
1  |   INTRODUCTION

Moving safely through the environment while walking re-
quires continual monitoring and adjustment of planned 

behaviour, including the ability to make fast online motor 
transformations in response to dynamic changes such as 
the appearance of unexpected obstacles. The skill of nego-
tiating the constraints of the environment while walking is 
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Abstract
The ability to safely negotiate the world on foot takes humans years to develop, reflecting 
the extensive cognitive demands associated with real-time planning and control of walk-
ing. Despite the importance of walking, methodological limitations mean that surpris-
ingly little is known about the neural and cognitive processes that support ambulatory 
motor control. Here, we report mobile EEG data recorded from 32 healthy young adults 
during real-world ambulatory obstacle avoidance. Participants walked along a path 
while stepping over expected and unexpected obstacles projected on the floor, allowing 
us to capture the dynamic oscillatory response to changes in environmental demands. 
Compared to obstacle-free walking, time–frequency analysis of the EEG data revealed 
clear neural markers of proactive and reactive forms of movement control (occurring 
before and after crossing an obstacle), visible as increases in frontal theta and centro-
parietal beta power respectively. Critically, the temporal profile of changes in frontal 
theta allowed us to arbitrate between early selection and late adaptation mechanisms of 
proactive control. Our data show that motor plans are updated as soon as an upcoming 
obstacle appears, rather than when the obstacle is reached. In addition, regardless of 
whether motor plans required updating, a clear beta rebound was present after obsta-
cles were crossed, reflecting the resetting of the motor system. Overall, mobile EEG 
recorded during real-world walking provides novel insight into the cognitive and neural 
basis of dynamic motor control in humans, suggesting new routes to the monitoring and 
rehabilitation of motor disorders such as dyspraxia and Parkinson's disease.
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inherently complex; it develops slowly throughout infancy 
(Mowbray & Cowie, 2020) and is progressively lost in aging 
and motor impairments such as Parkinson's disease (Holtzer 
et  al.,  2014; Peterson & Horak,  2016). The gradual reduc-
tion in cognitive resources and motor control that occurs with 
aging and disease means that it becomes increasingly difficult 
to respond effectively to obstacles that are encountered while 
walking. Indeed, falls associated with stumbling or tripping 
over objects represent a critical factor in the increased mor-
tality rates that are seen for elderly and neurological patients 
(Kovacs, 2005; Tinetti et al., 1988; Weerdesteyn et al., 2006). 
Given the complexity and fragility of the processes involved 
in walking, it is clearly important to identify the neural pro-
cesses supporting cognitive control during walking and ob-
stacle avoidance, generating new targets for clinical practice 
(Alexander & Hausdorff, 2008; Peterson et al., 2016).

Over the last decade, growing research interest in human 
ambulation has led to the extensive recording of EEG (the 
electroencephalogram) during active walking on tread-
mills (Petersen et  al.,  2012; Severens et  al.,  2012; Gwin 
et al., 2010; Gwin et al., 2011; Gramann et al., 2011; Wagner 
et al., 2012; Wagner et al., 2016; Wagner et al., 2019; Seeber 
et al., 2014; Seeber et al., 2015). Recorded from electrodes 
placed on the scalp, EEG provides a non-invasive representa-
tion of oscillatory brain activity produced during task perfor-
mance, allowing the identification of functionally dissociable 
cortical mechanisms that drive human behaviour (Buzsáki & 
Draguhn, 2004). To date, EEG studies of walking have re-
vealed the activation of several ‘prefrontal’ brain signals that 
are activated during the approach to an obstacle, explained 
as the recruitment of additional cognitive resources. For 
example, Haefeli et al.  (2011) recorded EEG while partici-
pants walked on a treadmill, finding increased activity over 
frontal areas in response to an acoustic signal that warned 
of upcoming obstacles. Similar findings have been reported 
using mobile functional near-infrared spectroscopy (fNIRS). 
For example, Maidan et al. (2018) reported a higher hemo-
dynamic response in the prefrontal cortex when participants 
had to prepare to step over unanticipated obstacles (compared 
to hemodynamic responses during normal walking), indepen-
dent of the size of the objects. These findings have been ex-
tended by a recent EEG investigation of walking on a treadmill 
(Nordin et al., 2019). Nordin et al. reported increased power 
in low-frequency oscillations (ranging from 3 to 13 Hz, i.e., 
delta, theta and alpha) while participants walked at differ-
ent speeds and stepped over foam obstacles (appearing from 
behind a curtain placed at the front of the treadmill). These 
oscillatory brain changes were widespread across the scalp, 
with source localisation suggesting the engagement of a dis-
tributed cortical network (i.e. supplementary motor, premo-
tor and posterior parietal areas). Furthermore, on the basis of 
timing information, Nordin et al. (2019) argued that obstacle 
avoidance involved identifying the obstacle and interrupting 

the gait cycle (associated with early engagement of premotor 
and supplementary motor areas) and then planning the foot 
placements required to cross the obstacle (associated with 
later activation of posterior parietal cortex).

Wider interest in the processes involved in goal-directed 
behaviour have led to the development of theoretical models 
of cognitive control—and these models provide a framework 
for understanding ambulatory control. Notably, studies of 
cognitive control by Braver (Braver, 2012; see also Pezzullo 
& Ognibene, 2012) have characterised two broad stages of 
control processing. First, when a behaviour is planned, pro-
active control processes are employed to respond to poten-
tial sources of interference, allowing the original goal to be 
reached. Importantly, in theory, proactive control processes 
can occur at different times, reflecting either early selection 
or late adaptation of planned behaviour. Second, after an un-
expected event has occurred, reactive control processes are 
employed to allow recovery from the interference and re-
turn to the original goal. Markedly similar distinctions be-
tween proactive and reactive control mechanisms have also 
emerged from studies on human balance (Bhatt et al., 2018; 
Horak, 2006; Shumway-Cook & Woollacott, 2007). Proactive 
strategies are used to anticipate the loss of balance (due to 
some source of interference), when the body has enough 
space and time to predict the upcoming interference and ad-
just motor plans. By contrast, reactive strategies involve com-
pensatory adjustments to restore postural control and balance 
after unexpected events.

