
488 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

AiRound and CV-BrCT: Novel Multiview Datasets
for Scene Classification

Gabriel Machado , Edemir Ferreira, Keiller Nogueira , Hugo Oliveira , Member, IEEE, Matheus Brito ,
Pedro Henrique Targino Gama , and Jefersson Alex dos Santos , Member, IEEE

Abstract—It is undeniable that aerial/satellite images can pro-
vide useful information for a large variety of tasks. But, since these
images are always taken from above, some applications can benefit
from complementary information provided by other perspective
views of the scene, such as ground-level images. Despite a large
number of public repositories for both georeferenced photographs
and aerial images, there is a lack of benchmark datasets that allow
the development of approaches that exploit the benefits and com-
plementarity of aerial/ground imagery. In this article, we present
two new publicly available datasets named AiRound and CV-BrCT.
The first one contains triplets of images from the same geographic
coordinate with different perspectives of view extracted from var-
ious places around the world. Each triplet is composed of an aerial
RGB image, a ground-level perspective image, and a Sentinel-2
sample. The second dataset contains pairs of aerial and street-level
images extracted from southeast Brazil. We design an extensive
set of experiments concerning multiview scene classification, using
early and late fusion. Such experiments were conducted to show
that image classification can be enhanced using multiview data.

Index Terms—Data fusion, dataset, deep learning, feature fusion,
multimodal machine learning, remote sensing.

I. INTRODUCTION

SATELLITE images become more accessible to civilian
applications each year. New technologies are enabling the

wide usage of better and cheaper images in comparison with
the past few decades. Nowadays, it is also possible to access
many free remote sensing image repositories with a variety
of spatial, spectral, and temporal resolutions [1]. Images with
aerial perspective give us a unique view of the world, allowing
the capture of relevant information (not provided by any other
type of image) that may assist in several applications, such as
automatic geographic mapping and urban planning.

Despite the clear benefits of optical aerial imagery, the fact
that they are always taken from above may make their use
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limited. Precisely, the presence of vegetation cover, clouds, or
simply the need of more detailed on-the-ground information can
decrease the effectiveness of such images in some applications.
In multiview scenarios, it would be crucial to combine the
complementary information of aerial and ground images in order
to efficiently tackle a problem. Such combination of multiple
sources images can benefit many applications in different fields,
such as 3-D human pose estimation [2], places geolocaliza-
tion [3], and urban land use [4]. Motivated by these benefits,
several approaches [5]–[9] have been proposed to exploit multi-
view datasets to face distinct tasks. Although important, it is not
easy to find multiview datasets for image-related tasks, given the
difficulty in creating and labeling such data. In fact, as far as we
know, there is no other publicly available multiview (aerial and
ground) dataset for image classification tasks in the literature.

In this article, we present two novel multiview images
datasets. The main purpose of creating these datasets is to make
them publicly available so that the scientific community can
carry out image classification experiments in multiview scenar-
ios. One of the datasets is composed of 11 753 triplets of images,
each one of those consisting of a ground scene, a high-resolution
aerial image, and a multispectral aerial data. The images are un-
evenly divided into 11 classes, including airport, bridge, church,
forest, lake, park, river, skyscraper, stadium, statue, and tower.
An interesting property of our dataset is that it was designed to
contain a high interclass variety; so, these places were selected
from all around the world to compose the samples. The other
dataset is composed of 24k pairs of images, each one containing a
street-level scene and a high-resolution aerial image. Those sam-
ples are labeled in nine different classes, which include apart-
ment, hospital, house, industrial, parking lot, religious, school,
store, and vacant lot. Both datasets were evaluated for image
classification, using early and late fusion strategies. Although
we assessed the performance of both datasets for image classi-
fication, it is important to emphasize that they were proposed
to be used in distinct image-related tasks, varying from image
classification to cross-view matching and multimodal learning.

In summary, the main contributions of this work are the two
novel multiview scene classification datasets, named AiRound
and CV-BrCT, as well as a full evaluation of the proposed
datasets in image classification tasks using several deep learning
state-of-the-art methods and fusion approaches.

The remainder of this article is organized as follows. Section II
presents related work. The proposed datasets are presented in
Section III, whereas Section IV introduces the methods and
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TABLE I
PROPERTIES OF OTHER DATASETS FOUND IN THE LITERATURE THAT ARE SIMILAR TO AIROUND AND CV-BRCT

tasks evaluated using these datasets. The experimental setup
is introduced in Section V, whereas Section VI presents the
obtained results. Finally, Section VII concludes the article.

II. RELATED WORK

Considering recent advances in satellite data acquisition and
cloud computing, access to high-resolution satellite images and
other types of data was facilitated. Despite the great advantages
that aerial images provide, some applications demand infor-
mation that an aerial perspective may lack. In these cases, an
alternative solution is to use complementary perspectives of the
same view, i.e., ground-level view, to better seek these pieces of
information [10]–[13]. Due to the high demand for images to be
used by those kinds of tasks, a lot of multiview datasets were
proposed in the literature. In Table I, we summarized some of
the most similar datasets compared to the novel ones proposed
for this work.

