithm and problem). This global tuning resulted in the following parameter value settings
for the MDKP:

e LNS: D! = 0.7, D* = 0.8, D™ = .02, destiype = R, tmax = 12.0.
o CMSA: ny, =9, ageax = 1, drate = 0.6, lgize = 11, tnax = 4.0.

Moreover, the following parameter values were determined by irace for the application to the
MCSP problem:

e LNS: D! =0.5, D* = 0.8, D™ = 0.09, tmax = 20.0.

e CMSA: n, = 16, age =50, drate = 0.2, lgize = 15, tmax = 24.0.

max

Both algorithms were then applied with these parameter values to all problem instances, and
the relative performance of both algorithms is shown in Figure [8, in the same way as the
results obtained with fine-grained tuning from Figure

Curiously, in the case of the MDKP, the observations from Figure (fine-grained tun-
ing) also hold—in an even stronger way—for Figure (global tuning). For what concerns
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the results for the MCSP problem, the observations from Figure still hold (with a few
exceptions) for most alphabet sizes. However, the results for instances with alphabet size 4
(instances with the smallest solutions) have changed, especially for what concerns the smaller
problem instances (n € {400,800}). The reason for this might be that, generally, the param-
eter value settings required by both algorithms for the MCSP problem are highly dependent
on the alphabet size. Therefore, when allowing only one single parameter value setting, it
is only natural that the algorithms’ performance decreases/changes for certain ranges of the
alphabet size.

4.7 Comparison to the Current State of the Art

Even though the main aim of this paper is not the comparison to the current state of the art
concerning the MDKP and MCSP problems, we also want to shed some light on this aspect.
In the case of the MCSP problem, note that the considered CMSA algorithm is currently the
state-of-the-art approach [7]E] Therefore, no additional experiments are required in the case
of the MCSP problem.

In order to demonstrate the performance of both CMSA and LNS for the MDKP, both
algorithms were applied with a time limit of 200 seconds per run to all 30 benchmark in-
stances with 500 items and 10 resources from the OR-Library (http://people.brunel.ac.
uk/~mastjjb/jeb/info.html). These instances, which are from the set by Chu and Beasley,
are generally said to belong to the most difficult ones used in the literature. Each algorithm
was applied 100 times to each problem instance in order to be comparable to the results
from [30], which is one of the most recent works from the literature. Moreover, the param-
eter settings obtained by global tuning (see Section were used for this purpose. The
results of CMSA and LNS are compared with the ones of the DQPSO algorithm from [30)]
and the TPTEA algorithm from [31I]. Both DQPSO and TPTEA can currently be regarded
as state-of-the-art metaheuristic MDKP solvers. The results are presented in Table [1 The
first column contains the instance name. The next four columns (with the general heading
“best”) provide the value of the best solution found by each of the four algorithms within 100
runs. Furthermore, the following four columns (with the general heading “average”) contain
the average solution quality obtained over 100 runs. And finally, the last four columns (with
the general heading “average time”) show the average computation times needed by each al-
gorithm to find the best solutions of each run. As a general conclusion, it can be stated that
both CMSA and LNS obtain results that are comparable to the state of the art. In fact, both
algorithms have a slightly better best-performance than current state-of-the-art algorithms,
while their average performance is slightly worse. In terms of computation time, both LNS
and CMSA are comparable to DQPSO, and much faster than TPTEA.

5 Conclusions and Future Work

In this work we have performed a comparative analysis of two hybrid algorithms for combi-
natorial optimisation: (1) a variant from the well-established family of large neighbourhood
search algorithms, and (2) construct, merge, solve & adapt, which is a more recent method.
Both algorithms work in an iterative way, solving reduced problem instances at each itera-
tion. The main difference between the two algorithms is to be found in the way in which

5The aim of the follow-up work from [4] was to make CMSA applicable to large-scale problem instances.
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these reduced problem instances are generated.

Our computational study in the context of two subset selection problems has supported
our intuition about the relative behaviour of the two algorithms. This intuition states that
construct, merge, solve & adapt would generally outperform the chosen large neighbourhood
search variant in the context of problem instances with rather small solutions, and that
the opposite would be the case when instances with large solutions are concerned. While
this intuition was only partially supported by the results for the multidimensional knapsack
problem, it was fully supported by the results obtained for the minimum common string
partition problem. Note that this holds with respect to the chosen large neighbourhood
search variant. The relative behaviour of construct, merge, solve & adapt and other large
neighborhood search variants might be different.