Although the theoretical distinction between proactive 
and reactive control strategies was not developed in relation 
to ambulatory control per se, the distinction is nonetheless 
clearly relevant for understanding the processes supporting 
obstacle avoidance during walking. Indeed, the neural signals 
observed in studies of treadmill walking can be readily inter-
preted within this ‘dual mode’ framework (Dual Mechanisms 
of Control, Braver, 2012). For example, Nordin et al. (2019) 
reported modulation of low-frequency oscillations linked to 
supplementary motor cortex and posterior parietal cortex. 
Both signals occurred before unexpected obstacles, consis-
tent with the operation of a proactive control mechanism that 
allows planned behaviour to be refined. Moreover, the timing 
of the posterior parietal signal suggests that the adjustment 
was made shortly before the obstacle was encountered, which 
is suggestive of a late adaptation form of proactive control.

To our knowledge there is no equivalent evidence of 
EEG markers of reactive control during obstacle avoidance. 
However, there is wide evidence for reactive control mech-
anisms after movement. For example, EEG studies have re-
vealed post-movement increases in beta power (13–30 Hz), 
described as the beta rebound, a marker of reactive control 
(Liebrand et al., 2017). Evidence from the wider literature on 
movement control reveals that beta power over sensory motor 
regions is enhanced when the predictions of an incoming 
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stimulus are violated (Arnal et al., 2011) and after forcibly in-
terrupted movements (Alegre et al., 2008; Heinrichs-Graham 
et al., 2017), suggesting a mechanism that re-calibrates the 
motor system after a movement (Engel & Fries, 2010; Kilavik 
et al., 2013; Pfurtscheller et al., 1996). Thus, although reac-
tive control mechanisms have not been demonstrated during 
obstacle avoidance, changes in beta power may index the op-
eration of such mechanisms.

The recent emergence of mobile EEG (Gramann 
et al., 2011, 2014; Ladouce et al., 2017; Makeig et al., 2009) 
represents a particularly important development for research-
ers interested in walking, not least because mobile tech-
niques significantly extend the range of contexts in which 
brain signals can be studied (e.g. see Park et al., 2018; Park 
et al., 2015). Critically, using mobile EEG technology makes 
it possible to monitor the brain while participants navigate 
natural environments, taking walking research away from 
the use of treadmills and out of the laboratory (see Ladouce 
et al., 2019; Park & Donaldson, 2019, for recent examples). As 
a result, the neuro-cognitive processes supporting walking can 
now be studied in the real world, offering an entirely new em-
bodied perspective to the understanding of human behaviour 
and motor impairments (which had been previously limited 
to non-ecological settings and fairly uninformative tasks; cf. 
Ladouce et al., 2017; McFadyen et al., 2017). Furthermore, 
the high temporal resolution of EEG (i.e. millisecond accu-
racy), combined with wireless portability, makes mobile EEG 
ideally suited to capturing the rapid cortical responses that 
occur in response to dynamic stimuli (Makeig et al., 2009).

As far as we are aware, currently there is no direct evidence 
for EEG markers of proactive and reactive control processes 
during real-world ambulatory obstacle avoidance. Thus, our 
primary aim in the current study is to ask whether it is possi-
ble to identify neural signals of proactive and reactive control 
during real-world obstacle avoidance. To address this issue, 
we recorded EEG while participants walked freely along a 
10-m-long path. Critically, we manipulated the presentation 
of obstacles across trials, providing participants with more 
or less time and space to prepare for a response to the obsta-
cle. Obstacles were absent, always present at the start of the 
action, or appeared up ahead after a short or long delay. In 
addition, we manipulated the available time and space that 
participants had to adjust their gait when negotiating the en-
vironment, while allowing the walking task to remain as nat-
ural as possible. Based on the literature reviewed above, and 
as a test of the dual-mode framework (Braver, 2012), we pre-
dicted that distinct proactive and reactive control mechanisms 
should be identifiable based on their temporal dynamics.

As well as demonstrating that neural markers of move-
ment control can be identified during natural walking, we 
also examined two specific hypotheses. First, by varying the 
time and space that participants had to prepare for an ob-
stacle we were able to arbitrate between early selection and 

late adaptation mechanisms of proactive control. Current 
evidence (cf. Nordin et al., 2019) is not sufficient to differ-
entiate between early and late proactive control mechanisms 
before an obstacle is overcome. Here, we predict that pro-
active control processes will operate as soon as information 
about an upcoming obstacle becomes available (i.e. early 
selection). Put simply, the high temporal resolution of EEG 
data should allow us to reveal the precise temporal dynamics 
of proactive control during walking. Second, by varying the 
opportunity to anticipate and prepare before adjusting to an 
obstacle, we aimed to test whether reactive control processes 
during walking are indexed by changes in beta power (the 
so-called beta rebound). That is, we tested whether reactive 
control processes are specifically associated with recovery 
after a change in a motor plan, in order to reset the previous 
state. As we show below, mobile EEG does indeed capture 
and characterise the dynamic engagement of proactive and 
reactive control processes during real-world ambulatory ob-
stacle avoidance.

2  |   MATERIALS AND METHODS

This study was approved by the local ethics committee and 
conformed to standards set by the Declaration of Helsinki. 
Thirty-two healthy participants (21 females and 11 males; 
age range = 19–65; mean age = 32.1 years, SD = 11.6 years) 
took part in the experiment. All participants were right 
handed (self-reported) and gave their written informed con-
sent before the experiment.