The CV-USA [14] and CV-ACT [9] datasets were proposed
specifically for retrieval tasks, i.e., cross-view matching. The
first one contains millions of pairs of aerial and ground images,
which were taken from across the United States. Relating to
its data collection, the aerial images were collected using Bing
Maps (BM) API, and the ground images used Flickr and Google
Street View (GSV) API. Another important aspect to mention
is that even if CV-USA has millions of samples, most of the
works use a subset of it, which has around 44k images. Relating
to the CV-ACT dataset, it contains approximately 128k images,
which were taken covering a dense area of the city Canberra.
All its images were collected using Google Maps (GM) and
GSV APIs. Similarly, Cities [15] and Urban Environments [16]
datasets were designed to tackle cross-view matching problem,
but both of them were not publicly released. The first one used
Google APIs to collect pairs of images from cities around the
world. The latter one collected pairs of images from Pittsburg,
Orlando, and Manhattan using GSV and BM APIs.

The Pasadena Urban Trees [7] was designed for object de-
tection. This dataset used OpenStreetMap’s (OSM) bounding
box annotations of trees in the city of Pasadena. It contains 18
different species of trees, whose ground samples were collected
using GSV API, and the aerial ones were collected using GM
API.

Another multiview dataset was named Brooklyn and
Queens [17], and it was proposed for instance segmentation.
It contains approximately 213k images of 206 different types of
buildings, covering areas from the two boroughs of New York

City. All the images from this dataset were collected using BM
and GSV APIs, and OSM was used to define the labels of all
samples.

Relating to the Buildings [5] and Île-de-France land use [4]
datasets, both were designed for multiview scene classification.
The first dataset contains 56 259 paired aerial/street-level images
of 4 different types of buildings, covering Washington, D.C.,
Puerto Rico, and 49 different states across the United States.
Relating to the first dataset, all of its building labels were defined
using annotations contained in OSM. The data collection was
made using two different APIs, being those, GM API for aerial
samples, and GSV API for the ground perspective ones. The
Île-de-France land use dataset contains approximately 25k pairs
of aerial/ground images of 16 different land use classes, covering
the metropolitan region of Paris and some nearby suburbs. This
dataset also uses OSM to collect its labels, and the same APIs
of the Buildings dataset to collect the samples.

Differentiating our datasets from the ones in Table I, some
of the existing datasets were designed in a way that each image
pair can be seen as a class. Such datasets do not contain groups
of classes that share the same label, which ends up making
its use for image classification unenviable. Other datasets are
quite different from the ones proposed here, given that the main
task for which they were proposed is different. That difference
mainly comes because those problems require different types of
labels as inputs and also generates distinct outputs (bounding
boxes and segmentation). Finally, relating to multiview image
classification datasets, two datasets [4], [5] are quite similar to
both datasets proposed here. However, neither of these existing
datasets is publicly available, whereas ours will be.

III. PROPOSED DATASETS

In this work, we proposed two novel multiview datasets. It is
important to mention that both datasets are publicly available
for research purposes at the project’s website.1 Since both
datasets were designed in a different way, in the following
sections, we will describe the relevant characteristics of each
one and the methodologies used to collect the samples.

A. AiRound Dataset

The first dataset is named AiRound, and is composed of
11 753 images distributed among 11 classes, including: airport,

1[Online]. Available: http://www.patreo.dcc.ufmg.br/multi-view-datasets/

http://www.patreo.dcc.ufmg.br/multi-view-datasets/
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Fig. 1. Class distribution of the proposed AiRound dataset. Note that each
image is represented by a triplet of ground, aerial, and multispectral data.

bridge, church, forest, lake, park, river, skyscraper, stadium,
statue, and tower. Each sample is composed of a triplet, which
contains following images in three distinct points of view:

1) a ground perspective image;
2) a high-resolution RGB aerial image; and
3) a multispectral image taken from the Sentinel-2 satellite.
All the images collected for this dataset corresponds to real

places around the world. The distribution of the samples from
AiRound can be checked in Fig. 1 and examples of instances
can be seen in Fig. 2.

This dataset was created using two methodologies. In the
first one, to download the samples, two types of metadata were
required: 1) the name of the place; and 2) its correspondent
geographical coordinates. These metadata were collected using
web crawlers in diversified lists of Wikipedia web pages. As
instance, a list of tallest buildings2 was used to ensure that
samples from building class have been extracted from different
parts of the world. For more details about the web pages used and
all the metadata collected from them, we recommend checking
the project’s website.1

Given the metadata, the RGB aerial images were collected
using BM API.3 The zoom level was empirically selected in
order to adapt a proper vision for the samples of each class. Since
there is a huge difference in areas occupied for some classes
(river and skyscraper, for instance), this zoom level ended with
large variance, specifically between 5 and 19, which corresponds
to a spatial resolution that varies from 4891.97 to 0.30 m per
pixel. Finally, it is important to mention that all aerial images
downloaded have an image size of 500× 500 pixels.