The comparative study of the two algorithms was supported by the study of merged
local optima networks that graphically show the behaviour of 10 runs of both algorithms for
single problem instances, and by metric values computed from the individual local optimal
networks. This way of comparing algorithm behaviour has been found to be very useful for
the interpretation of the obtained results. In fact, a further study of merged local optimal
networks is, in our opinion, the most promising avenue for future work. We are convinced
that this type of graphical tools will play an important role in future studies on algorithm
behaviour.
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Appendix A: Tuning results for the MDKP

Table 2: Parameter settings of CMSA concerning the MDKP.

(a) MDKP instances with n € {100,500,1000} (n refers to the number of items).

« n = 100 n = 500 n = 1000

Na  a9may  rate  lsize lmax | Ma  a9€max  drate  lsize lmax | Ma  09€max  drate  lsize  tmax
01| 8 20 0.5 10 5.0 |17 5 0.5 12 8.0 | 17 5 0.4 8 3.0
02| 8 1 02 9 20|11 1 08 16 80 |5 1 08 14 90
03] 5 5 0.5 19 30 |14 10 0.4 3 6.0 | 10 1 0.5 17 6.0
04 4 1 07 10 20 |13 1 04 19 1.0 |10 1 06 18 6.0
05| 7 1 07 4 10|16 1 09 8 40 |19 10 05 3 120
0.6 | 12 1 0.2 15 2.0 8 1 0.5 17 2.0 3 5 0.4 10 3.0
07| 8 10 08 3 10 |11 1 03 20 20 | 4 5 04 20 30
0.8 | 11 5 01 17 40 | 4 1 06 10 1.0 |7 1 05 10 3.0
09| 8 5 0.0 13 2.0 7 5 0.2 20 1.0 3 5 0.4 9 3.0

(b) MDKP instances with n € {5000, 10000} (n refers to the number of items).

« n = 5000 n = 10000

Na  09€max  Grate  lsize tmax | Ma  09€ax  drate  lsize  tmax
01] 6 1 0.3 6 4.0 | 4 5 0.7 11 120
021 3 1 0.3 3 40 | 5 1 0.7 7 6.0
03] 4 5 06 10 80 | 6 1 02 11 6.0
0.4 |10 1 0.0 9 40 | 8 1 06 16 6.0
051] 9 1 0.1 15 40 |11 1 02 15 6.0
0.6 | 13 1 00 20 4.0 | 8 1 0.7 19 180
071 4 5 06 17 80 | 6 5 05 16 6.0
08| 4 5 06 12 80 |10 5 0.1 15 12.0
091 4 1 08 10 4.0 |9 1 05 13 120

Table 3: Parameter settings of LNS concerning the MDKP.

(a) MDKP instances with n € {100,500, 1000} (n refers to the number of items).

« n = 100 n = 500 n = 1000

D' D% D™ destype tmax | D' DY D™ destype twmax | D' D' D™ destiype tmax
01109 09 R 50 |07 0.8 0.06 R 2.0 [0.7 0.9 0.06 R 3.0
0207 09 0.02 R 60 |08 08 B () 10.0]05 09 0.02 R 3.0
0309 09 - R 30 |08 08 R 80 |08 08 R 3.0
04108 09 003 R 1.0 | 0.6 0.8 0.03 R 2.0 |06 0.9 001 R 3.0
0502 07 0.08 R 1.0 |07 07 R 1.0 |08 08 - R 3.0
0607 08 008 R 1.0 | 0.7 0.7 R 40 |08 0.9 001 R 3.0
0702 05 009 B() 30|01 06 006 B() 60 |07 08 001 R 3.0
0806 08 0.01 R 40 |02 02 - B(5) 10.0 [0.1 09 005 B(10) 6.0
091]02 08 006 R 40 |01 04 004 B(2) 80 03 05 001 B(3) 90

(b) MDKP instances with n € {5000, 10000

—
—~

n refers to the number of items).

a 7 = 5000 7 = 10000

D' D' D" destype tmax | D' D' D™ destiype tmax
01[07 09 004 R 80 |07 09 003 R 60
02105 09 003 R 40 |08 08 - R 6.0
03]08 09 003 R  120[07 09 008 R 120
0406 09 006 R 40 [06 09 008 R 60
05|08 08 R 80 |07 09 004 R 6.0
06|08 09 007 R  120|07 07 - R 60
07107 09 005 R 40 [07 07 - R 120
08|01 08 003 B(3) 160[07 09 004 R 120
09]03 09 003 B(5) 240[08 09 003 R 60
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Appendix B: Tuning results for the MCSP problem.