The experimental design involved four conditions (as 
depicted in Figure 1) in which participants walked along a 
10-m-long carpet, passing through a series of infrared laser 
beams that recorded their location and controlled the pre-
sentation of obstacles (visible as a coloured patch projected 
onto the floor that had to be stepped over). In the “no adjust-
ment” condition, no obstacle was presented, and participants 
simply walked across the room. In the “preset adjustment” 
condition, obstacles were present at the start of each trial, 
placed at a fixed location 250 cm from the first laser beam. 
In the “immediate adjustment” condition, walking through 
the laser beam would trigger the presentation of an obstacle, 
displayed 160 cm in front of the participant. Finally, in the 
“delayed adjustment” condition, walking through the laser 
beam once again triggered the presentation of an obstacle, 
presented 310 cm in front of the participant. The participants 
were always instructed to walk straight across the room, to 
maintain a comfortable pace and to step over any obstacle 
presented in front of them. Each crossing of the room corre-
sponded to an individual trial, and on reaching the end of the 
carpet participants were asked to turn around and walk back 
across the room in the same way. The video projector and 
laser beams were arranged to allow data collection in both 
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directions. Participants completed a total of 240 trials di-
vided into six experimental blocks. Each block lasted around 
5 min. All conditions were presented with equal probability. 
Participants were given 5–10 min breaks between each ex-
perimental block, and were encouraged to request additional 
breaks during each block should they need this. Any system-
atic influence of fatigue on the data was further minimised 
through randomisation of condition order across partici-
pants. The overall experimental session lasted approximately 
90 min, including preparation, recording and breaks between 
experimental blocks.

The obstacle was presented as a white stripe (40x80cm) 
projected on a 10-m-long carpet. The obstacle presentation 
was controlled with a system interfacing two fixed motion 
sensors, placed at 230 cm from both ends of the carpet (direct-
ing infrared laser beams across the room, through which par-
ticipants would pass). Stimulus presentation was controlled 
using E-prime 3.0 software (Psychology Software Tools) 
and a projector. The motion sensors were designed to send 
an input signal to the stimulus presentation software running 
on a laptop, using the Auxiliary I/O port of a Chronos re-
sponse device (Psychology Software Tools). The laptop was 

connected to a projector placed at the side of the carpet. The 
presence and location of the obstacle presented varied on a 
trial-by-trial basis, depending on the experimental condition.

During each trial, the experimenter manually marked two 
main events (as illustrated in Figure 1): the moment that the 
participant crossed the beam (‘Approach’) and the moment 
when the participant was over the obstacle (‘Crossing’). 
These two points provided temporal markers for use within 
the analysis of the EEG data that identified a planning phase 
(before the obstacle was encountered) and a resetting phase 
(after the obstacle was encountered).

Participants also wore foot sensor insoles (Pedar-x System, 
novel.de), a bluetooth pressure distribution measuring system 
for monitoring local loads between the foot and the shoe. The 
data of gait parameters were not recorded in all participants 
of this study and are not reported here.

2.1  |  EEG acquisition and analysis

EEG data were recorded from 32 Ag/AgCl electrodes con-
nected to a portable amplifier (ANT-neuro, Enschede, The 

F I G U R E  1   Panel a) Representation of the experimental conditions, indicated with different colors (from top to bottom, respectively: blue, 
preset adjustment; red, delayed adjustment; black, immediate adjustment; green, no adjustment). For each condition, the median duration (in ms) of 
the planning phase (between participants) is reported inside each path between the approach and the crossing dashed lines. Panel b) Photograph of a 
participant, wearing the mobile EEG equipment, as they cross an obstacle 
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Netherlands). Electrodes were positioned according to the 
International 10–20 system (FP1, FPz, FP2, F7, F3, Fz, F4, 
F8, FC5, FC1, FC2, FC6, M1, T7, C3, Cz, C4, T8, M2, 
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2) 
with AFz electrode as ground and CPz electrode as refer-
ence. The electrode impedances were reduced below 5 kΩ 
before the recording. During recording EEG data were sam-
pled at 500 Hz and bandpass filtered at 0.01–250 Hz. EEG 
data analyses were performed using custom scripts writ-
ten in MATLAB 2019a (The MathWorks) incorporating 
EEGLAB toolbox (Delorme & Makeig,  2004). Data from 
the mastoid channels (M1 and M2) were removed from the 
analysis, and all remaining EEG data were filtered using a 
0.1 to 40 Hz bandpass filter. EEG channels with prominent 
artefacts were automatically selected (kurtosis > 5 SDs) and 
interpolated, and all channels were then re-referenced to the 
average.

An extended infomax Independent Component Analysis 
(ICA, Makeig et  al.,  1996) was performed to identify and 
remove non-brain signals. Artifactual ICs scalp maps were 
selected through SASICA (Semi-Automated Selection of 
Independent Components of the electroencephalogram for 
Artifact Correction, Chaumon et  al.,  2015) combined with 
the ADJUST (Automatic EEG artefact Detection based on 
the Joint Use Of Spatial and Temporal features, Mognon 
et  al.,  2011) and MARA (Multiple Artifact Rejection 
Algorithm, Winkler et  al.,  2011) plugins. These methods 
provide objective means of evaluating artifactual signals that, 
due to their multi-dimensionality and heterogeneity, can be 
difficult to interpret and identify in raw EEG. Consequently, 
we used the following measures: Autocorrelation, Focal 
Components, Signal-to-Noise Ratio, Dipole Fit Residual 
Variance, Correlation with other channel(s), ADJUST and 
MARA. Detailed descriptions of each of these methods are 
available in the wider literature, however, for clarity here we 
briefly describe what each procedure achieves, highlighting 
any parameter settings employed.