In order to collect the ground level samples, it was checked
if the correspondent class exists in the Google Places’ database.
If the sample class exists, a query was built using this place’s
geographical coordinates as input. The outputs returned by this
API were all manually checked, and if they do not correspond
to the class, then a second protocol was performed. The second
protocol was used for cases that the class did not exist in Google
Places’ database or the image retrieved did not correspond to the

2[Online]. Available: https://en.wikipedia.org/wiki/List_of_tallest_buildings
3[Online]. Available: https://docs.microsoft.com/en-us/bingmaps/

query requested. This protocol consists of crawling the top five
images from Google Images using, as query, the place’s name.
Finally, it was manually selected to represent each sample on
AiRound, the best instance between the five images downloaded.
It should be pointed out that the resolution of each sample is not
standardized because the methodology employed does not allow
the selection of a specific resolution.

Relating to the Sentinel-2 images acquisition, we followed ex-
actly the same protocol that was proposed by Ferreira et al. [18].
In this protocol, Google Earth Engine [1] was used to download
the data using the place’s geographical coordinates. After careful
analysis, we decided to resize all images to 224×224 pixels, a
resolution that could cover all the classes’ areas.

After working with this methodology for a while, we noticed
that it was not scalable because of limited metadata (per class)
available in the Wikipedia lists. Due to this, we decided to move
to another more scalable methodology. The second methodology
is applied to build this dataset, the metadata were obtained
from the publicly available data of the OpenStreetMap,4 a
community-based project where users annotate aerial images
to create maps, and were collected using the Overpass API.5 As
the data are provided by users, not necessarily specialists, they
can contain poorly annotated samples, which can lead to outliers
in the dataset. These lists consist of only geographic coordinates,
for most of the classes, with exception of the classes forest, lake,
river, and park, which we collected from the only places that have
a name assigned to it. The lists are then fed to scripts that utilize
the Google StaticMap API,6 to collect the aerial images, and the
GSV API,7 to collect the frontal images. Except for the zoom
parameter, which was set to a proper value per class empirically,
the default values of the Google APIs were used for the aerial
images. Since we could not retrieve street-level images for the
classes forest, lake, river, and park, we used its name as a query
in a Google Images crawler. We followed the same protocol
used in the first methodology to download images from these
classes. To download the Sentinel-2 images, we also applied the
same protocol used in the first methodology. Finally, since we
gathered a large collection of locations, we ignored points where
we could not retrieve an image from each view.

As a final step, an additional removal of outliers was applied
after all the images were collected. This final filter consisted of a
feature vector of the first obtained ground images. These feature
vectors were produced by a ResNet pretrained on the ImageNet
dataset, collected from the final layer of the architecture. Then,
for each class, a k-means++ [19] clusterization was applied using
these feature vectors. With the clusters, the distance of each data
point, within a class, was calculated to its closest centroid as
well as the mean and standard deviation distance of each cluster.
Points that were more than three standard deviations away from
a centroid cluster were removed from the dataset.

4[Online]. Available: www.openstreetmap.org/
5[Online]. Available: https://overpass-turbo.eu/
6[Online]. Available: https://developers.google.com/maps/documentation/

maps-static/intro
7[Online]. Available: https://developers.google.com/maps/documentation/

streetview/intro

https://en.wikipedia.org/wiki/List_of_tallest_buildings
https://docs.microsoft.com/en-us/bingmaps/
https://overpass-turbo.eu/
https://developers.google.com/maps/documentation/maps-static/intro
https://developers.google.com/maps/documentation/streetview/intro
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Fig. 2. Examples of instances taken from AiRound. The two top rows show channels of a Sentinel-2 sample, whereas the third and fourth rows show the
high-resolution aerial perspective image and the ground view image, respectively.

Even with these removal operations, by the nature of the data
collection and the simplicity of the filters applied, noise may
be present in the dataset. However, we assume that the noise is
minimal after all the process.

B. CV-BrCT

The CV-BrCT dataset, which stands for Cross-View Brazilian
Construction Type, comprises approximate 24k pairs of images
and split into 9 urban classes. The pairs are composed of images
from two different views: an aerial view and a frontal view of a
location. This dataset is focused on the urban environment and
the nine classes are as follows.

1) Apartment: Buildings with at least two stories primarily
for residential use.

2) Hospital: Health-related constructions, primarily hospitals
but can include small particular clinics.

3) House: A single-family residence.
4) Industrial: Manufactured-related buildings, which include

large-storage constructions.
5) Parking Lot: Includes both open and indoors parking lots.
6) Religious: Religious buildings; this include catholic

churches and protestant churches.
7) School: Any school construction; from elementary

schools to high school.
8) Store: Any commercial- or service-related building.
9) Vacant Lot: Demarked areas without construction. It can

include abandoned open areas.
The class distribution is presented in Fig. 3, whereas examples

can be seen in Fig. 4. Regarding the images, all of them are
500×500 RGB images. As implied by the name, this dataset
contains only Brazilian locations. These are mainly in the South-
east region of Brazil, specifically the states of Minas Gerais and
São Paulo, with some classes adding locations from states from
other regions, i.e., Goiás in the Center-West region.