Table 4: Parameter settings of CMSA concerning the MCSP problem.

(a) MCSP instances with n € {400, 800,1200} (n refers to the input string length).

] n = 400 n = 800 n = 1200

Na  a9may  rate  lsize lmax | Ma  a9€max  drate  lsize lmax | Ma  09€max  drate  lsize  tmax
4]18 10 06 5 60 ]18 5 01 2 100]17 10 00 2 120
8117 10 05 19 40 | 7 20 00 5 10010 10 00 5 150

12119 10 00 20 40 |7 5 0.1 10 4.0 | 4 5 01 5 180

16 | 18 20 0.0 20 3.0 |16 50 08 17 10.0 | 18 1 0.0 13 150
20| 14 20 00 18 3.0 |20 20 06 20 80 |9 5 02 15 15.0
2419 50 0.1 20 5.0 |18 10 02 19 100 |11 5 04 18 9.0
28 | 16 50 00 19 1.0 |16 inf 00 20 20 |19 5 08 15 12.0
32| 8 03 14 3.0 |17 50 0.1 19 6.0 |15 20 03 20 15.0

1
36| 7 5 01 14 6.0 |20 inf 02 19 40 |16 20 04 19 6.0

(b) MCSP instances with n € {1600,2000} (n refers to the input string length).

3] n = 1600 n = 2000
Na  09€max  Grate  lsize tmax | Ma  09€ax  drate  lsize  tmax
415 10 0.0 3 20.0 | 10 inf 0.5 4 12.0
8|11 inf 0.0 4 240 9 5 0.0 4 36.0
12| 16 1 0.0 9 240 | 4 10 0.0 9 36.0
16 | 14 1 0.0 9 200 | 5 5 0.0 7 36.0
20 | 13 1 0.1 11 240 | 4 5 0.0 12 320
24117 1 0.1 11 240 3 5 0.0 8 32.0
28 | 17 10 0.8 19 240 | 11 1 0.1 14 36.0
32118 5 0.4 20 20.0 | 12 5 0.3 15 32.0
36 | 19 10 0.7 18 8.0 | 14 inf 0.8 19 36.0

Table 5: Parameter settings of LNS concerning the MCSP problem.

(a) MCSP instances with n € {400,800, 1200} (n refers to the input string length).

= n =400 n = 800 n = 1200
D! D* D™ tue | D' D* D™ty | D' D' D™t
1706 07 009 60 |05 05 100 |04 04 180
807 09 007 60 |06 09 001 100|05 0.6 006 150
12009 09 - 40 |07 07 - 80 |05 08 005 180

16 |1 0.7 0.9 005 20 |07 09 004 10006 0.7 0.05 12.0
20 (0.7 09 001 1.0 |09 09 - 10.0 | 0.7 0.9 0.01 18.0

24107 09 007 6.0 |09 09 6.0 |08 09 005 18.0
28108 08 - 3.0 08 09 002 60 |09 09 - 15.0
32108 08 - 40 107 09 0.03 10.0]09 09 - 18.0
36|05 06 0.07 30|09 0.9 6.0 |09 09 6.0

(b) MCSP instances with n € {1600,2000} (n refers to the input string length).

3] n = 1600 n = 2000
pl pv pmwe 4. | pi pv pime g
4103 04 0.05 16.0 |02 03 0.08 320
8104 0.7 0.02 240 |04 04 - 36.0
12105 0.8 0.03 20004 04 18.0
16 | 0.5 0.5 - 12.0 | 0.5 0.6 0.08 32.0
20|06 0.6 24.0 1 0.6 0.6 36.0
24107 09 006 20006 0.7 0.05 180
28 108 0.8 - 24.0 1 0.7 0.7 - 36.0
32109 09 20.0 [ 0.7 0.8 0.09 36.0
36 109 09 - 20.0 1 0.9 0.9 - 36.0
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