The ‘Autocorrelation’ measure detects noisy compo-
nents with weak autocorrelation (e.g. muscle artefacts) 
with a threshold of 2 SDs and a lag of 20 ms. The ‘Focal 
Components’ measure detects components that are too focal 
and thus unlikely to correspond to neural activity (e.g. bad 
channels or muscle artefacts) with a threshold of 2 SDs. The 
‘Signal-to-Noise Ratio’ measure (0-Inf, -Inf 0, threshold 
ratio = 1) is used to identify components with weak signal-to-
noise ratio that occur between the baseline and the time win-
dow of interest. The ‘Dipole Fit Residual Variance’ measure 
(threshold  =  15%) detects components with high residual 
variance after subtraction of the forward dipole model. The 
‘Correlation with other channel(s)’ measure detects compo-
nents whose time course correlates with any channel(s), with 
a threshold of 4 SDs. The ADJUST (Mognon et  al.,  2011) 
and MARA (Winkler et  al.,  2011) plugins automatically 

compute spatial and temporal features (using pre-set param-
eters) to classify components as artefacts. The resulting ICs 
scalp maps (or topographies) were further visually inspected 
to identify ICs with low residual variance (<15%). Across 
conditions an average (mean ± SD) of 5.85 ± 1.97 of non-
artifactual ICs were retained for analysis.

After artefacts were removed, the remaining data were 
segmented into epochs relative to the step over the obstacle 
(i.e. the ‘Crossing’ event, which was defined as time 0), 
producing a −3,500  ms to 2,000  ms time window. Since 
the latency of different trials was affected by a great deal 
of variability within and between participants, single-trial 
spectrograms were time warped to the median latency 
(across participants) of the ‘Approach’ event using linear 
interpolation. In order to have the same number of trials, 
40 trials were randomly selected for each condition. Epochs 
that exceeded the bounding values within the epochs, that 
is, in which the latency of the ‘Approach’ event exceeded 
the limit of −2,500 ms from the ‘Crossing’, were excluded 
(i.e. trials in which the participant was very slow to walk 
along the carpet). Epochs were further visually inspected 
to identify trials that still appeared to be contaminated by 
prominent muscular artefacts and these were manually 
removed. Across conditions, an average (mean  ±  SD) of 
37 ± 2.07 epochs were included in the subsequent analysis, 
resulting in 7.5% of trials being excluded. Event Related 
Spectral Perturbations (ERSPs) were obtained by comput-
ing the mean difference between single-trial log spectro-
grams for each channel, for each participant, relative to 
the mean baseline spectrum (from −3,000 ms preceding to 
1,500 ms following the obstacle stepping).

2.2  |  Statistical analysis

Midline single-channel spectrograms (Fc, Cz and POz; 
Figure  2) were visually inspected to identify prominent 
changes in the spectral power across conditions. Informed 
by our hypothesis and visual inspection of the topographic 
maps of theta (Figures 3 and 4) and beta (Figure 5) power, we 
identified frontal (FC1, Fz and FC2 channels), central (CP1, 
Cz and CP2) and parietal (P3, POz and P4) locations that 
captured the effects of interest. Finally, in order to examine 
the time course of spectral changes before and after the ob-
stacle, the planning (from −1,750 ms to −250 ms) and the 
resetting (from 250  ms to 1,250  ms) periods were divided 
into a series of successive 500 ms time windows. Three dif-
ferent repeated measures ANOVAs with three within factors 
(Experimental Condition, Time Window and Scalp Location) 
were performed to examine the power modulation across the 
planning and the resetting phases for each frequency band. 
Significance level was set at p < .05 and, where the spheric-
ity assumption was violated, the Greenhouse-Geisser method 
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was used to correct the degrees of freedom. Post-hoc paired 
samples t-tests were adjusted for multiple comparisons using 
Bonferroni correction.

3  |   RESULTS

Midline time warped spectrograms (Figure  2) revealed a 
transient change in the spectral power of theta (4–7 Hz) and 

beta (13–35  Hz)1 frequency bands, occurring after the 
‘Approach’ and before ‘Crossing’ and differently distributed 
across conditions. Below the results for each frequency band 

 1Analysis of alpha (8–12 Hz) oscillations is not included in this manuscript 
in order to focus analysis on the more prominent theta and beta bands. 
However, for interest, alpha oscillations mirror the patterns of theta 
oscillations that we report here.

F I G U R E  2   Time warped spectrograms at electrodes Fz, Cz, and POz for each experimental condition. Vertical solid black lines represent the 
‘Approach’ (APP) and the ‘Crossing’ (CR, time 0) events, respectively. Vertical dashed lines represent time windows included in the analysis. On 
the x-axis (time in ms), the median latencies of the timing of the Approach point are reported for each condition. The lowest frequency shown is 
3 Hz, the highest is 35 Hz. Colors indicate the relative change of power from the baseline (%). Blue colors represent decrease of power; red colors 
indicate increase of power

F I G U R E  3   Topographic maps 
illustrating the temporal dynamics of theta 
power across conditions and time windows. 
The dashed rectangle around the scalp maps 
before time 0, indicates the time windows 
included in the planning phase 

MUSTILE ET aL.    | 8111

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


are presented separately for the planning and the resetting 
phases.

3.1  |  Planning

3.1.1  |  Theta

The ANOVA indicated that changes in the theta spectral 
power were significantly different across experimental con-
ditions [F(1,31)  =  14.645, p  <  .001, �2

p  =  0.321]. Post-hoc 
paired sample t-tests revealed that the theta increase was sig-
nificantly stronger both in the immediate adjustment [imme-
diate vs. no adjustment: t(31) = 6.150, p < .001; immediate vs. 
pre-set: t(31)  =  5.374, p  <  .001; immediate vs. delayed: 
t(31) = 2.142, p < .05] and in the delayed adjustment condi-
tion [delayed vs. no adjustment: t(31)  =  −4.235, p  <  .001; 

delayed vs. pre-set: t(31) = −2.811, p < .01], but similar in the 
pre-set adjustment and no adjustment conditions (p = .375). 
A main effect of Scalp Location [F(1,31) = 8.302, p < .001, 
�

2
p = 0.211] revealed that the theta increase was more pro-

nounced at frontal compared to parietal [t(31)  =  3.733, 
p < .001] and central [t(31) = −2.154, p < .05] electrodes, and 
decreased strongly in parietal compared to central 
[t(31) = 2.138, p < .05] electrodes.