The lists of coordinates used to build this dataset were col-
lected using the second methodology described in Section III-A,

Fig. 3. Class distribution of the proposed CV-BrCT dataset.

which was applied to all classes, except Vacant Lot, that was
manually annotated. To download the samples, we also use the
same APIs of the second methodology previously described. The
Google StaticMap API’s zoom parameter was set to 19, which
was defined empirically; the other parameters were used with
their default values. Finally, it is important to mention that we
decided not to collect samples from Sentinel-2 satellite for this
dataset. This decision was made considering the nature of all the
classes, which only includes objects that would not benefit from
Sentinel-2’s resolution.

IV. BENCHMARKED METHODS

This section presents the evaluated methods. Different ap-
proaches were tested for multiview scene classification. In order
to better assess the improvement provided by combining distinct
sources of data, we first evaluate the use of distinct existing
networks for single-view data. Then, we evaluate the use of
early and late fusion to perform multiview classification. All
evaluated techniques are described next.
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Fig. 4. Examples of instances taken from CV-BrCT.

A. Deep Architectures

Convolutional neural networks (ConvNets) [20] have become
the standard state-of-the-art technique for visual recognition
over the past decade. Their capability to provide end-to-end
feature learning and inference turns them into powerful statis-
tical models for computer vision applications, including scene
classification. Supported by this, we evaluated several ConvNet-
based approaches for multiview image classification using the
proposed datasets. All experimented techniques are described
next.

AlexNet [20]: The first network evaluated is the AlexNet
one. Originally proposed for and winner of the ILSVRC 2012
competition, this pioneer ConvNet is composed of five convo-
lutional layers, some of which are followed by max-pooling
layers, and three fully connected layers with a final softmax.
The first convolutional layers use large convolutional filters in
order to quickly reduce the spatial resolution of the input image.
Fig. 5(a) presents the architecture of AlexNet network.

VGG [21]: This work was the first one to observe that
smaller sequential convolutional filters had the representation
capabilities of one single large trainable convolutional kernel.
Supported by this, the authors deepened the network, which has
eight3× 3 convolutional layers, five pooling ones, and four fully
connected ones (considering the softmax). Fig. 5(b) illustrates
the architecture of VGG-11 network.

Inception [22], [23]: Following the same guidelines of the
VGG network [21], this architecture employed more convolu-
tional layers in order to increase the feature extraction ability.
Specifically, this network is based on the “Inception” modules
that exploit feature diversity through parallel convolutions with
different filter sizes. This module is replicated several times
producing the final architecture that has 48 layers. Through
Fig. 5(c), it is possible to see how an inception-v3 architecture
and inception modules work.

ResNet [24]: This work was the first one to notice that adding
even more layers to the architecture only worsened the vanishing
gradient problem. So, to mitigate this problem, the authors
employed shortcut connections to allow the efficient training
of earlier layers in the ConvNet. Based on this concept, several
networks were proposed, some of them with hundreds or even
thousand convolutional layers. In this work, ResNet-18 [24],
which has 18 convolutional layers with adding shortcuts, was
evaluated. Fig. 5(d) shows how a ResNet-18 architecture is built.

DenseNet [25]: Following the same idea of the ResNets [21],
this architecture employed shortcut connections in order to allow
the gradients to easily flow and better optimize the initial layers.
The difference between ResNets [21] and DenseNet [24] is
that in the former one, the shortcuts add the inputs, whereas in
the latter one, the input layers are concatenated in the shortcut
connections. Again, due to this shortcut design, dense archi-
tectures, with hundreds or even thousand convolutional layers,
were proposed and employed in several applications [24]. In this
work, DenseNet-169 [25], which has 169 convolutional layers
with shortcuts, was evaluated. The architecture of this model is
presented in Fig. 5(e).

SqueezeNets [26]: This network uses a combination of prun-
ing, compression techniques, and fire modules composed of
squeeze and expand convolutions in order to create a lean and
efficient architecture that can be incorporated into devices with
limited memory (such as mobile). In fact, SqueezeNets are able
to achieve visual recognition objective scores close to early
ConvNet architectures (as AlexNet [20]) with between one or
two orders of magnitude fewer parameters. Fig. 5(f) illustrates
how a fire module works and how they are integrated with a
SqueezeNet architecture.

Squeeze and Excitation Networks [27]: Instead of focusing
on spatial components to enhance feature extraction results, this
work focuses on the relationship between channels. For this task,
the authors propose a new block named “Squeeze and Excitation
block.” This block operates recalibrating channelwise feature
impacts by modeling interdependencies between those channels
in an explicit way. In this work, the authors also show that using
these blocks, networks can outperform previously state-of-the-
art results on the ImageNet dataset [29] and that the use of this
block can be easily adapted to existing architectures. Fig. 5(g)
shows how a “Squeeze and Excitation block” works and how it
can be implemented in a ResNet-50 architecture.