A significant interaction between Experimental Condition 
and Time Window [F(1,31) = 37.313, p < .001, �2

p
 = 0.546; 

Figures 2 and 3] confirmed that the timing of the increase 
in theta power was consistent with the appearance of the ob-
stacle in the immediate and delayed adjustment conditions. 
As shown in Figure 3, a significantly stronger theta increase 
occurred firstly in the delayed adjustment after the obstacle 
appeared [−1,750 ms to −1,250 ms; delayed vs. no adjust-
ment: t(31)  =  −6.007, p  <  .001; delayed vs. pre-set: 

F I G U R E  4   The time course of 
percentage changes from the baseline 
in theta power across the experimental 
conditions (group mean, with standard 
errors indicated by shading) shown for a 
representative electrode (FC1). Dashed 
lines represent the median latency of the 
‘Approach’ event, that matches the same 
color of the conditions indicated by the 
key. Solid vertical black line indicates 
the ‘Crossing’ event (time 0). The black 
rectangle indicates the time windows 
included in the analysis of the planning 
phase 

F I G U R E  5   Topographic maps 
illustrating the temporal dynamics of beta 
power across conditions and time windows. 
The dashed rectangles around the scalp 
maps before and after time 0, indicates the 
time windows included in the planning and 
in the resetting phase respectively
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t(31)  =  −4.150, p  <  .001; delayed vs. immediate: 
t(31) = −5.598, p < .001] and decreased more in the immedi-
ate compared to pre-set adjustment condition [t(31) = −3.248, 
p  <  .01]. In the following time window (−1,250  ms to 
−750 ms), the theta increase became stronger in the immedi-
ate adjustment condition [immediate vs. no adjustment: 
t(31) = 4.922, p < .001; immediate vs. pre-set: t(31) = 4.432, 
p < .001] but was still present in the delayed adjustment con-
dition [delayed vs. no adjustment: t(31) = −6.052, p < .001; 
delayed vs. pre-set: t(31) = −3.345, p < .01]. In the last time 
window the theta increase was stronger in the immediate ad-
justment condition [immediate vs. no adjustment: 
t(31) = 5.902, p < .001; immediate vs. pre-set: t(31) = 6.904, 
p < .001; immediate vs. delayed: t(31) = 10.882, p < .001], 
but the decrease was stronger in the delayed adjustment con-
dition [delayed vs. no adjustment: t(31) = 7.586, p <  .001; 
delayed vs. pre-set: t(31) = 2.163, p < .05] and in the pre-set 
adjustment conditions [pre-set vs. no adjustment: 
t(31) = 3.602, p < .001]. Post-hoc t-tests revealed no statisti-
cal differences between pre-set adjustment and no adjust-
ment conditions during the first two time windows (p > .05) 
of the planning phase. No other main effect or interaction 
reached statistical significance (p > .05).

3.1.2  |  Beta

Although the ANOVA did not show a main effect of 
Experimental Condition, the decrease in beta power was 
stronger in the immediate adjustment condition 
(mean = −9.69 ± 7.09 µV), followed by the delayed adjust-
ment condition (mean = −9.08 ± 6.73 µV), the pre-set ad-
justment condition (mean  =  −8.34  ±  6.72  µV) and no 
adjustment condition (mean  =  −5.43  ±  7.28  µV). A main 
effect of Scalp Location [F(1,31) = 4.183, p < .05, �2

p = 0.119] 
revealed that a stronger decrease in beta power occurred in 

central (mean  =  −8.43  ±  4.66  µV) and parietal 
(mean = −8.80 ± 5.03 µV) electrodes compared to frontal 
(mean  =  −7.19  ±  4.82  µV) electrodes, although post-hoc 
paired sample t-tests showed only one statistically significant 
difference [parietal vs. frontal: t(31) = 2.589, p < .05]. A sig-
nificant interaction between Time Windows and Experimental 
Condition [F(1,31)  =  2.919, p  <  .05, �2

p
  =  0.086; Figure  6] 

showed that beta decrease was signifi- cantly stronger in all 
obstacle conditions compared to no adjustment in the last 
time window [−750 to −250 ms; no adjustment vs. immedi-
ate: t(31)  =  −2.876, p  <  .01; no adjustment vs. delayed: 
t(31) = 4.997, p < .001; no adjustment vs. pre-set: t(31) = 3.742, 
p < .001]. A significant interaction between Scalp Location 
and Time Window [F(1,31) = 4,595, p < .01, �2

p
 = 0.129] re-

vealed that beta decrease was initially stronger in parietal 
electrodes [time −1,750 to −1,250 ms; parietal vs. frontal: 
t(31) = 2.219, p < .05] but later (−750 to −250 ms) when the 
participants were approaching the obstacle became stronger 
in central electrodes compared to frontal [t(31)  =  −3.395, 
p < .01] and parietal [t(31) = −3.475, p < .01] electrodes. No 
other main effect or interaction reached statistical signifi-
cance (p > .05).

3.2  |  Resetting phase

3.2.1  |  Beta

The ANOVA revealed a main effect of Experimental 
Condition [F(1,31) = 9.912, p < .001, �2

p
 = 0.242] on beta mod-

ulation during the resetting phase. The increase in beta 
power was stronger in the all obstacle conditions compared to 
no adjustment condition [no adjustment vs. immediate: 
t(31)  =  4.525, p  <  .001; no adjustment vs. delayed: 
t(31)  =  −5.113, p  <  .001; no adjustment vs. pre-set: 
t(31) = −4.062, p < .001]. Additionally, the beta increase was 

F I G U R E  6   The time course of 
percentage changes from the baseline in beta 
power across the experimental conditions 
(group mean, with standard errors indicated 
by shading) shown for a representative 
electrode (Cz). Solid vertical black line 
indicates the ‘Crossing’ event (time 0). 
The black rectangles indicate the time 
windows in which we found significant 
differences between conditions (−750 ms 
to −250 ms and 250 ms to 1,250 ms 
respectively) 
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stronger in the delayed adjustment condition compared to the 
immediate adjustment condition [t(31) = −2.461, p < .05] but 
not compared to pre-set adjustment condition [immediate vs. 
pre-set: p = .839; delayed vs. pre-set: p = .258]. A main ef-
fect of Scalp Location [F(1,31) = 4.028, p < .05, �2

p
 = 0.115] 

revealed that the beta increase was stronger in pa r i e t a l 
compared to central [t(31)  =  −2.143, p  <  .05] and frontal 
[t(31) = −2.143, p < .01] electrodes. No other main effect or 
interaction reached statistical significance (p > .05).

4  |   DISCUSSION

To our knowledge, this is the first mobile EEG investigation 
of real-world ambulatory obstacle avoidance. Our primary 
aim was to assess whether neural signals associated with 
proactive and reactive forms of cognitive control could be 
detected during naturalistic movements, using the temporal 
dynamics of the neural response to dissociate the cognitive 
processes involved. In short, the results revealed distinct 
neural markers of proactive and reactive control, distin-
guishable in frequency (i.e. in theta or beta, respectively) 
and in time (i.e. present before or after the obstacle, respec-
tively). This neural dissociation is, to our knowledge, the 
first evidence in support of the dual-mode account of cogni-
tive control (cf. Braver,  2012) during real-world walking. 
Furthermore, the temporal dynamics of the neural response 
observed while participants approached an obstacle revealed 
that, within the cognitive process of proactive control, se-
lection is made early. These data are therefore unique in 
identifying a specific time point at which movement prepa-
ration processes occur, a finding that has implications for 
continuous models of proactive motor control (e.g. Pezzullo 
& Ognibene, 2012). Below we discuss the implications of 
these findings for the understanding of each of these con-
trol processes, as well as considering technical and practical 
implications, limitations and recommendations for future 
studies.

We start by focusing on proactive control mechanisms. As 
predicted, the analysis revealed a clear neural marker of pro-
active control: transient increases in theta power over frontal 
scalp locations during the planning phase, consistent with 
the timing of the unexpected obstacles’ appearance on the 
path. Analysis of the spectral EEG data revealed that the in-
crease in theta power was largest when participants had less 
time and space available to change their gait before stepping 
over an obstacle (i.e. in the immediate adjustment condition). 
By contrast, this modulation was substantially absent when 
participants walked without encountering any obstacle (i.e. 
in the no adjustment condition) or when they could see the 
obstacle in advance (i.e. in the pre-set adjustment condi-
tion). Taken together, therefore, the pattern across conditions 
strongly suggests that increases in frontal theta observed 

during walking mark a proactive cognitive control mecha-
nism that is engaged in response to unexpected obstacles.

More importantly, the temporal dynamics of theta showed 
that the increase in power was linked to the appearance of 
the obstacle, suggesting an early selection mechanism is at 
play (Braver,  2012) within proactive control (Pezzullo & 
Ognibene, 2012). Nordin et al. (2019) investigated the brain 
dynamics during obstacle avoidance, and concluded that 
changes in posterior parietal alpha, theta and delta power (i.e. 
3–13 Hz) occurred just two steps before the obstacle, provid-
ing support for a late adaptation model of control. Analogous 
oscillatory changes were found by Nordin and colleagues in 
premotor and supplementary motor areas that preceded pos-
terior parietal cortex activation. However, the limited length 
of the treadmill belt in the study by Nordin et al. (2019) pre-
vents safe conclusions from being drawn regarding the tim-
ing of these changes in relation to crossing the obstacle. By 
contrast, the present study clearly demonstrates that increases 
in frontal theta are not related to the time that an obstacle is 
overcome, but instead to the time that the walker becomes 
aware of an obstacle. Thus, the present results provide clear 
evidence in favour of an early selection mechanism underly-
ing proactive control.

According to dual-mode theory, proactive control operates 
through mechanisms which actively maintain relevant infor-
mation until the behaviour is accomplished (Braver, 2012). 
In theory, therefore, the continuous maintenance of goal-
relevant information supporting complex behaviour in the 
real world must require the recruitment of substantial cog-
nitive resources. In situations where a planned action needs 
to be maintained rather than performed immediately, pro-
active control must operate in a flexible and cost-efficient 
manner, updating relevant information to ensure that the ap-
propriate action can take place at the right time (Pezzullo & 
Ognibene,  2012). As noted above, however, in the context 
of negotiating unexpected obstacles, our mobile EEG find-
ings pinpoint the specific timing of frontal theta in relation to 
the appearance of the to-be-avoided obstacle—revealing an 
early selection mechanism within proactive control. Support 
for our account of proactive control can be found in the task 
switching literature (Cooper et al., 2015, 2017, 2019), where 
cognitive control has been divided into two stages: an early 
component, which ensures the preparation and the updating 
of relevant information facing the change, and a later com-
ponent that reflects response readiness (Cooper et al., 2015, 
2017, 2019). Cooper and colleagues found that, in the context 
of task switching, frontal theta reflects an early cognitive con-
trol mechanism. Taken together, therefore, evidence suggests 
that increases in frontal theta power index an ‘early’ proac-
tive mechanism, associated with preparing for an upcoming 
change, regardless of when the action is to be executed.