Selective Kernels Networks [28]: Most of the designed Con-
vNets use receptive fields of the same size in each one of its
layers. In this work, the authors propose an attention block
named “Selective Kernel unit.” The main objective of this block
is to allow each neuron to adaptively adjust the size of its
receptive field, looking at different scales of input information.
Relating to the functioning of this block, it is based on a fusion
of kernels that have different sizes using a softmax attention,
guided by the input information that enters the block. In this
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Fig. 5. Benchmarked architectures. (a) AlexNet [20] architecture. (b) VGG-11 [21] architecture. (c) Inception-V3 [23] architecture. (d) ResNet-18 [24]
architecture. (e) DenseNet-169 [25] architecture. (f) SqueezeNet [26] architecture. (g) Squeeze and Excitation ResNet-50 [27] architecture. (h) Selective Kernels
ResNet-101 [28] architecture.

work, the authors also show that using these blocks on a ResNet
[24] can outperform previously state-of-the-art results on the
ImageNet dataset [29]. Through Fig. 5(g), it is possible to see
how a “Selective Kernel unit” operates and how it was integrated
into a ResNet-101 architecture.

B. Fusion Methods

To enhance scene classification results, we evaluated sev-
eral models for early and late fusion in order compare both
approaches. In this work, those techniques were applied to fuse
aerial/ground/satellite features, acquiring new information, and

using them to enhance the final predictions. In the sections ahead,
we will describe all such techniques.

1) Early Fusion Methods: In order to exploit the correla-
tions and interactions between low-level features from different
modalities [30], we propose an early fusion approach based
on the deep architectures used for the experiments. A great
advantage of early fusion approaches is that they require the
training of a single model, which usually results in compacted
models compared to the late fusion ones.

The early fusion strategy performed in this work consists of
using the first feature extraction layers of the target network
as a backbone. This backbone is replicated to aerial and ground
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Fig. 6. Example of the proposed early fusion methodology.

images. The fusion of the features is made by applying a concate-
nation layer on the low-level features, which results in a tensor
that contains the double amounts of kernels than the original
ones. The choice of where those concatenations were performed
is based on the total number of kernels that each convolution
layer have. So, in order, to be possible, to fully explore pretrained
models, we decided to concatenate those feature vectors before
the first convolution layer that doubles its amount of kernels in
the target network. In this way, we ignore the convolution that
duplicates this amount of kernels and substitute it to a fusion that
also duplicates the amount of feature vectors. Fig. 6 represents
the early fusion methodology proposed for this work. The first
Le layers (blue and green blocks in the figure) represent the early
feature extraction process, which is made individually for each
view. After a few amount of layers, the features are concatenated
and transported to the remaining of the architecture, which was
used as a base (yellow block in the figure). Finally, after the
high-level features are extracted, the classification process is
performed.

2) Late Fusion Methods: Late fusion or decision-based algo-
rithms perform integration of results after each of the modalities
has made a prediction [30]. Those algorithms use unimodal
decision values and combine them using different types of fusion
mechanisms, such as averaging, voting schemes, or weighting
based. Fig. 7 presents a typical late fusion procedure exploited
in this work.

To formally define all the fusion operations used for this work,
for all definitions of this section, we will use the following
notation. Let σi be the softmax scores returned by the network
i, αi be the accuracy score that the network i achieved on the
validation set of each dataset, and m be the number of networks
used to perform a fusion operation.

Sum: The sum fusion is a well-known late fusion algorithm.
The main idea of it is to sum all the vectors (softmax scores) and
select the index, which contains the maximum value of this sum
as the prediction. This procedure is formally defined by

SumPrediction = arg max
m∑

i=1

σi. (1)

Majority Voting: The majority voting fusion is another well-
known late fusion method in the literature. This method is based
on the concept of a democratic election, i.e., each model act as a
voter and provides its output as a vote, the final prediction is se-
lected as the returned value with more votes. To mathematically
express this procedure, it was used as a mode operation, that is,
a statistic that indicates the most common element contained in
a vector. The majority voting procedure is properly defined by

MVPrediction = mode arg maxσi ∀i ∈ [1,m]. (2)

In this work, majority voting was used to perform late fusion
between two or three models, so ties constantly happen. To solve
this issue, it was used the confidence (probability value) that
each model has on its answer. In this way, when a vote ties,
we select the output with the biggest confidence between all
models’ outputs. The same process was used for fusions using
only two models since there is no point in checking which is the
most common vote between two voters. The procedure used for
tiebreaker and voting using only two models is formally defined
by

MVPrediction = βθ,where

βi = arg maxσi

θ = arg maxmaxσi ∀i ∈ [1,m]. (3)
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Fig. 7. Typical late fusion pipeline. As can be seen, each ConvNet is trained individually and their outputs are combined using a late fusion algorithm, resulting
in the final prediction.

Weighted Sum: As can be noted by its name, this method
operates in a similar way that sum fusion does. The main
difference between them is that the weighted sum multiplies
values (weights) while it is performing a sum operation. This
procedure is useful in situations that different classifiers have
very distinct results. So, in this case, the weighted sum can use
values for trying to calibrate this huge variance between the
models’ results. The formal definition of weighted sum can be
checked in the following equation, in which the weights used
for the experiments on this work were taken from the individual
performance score (accuracy) of each model on the validation
set of each dataset:

WSumPrediction = arg max
i=m∑

i=1

αiσi. (4)

Minimum: The main advantage of the minimum fusion method
is that the algorithm can eliminate possible overfitting that may
have occurred during the training phase. The first step of the
method is to select the individual prediction of each model
(the index that contains the maximum value on softmax scores
vector). After that, the method looks for the scores associated

to each one of the returned indexes and returns as the final
prediction the index that has the smallest score associated with
it. Following equation formally defines the described procedure:

MinPrediction = βθ,where

βi = arg maxσi

θ = arg minmaxσi ∀i ∈ [1,m]. (5)

Product: The product fusion is a very used late fusion algorithm.
The main idea of it is to perform an elementwise multiplication
between softmax scores, and after that return the index that
contains the biggest value. This procedure is defined by

ProdPrediction = arg max
m∏

i=1

σi. (6)

V. EXPERIMENTAL SETUP

In this section, we describe the experimental setup used for the
experiments using both datasets. It is important to mention that
all the methods, previously described in Section IV, were used
for the experiments, and in all of those experiments, a fivefold
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cross-validation protocol was used to properly evaluate each
technique. We reported the mean of balanced accuracy and/or
F1-score, taken from all fivefold experiments with its correspon-
dent standard deviation. Finally, in Section V-A, we present
the protocol used to train the models using AiRound dataset,
whereas in Section V-B, we detail the methodology used for the
CV-BrCT dataset models.

A. AiRound

Since all the networks used for this work are well known in
the literature, it is possible to find pretrained models of them.
So, in order to allow a better comparison and understanding of
the most suitable training strategy for AiRound, we trained all
the models from scratch and fine-tuned. For all the experiments
made on AiRound, each model was trained for 200 epochs, using
early stop technique with 20 epochs checking for improvements
in validation. Relating to the other hyperparameters, it was used
a batch size of 32, stochastic gradient descent as optimizer, a
learning rate of 0.001, and a momentum of 0.9. Finally, about
the data augmentation techniques applied, it was performed the
randomized crop and random horizon flip.

Relating to the models evaluated, for late fusion, we trained an
individual network for each kind of data, as was shown in Fig. 7.
For a better comparison, we evaluated the combinations of the
models using all the late fusion algorithms previously described.
In order to test all possible combinations of fusions between
different views, each late fusion algorithm fuses outputs of two
or three networks, trained in different views, by combining
alternated models’ outputs, e.g., three-view perspective, aerial
with ground, etc. All the combinations were made using models
with the same architecture and trained using data from only
one-view perspective.

For the early fusion models, an end-to-end training was per-
formed, using aerial and ground paired data as inputs. All the
training processes were also made using the same combination
of hyperparameters used to train the one-view individual models.

B. CV-BrCT

For the second dataset, we used a very similar protocol than
the one previously described. The main differences between
them are that we trained each model for 100 epochs, instead
of 200, and we used an early stop with 10 epochs. This decision
was made because the CV-BrCT has way more samples than
AiRound and the models tended to converge faster. Naturally,
for this dataset, we could not perform the same set of late fusions,
because it does not have Sentinel-2 data, so we performed the
late fusions only using aerial and ground data.

VI. RESULTS AND DISCUSSION

In this section, we present and discuss the obtained results.
The results for AiRound dataset are presented in Section VI-
A. Sections VI-A1 and VI-A2 present the results achieved
for training networks using only one-view type and applying
fusion techniques, respectively. Relating to CV-BrCT dataset,
the results can be found in Section VI-B. Following the same

TABLE II
RESULTS IN TERMS OF F1 SCORE OF THE EVALUATED MODELS FOR

AIROUND DATASET

Bold values indicates the best results achieved by each type of data and/or training
strategy.

organization used for AiRound, we present the results of the
models trained using one-view in Section VI-B1, whereas the
results of the models using fusion techniques can be found in
Section VI-B2.

A. Experiments on the AiRound

1) Networks Architectures Comparison: Here, we present
the results obtained from the deep-learning-based models trained
individually, for each view, from scratch and fine-tuned (from
the ImageNet dataset [29]). As introduced, the objective is
to analyze and define the most suitable network and training
strategy for AiRound dataset. All obtained results are presented
in Table II. It is important to highlight that we did not fine-tune
the networks for Sentinel-2 images, given the incompatibility
between the number of bands of these data and the number
of input channels expected by the networks, i.e., given that
Sentinel-2 data have 13 channels, and the first convolution layer
of the evaluated architectures receive only 3 input bands (RGB).

Analyzing the results, it is possible to observe that, as has been
seen in the literature, fine-tuned networks produced better out-
comes than their counterpart models trained from scratch [31].
Another interesting aspect is that the models trained with the
same data (mainly aerial and ground) yielded very similar
results, without one model outperforming others, except for
SqueezeNet [26] trained from scratch using aerial data and fine-
tuned AlexNet [20] using ground data. For the Sentinel-2 mod-
els, AlexNet [20], VGG [21], Inception [23], and DenseNet [25]
achieved slightly better results comparing to the other networks.
Furthermore, considering the distinct input data, one may note
from the experiments that aerial images tend to produce better
outcomes, whereas ground and Sentinel-2 data tend to yield
worse results. The differences between aerial and Sentinel-2
results may be justified by the difference in the spatial resolution
of the images since Sentinel-2 data have a resolution in meters
per pixel whereas the aerial can have a spatial resolution in
centimeters per pixel. Relating to the ground images, we believe
that it achieved slightly worse results comparing to aerial, due