Having discussed changes in theta power and the tim-
ing of proactive control that occurs before an obstacle is 
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encountered, we now turn to changes in beta power that 
occur as the obstacle is reached. During the planning 
phase, a greater decrease in beta power was observed at 
electrodes over sensorimotor areas when the participants 
had to step over obstacles, compared to when there was 
no obstacle to avoid. As unobstructed walking involves a 
more basic negotiation of one's environment compared to 
obstacle avoidance, the greater decrease in beta band power 
likely reflects a state of increased motor readiness, which 
is needed in order to negotiate the obstacle without inter-
rupting the walking cycle. Furthermore, the magnitude of 
the decrease in beta power was larger over parietal scalp 
locations during the earlier stages of movement, but larger 
at central electrodes when the participants approached the 
obstacle.

Decreases in parietal beta power have previously been 
observed during visually guided step adjustments (Wagner 
et  al.,  2012) and motor preparation of finger movements 
(Mars et  al.,  2007). Central beta power decreases have 
previously been observed in humans during active walk-
ing (Presacco et  al.,  2011; Seeber et  al.,  2014; Wagner 
et al., 2012; Wieser et al., 2010) and cycling (Jain et al., 2013; 
Storzer et  al.,  2016). It is well established that changes in 
beta power over sensorimotor brain regions index motor ac-
tivation, thought to reflect the planning and the execution 
of voluntary movements (Neuper et al., 2006; Pfurtscheller 
& Berghold,  1989; Pfurtscheller & Lopes da Silva,  1999). 
Consequently, the temporal evolution of beta power in the 
present study points towards the operation of a sequential 
mechanism, which initially recruits sensorimotor integra-
tion and spatial representation processes and, at a later stage, 
movement planning processes. Moreover, neither the tempo-
ral evolution nor magnitude of the decrease in beta power 
were notably different when gait adjustments were present 
or were triggered by the presentation of unexpected obsta-
cles. This aspect of the data likely reflects the relatively low 
difficulty of stepping over obstacles in the present study. In 
addition, however, it also suggests that the updating of motor 
plans, presumably reflected in theta increases, is not neces-
sarily reflected in greater primary sensorimotor activity.

We now turn to consideration of processes that occur 
once an obstacle has been negotiated. During the resetting 
phase we observed robust transient power changes in beta 
(the so-called post-movement beta rebound; cf. Jurkiewicz 
et al., 2006; Pfurtscheller et al., 2005; Pfurtscheller & Solis-
Escalante,  2009). The beta rebound is typically observed 
over sensorimotor areas after motor execution or motor 
imagery (Pfurtscheller et  al.,  2005; Pfurtscheller & Solis-
Escalante, 2009) and it is believed to reflect an active recali-
bration process that takes place after a change in the state of 
the motor system (Engel & Fries, 2010; Kilavik et al., 2013; 
Pfurtscheller et al., 1996). Notably, studies of cognitive con-
trol (e.g. during task switching and go/no-go paradigms; see 

Cooper et al., 2019 and Liebrand et al., 2017, respectively) 
suggest the beta rebound seen over prefrontal and senso-
rimotor areas is an index of reactive control (cf. Liebrand 
et al., 2017). Accordingly, the presence of the beta rebound 
in the current study suggests that reactive control processes 
are also engaged during naturalistic walking, to restore the 
motor system to its previous state. Critically, and consistent 
with our hypothesis, increases in beta power were present 
only when gait adjustments were required (in order to step 
over the obstacle), but were absent when there was no obsta-
cle to avoid.

The current study design also allowed us to explore 
whether the beta rebound was modulated by the amount of 
time participants had to adjust their gait. As such, the beta re-
bound may be modulated by the motor demands placed when 
adapting gait. Although the beta rebound was clearly present 
after negotiating the obstacle, this index of recovery was not 
more pronounced when obstacles appeared while walking 
compared to when the obstacle was present at the start of 
the journey. Modulation was also evident when obstacles ap-
peared while walking: the beta rebound was stronger when the 
participants had more time to adjust their gait before stepping 
over the obstacle. Visual inspection of the shape of the beta 
rebound waveform suggests, however, that this effect may be 
due to the fact that the beta rebound was prolonged when 
participants had more time. A recent study has suggested that 
the duration of the beta rebound is increased after temporally 
protracted movements (Fry et  al.,  2016). Accordingly, the 
modulation of beta rebound appears to signify the longer en-
gagement of the motor system when an unexpected obstacle 
appeared at a great distance from the participants.

5  |   PRACTICAL IMPLICATIONS, 
TECHNICAL CONSIDERATIONS 
AND FUTURE DIRECTIONS

The overarching objective of the present study was to dem-
onstrate the relevance and utility of using mobile EEG in 
real-world investigations, in particular for detecting neural 
correlates of natural behaviour that cannot be captured in 
traditional laboratory settings (Gramann et al., 2011, 2014; 
Ladouce et al., 2017; Makeig et al., 2009). Despite extensive 
development of new hardware solutions (i.e. dry electrodes, 
Lopez-Gordo et  al.,  2014, or dual-layer EEG caps, Nordin 
et  al., 2019) and tools for signal processing (i.e. independ-
ent component analysis, Makeig et al., 1996), to date mobile 
technologies have not typically been used to test cognitive 
theories (Ladouce et  al.,  2017). Here, by revealing neuro-
cognitive indices of proactive and reactive control, we show 
that mobile EEG can be used to characterise the complex pat-
tern of processes that are engaged when humans encounter 
obstacles while walking.
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The technical challenges of reducing motion artefacts 
during natural movements, and the need to integrate the infor-
mation from multiple devices, differentiate the mobile EEG 
approach from traditional laboratory-based EEG. A further 
obvious difference lies in the number of channels employed: 
here, we used 32 mobile EEG channels, rather than the 64 or 
128 channels commonly used in laboratory-based systems. 
Inevitably, the methodological constraints associated with 
mobile EEG have implications for data processing, analysis 
and interpretation. For example, the use of fewer electrodes 
results in the extraction of fewer independent components 
during the pre-processing stage than in equivalent laboratory-
based studies. Equally, the use of a restricted electrode mon-
tage also precludes using EEG to identify the neural sources 
of the recorded signal, preventing any strong conclusions 
about the specific brain regions responsible. More impor-
tantly, mobile EEG data tend to be “noisier” in terms of 
movement and muscle artefact than traditional laboratory-
based EEG data, making it more difficult to identify brain 
signals. To address this issue, we relied heavily on automatic 
artefact rejection procedures to provide an objective evalua-
tion of brain and non-brain signals. Despite the limitations 
associated with mobile data collection, the present experi-
ment clearly demonstrates that cognitive processing can be 
assessed during real-world behaviour.

Another challenge for mobile EEG research lies in the 
presentation and manipulation of real-world stimuli within 
the context of a structured experimental design. For exam-
ple, in the present study, “obstacles” were images projected 
onto the floor, which allowed us to easily manipulate the po-
sition and predictability of the objects while maintaining a 
naturalistic and safe environment for participants. Although 
our paradigm was not entirely natural, lights projected onto 
the floor have previously been used in behavioural stud-
ies of obstacle avoidance (Chen et  al.,  1996; Salazar-Varas 
et al., 2015). In addition, the use of 2D (rather than 3D) ob-
stacles could potentially interfere with natural leg mechanics 
while walking. Critically, however, our aim was to identify 
the cognitive processes relating to overcoming expected and 
unexpected obstacles, rather than to explore gait patterns per 
se. It is nevertheless of interest for future studies to examine 
whether the introduction of real 3D obstacles significantly 
influences the engagement of control processes. Similarly, 
future studies will need to examine the impact of variability 
in the temporal-spatial features of walking (i.e. changes in 
speed, acceleration or direction) and the participants’ perfor-
mance (i.e. successful vs. unsuccessful obstacle avoidance) 
in order to identify any links between brain cortical dynamics 
and gait patterns.

To fully investigate all of the factors that influence walk-
ing would, of course, require a more complex paradigm than 
was employed here, for example, via the introduction of routes 
that allow walkers to turn repeatedly. Other developments will 

require the use of additional sensors, for example, to allow 
EEG recordings to be time-stamped based on the pattern and 
timing of heel strikes that are made during walking. Even with-
out additional technical and methodological development, 
the present findings highlight the exciting opportunities that 
now exist for studying neurodegenerative and developmental 
disorders (such as Parkinson's disease and dyspraxia, respec-
tively), where understanding real-world behaviours is critical. 
Negotiating obstacles in the real-world requires us to allocate 
attention, detect relevant constraints and flexibly adapt motor 
behaviours, which is challenging for elderly or Parkinson's 
disease patients who often experience gait impairments that 
increase the risk of falls and mortality (Kovacs, 2005; Tinetti 
et al., 1988; Weerdesteyn et al., 2006). Studies that aimed to 
identify neural markers of Parkinson's disease and gait dy-
namics are presently limited, being restricted to simple tasks 
(i.e. finger tapping, Stegemöller et al., 2016, 2017) or indirect 
methods such as kinematics recording (Galna et  al.,  2010; 
Vitório et  al.,  2010). By contrast, mobile EEG can provide 
direct insight into the neural and cognitive processes that are 
affected by disorders, addressing the actual real-world situa-
tions that are problematic for patients.

For rehabilitation of motor disorders following brain 
injury or as a consequence of neurodegenerative diseases 
such as Parkinson's disease, it is particularly important to 
have an understanding of the cognitive processes involved 
in the complex, dynamic, modality integrated reality of real-
world behaviour. As such, identifiable neural markers of 
real-world behaviour offer novel pathways towards tailored 
neuro-rehabilitation approaches for motor disorders in partic-
ular. Such evidence-based cognitive rehabilitation strategies 
could, for example, use neurofeedback or non-invasive brain 
stimulation and the online acquisition of cognitive neural 
markers in offering tailored and ecological diagnostics and 
rehabilitation processes for patients affected by various neu-
rological aetiologies.

6  |   CONCLUSION

Our study demonstrates that mobile EEG can be used to 
capture the dynamic oscillatory responses associated with 
the neuro-cognitive processes of that are engaged while ne-
gotiating real-world environments. We demonstrated that 
naturalistic obstacle avoidance is mediated by proactive 
and reactive cognitive control processes, reflected in the 
dynamics of theta and beta oscillations. In particular, the 
temporal brain dynamics of frontal theta revealed that pro-
active control during unexpected obstacle avoidance is as-
sociated with an early selection mechanism. Furthermore, 
we showed that motor readiness is mediated by beta power 
decreases which were evident when pre-set or externally 
triggered gait adjustments were needed in order to step over 

MUSTILE ET aL.|    8116



an obstacle. With regards to reactive control, we identified 
a robust beta rebound after obstacles were crossed, dem-
onstrating that real-world negotiation of the environment 
requires finely tuned resetting of the motor system. Taken 
together, these mobile EEG data provide a new way to ex-
amine the neuro-cognitive processes supporting walking 
in particular, and of applying an embodied mobile cogni-
tion perspective to the understanding of human behaviour 
in general. The findings are also relevant towards a bet-
ter understanding of motor impairments in more natural-
istic contexts and should inform the development of novel 
neuro-rehabilitation approaches.

7  |   DATA AVAIBILITY 
STATEMENT

The data supporting the findings of this study are available 
at https://osf.io/9gnad/​?view_only=0052c​e57c1​8749a​9bc60​
4ba83​80712e6 and at http://hdl.handle.net/11667/​169.
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