MACHADO et al.: AIROUND AND CV-BRCT: NOVEL MULTI-VIEW DATASETS FOR SCENE CLASSIFICATION 497

TABLE III
RESULTS OF THE EVALUATED EARLY FUSION NETWORKS FOR

AIROUND DATASET

Bold values indicates the best results achieved by each type of data and/or training strategy.

to the lack of information that help discriminate between some
classes, for instance, the classes lake and river or forest and
park. Finally, as can be noted in Table II, there was not a single-
network architecture that yielded to the best results using any
training strategy/data. Besides that, we can highlight between
the models trained from scratch that VGG [21] yielded the best
results using ground and sentinel data. We also highlight that
between the fine-tuned models, the inception [23] yielded the
best results using both data types.

2) Multiview Fusion Strategies: This section presents and
discusses the results obtained applying early and late fusion
techniques.

AiRound Early Fusion: For early fusion experiments, we
followed the scheme described in Section IV-B1 using all the
eight architectures. In Table III, comparing the same architecture
models, it is notable that, for both training strategies, most of
the results tended to achieve a superior mark compared to the
one-view results reported in Table II. We also highlight that
some of the results are statistically equivalent, for instance, the
fine-tuned inception models for aerial and early fusion.

Analyzing the main fusion gains, for the models trained
from scratch, we can highlight the VGG [21] model, which
achieve the best results, and the biggest gain in F1 score (0.16)
comparing to the one-view experiments, previously reported.
For the fine-tuned models, we can highlight the AlexNet [28]
adaption for early fusion, which obtained gains of 0.04 and
0.10 in F1 Score, comparing to the same networks trained using
only aerial and ground data, respectively. It is also notable by
Table IV that the early fusion adaptation of AlexNet [20] also
converged faster than the other network models. The selective
kernels networks [28] was the model that took the most time to
converge, but it also achieved the best overall result between all
early fusion networks, using the fine-tuning strategy.

Finally, for some results, it is notable that a downgrade
occurred, if compared to the one-view results presented in
Table II. For those results, we hypothesize that the same feature
degradation phenomenon,8 which was reported in [5], occurred.

AiRound Late Fusion: For all models trained from scratch, we
evaluated all 4 possible combinations of views for all 8 networks.

8A destructive effect that occurs in training phase due to the misalignment of
the geometry of the bottleneck features of the two image types.

TABLE IV
BENCHMARKED METHODS PROPERTIES FOR AIROUND DATASET

Note: It is important to mention that all the times were calculated using RTX2080TI and it
was accounted only forward and backward time during the training phase using the strategy
of training from scratch.

Since we performed 5 different types of fusions and it was trained
models from scratch using 3 different types of data (aerial,
ground, and Sentinel-2), all the combinations would result in
184 experiment results. Given that high number of experiments
and that, as previously discussed, all the network architectures
produced similar results and anyone could be selected for fur-
ther experiments, we reported the obtained results for only the
VGG [21].

As can be seen in Fig. 8, most of the late fusion techniques
outperformed the models trained with only one view, with a
special highlight for the three-view and aerial–ground fusions.
This result can be explained due to the amount of complementary
information that exists between aerial and ground images. On the
other hand, based on all experiments, it is possible to observe
that the combination of aerial and Sentinel-2 images tends to
not statistically improve the results. This is probably due to the
amount of similar information that both types of images have in
common, since both are from the same view perspective.

Finally, considering the ground-Sentinel-2 fusions, it is pos-
sible to notice a little improvement, which can be justified by
the same reason of aerial-Sentinel-2 fusions. We conclude that
the gain in this fusion was not as good as aerial–ground one,
because of the limited spatial-resolution that Sentinel-2 satellite
offers (10×10m or 20 ×20m or 60×60m per pixel, depending
on the channel).

For the fine-tuned models, the late fusion results are presented
in Table V. In this case, all results are reported, given that
Sentinel-2 images could not be exploited and only one com-
bination could be performed (aerial and ground). As expected,
comparing the VGG results reported in Fig. 8, there was a signif-
icant gain, due to the fine tuning process. Those gains occurred
for all the architectures that were used for the experiments. We
also highlight that the product fusion were the technique that
yielded to the best results for both training strategies.

Comparing the results using only one type of data (see Ta-
ble II) with the fusion outcomes, it is possible to notice that the
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Fig. 8. Results comparison of all fusion types using VGG trained from scratch. (a) Results comparison (in terms of balanced accuracy) of all fusion types using
VGG trained from scratch. (b) Results comparison (in terms of f1-score) of all fusion types using VGG trained from scratch.

TABLE V
RESULTS OF THE EVALUATED LATE FUSION TECHNIQUES FOR AIROUND DATASET USING FINE-TUNED MODELS

The † Symbols mark the best overall network and fusion strategy.
Bold values indicates the best results achieved by each type of data and/or training strategy.

late fusion outperformed all approaches using only one view.
This corroborates with our initial analysis that the combination
of multisource data could improve the results for the scene
classification task. In Table V, the best overall results were
achieved by the DenseNet [25] architecture.

In order to better understand how the fusion methods are
able to improve the results, we performed an analysis, per class,
of such techniques for all eight architectures. However, again,
because of the same aforementioned reason, only results for
the VGG architecture [21] were reported. We also compared the
results using only aerial and ground data, since the fusions using
Sentinel-2 data did not lead to significant improvements.

Fig. 10(a) reports the fusion improvements per class. As can
be seen in the figure, this process was performed individually
(per view and class) using models trained from scratch and
fine-tuned. This is because the purpose of this heat map is to
see which classes benefit the most from each fusion in each type
of view. Again, we also did not use the Sentinel-2 results in the
figure, for the same aforementioned reasons. Through Fig. 10(a),
it is possible to observe that, for the model trained from scratch
using aerial data, the classes tower, bridge, and statue were
the ones that most benefited from the aerial/ground fusion.
This happened because most of them are hard to classify using
only aerial images since those structures naturally have high
heights and occupy a restricted area, which are characteristics
that are not well explored in an aerial perspective. For the class
bridge, we believe that this happened because the class also
contemplates viaducts, which are harder to classify using only
aerial perspective, since in some examples it is hard to note
the height of the viaduct. In those cases, it is understandable

to misclassify between this class and airport, due to the sim-
ilarity between roads and airstrips. For the fine-tuned models,
a similar phenomenon repeated, but mostly for the class tower,
which reinforces that the information that came from the ground
perspective helps in discriminating this class.

Concerning the ground images, for models trained with both
strategies, the classes lake, river, forest, and park were the ones
that most improved from the aerial/ground fusion. The main
reason for this is that the context around those classes may help
a lot in discriminating them. Specifically, parks are naturally lo-
cated in cities, and therefore, the information about the existence
of a city nearby, which comes from aerial images, may help in
its distinction between forests. Furthermore, classes river and
lake are quite similar, since both represent water bodies. Thus,
both classes may benefit from the information that aerial data
provides about the shape and the area (such as the surrounding
vegetation), which may help in these two classes’ discrimination.

In Fig. 9(a), there are some examples of predictions made
by each classifier. For most of the cases in which there was
a misclassification, it was understandable, due to the similar
characteristics between the prediction and the labeled classes, as
can be seen for the bridge, stadium, and river samples. The image
also shows a sample that is hard to classify (statue). This sample
has characteristics that differ from most of the statues from the
dataset, and besides that, there is a vegetation area nearby, which
caused the wrong predictions to the classes park and forest.

Remark: Comparing the results between early and late fusion,
we can see a clear advantage of late fusion in most of the
cases. However, in some situations, early fusion achieved similar
results, as can be seen comparing the results for fine-tuned
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Fig. 9. Visual examples of classifications made in the proposed datasets. For this image, we used the predictions made by VGGs [21] trained from scratch, and
it was selected one of each possible case that can happen on the fusion process. The samples in the figure are sorted from the pair with most wrong predictions to
the one with most correct classifications. Since it is a decision-based fusion, naturally, there was not any case in which both aerial and ground VGGs have a correct
prediction and its fusion does not. Finally, for the fusion prediction, it was used the product fusion. (a) AiRound dataset. (b) CV-BrCT dataset.

selective kernels networks [28], for instance. Finally, in Ta-
ble VIII, we demonstrated the aforementioned advantages of
early fusion. For all cases, this technique converged faster than
late fusion, and it also used less parameters.

B. Experiments on the CV-BrCT

1) Network Architecture Comparison: We replicate the same
experiments realized in the AiRound dataset in the CV-BrCT
dataset in regards to its two image types—aerial and ground
(frontal). The results for the experiments using a single type of
image are presented in Table VI.

As seen in Table VI, the best training protocol is again
to fine-tune the networks. For all architectures, the fine-tuned
models have better performance for both types of images, a result
similar to the AiRound dataset experiments. Different from the
other experiment, in the CV-BrCT dataset the networks tend
to perform better with the aerial images than with the ground
images, whereas in the AiRound dataset, these results were
closer. We argue that some classes have a visual similarity in
the ground images, e.g., hospitals and schools can have similar

TABLE VI
RESULTS OF THE EVALUATED MODELS FOR CV-BRCT DATASET

Bold values indicates the best results achieved by each type of data and/or training
strategy.

facades, prevalence of stores in first floors of buildings, etc. Thus,
the discrepancy occurs between results of different image types.

With a few exceptions, the networks have comparable results
and four achieved practically the same metric values.
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TABLE VII
RESULTS OF THE EVALUATED EARLY FUSION NETWORKS FOR

CV-BRCT DATASET

Bold values indicates the best results achieved by each type of data and/or training strategy.

2) Fusions: In this next section, we present the results for
the fusion methods in the CV-BrCT dataset.

CV-BrCT Early Fusion: The early fusion architectures pro-
posed were evaluated with pretrained weights and initially ran-
domized weights. The results are presented in Table VII. As
in the experiments, the fine-tuned models outperform the non-
pretrained ones. With respect to the single-type networks, these
early fusion architectures seem to perform slightly better than the
trained from scratch with one type of image, while performing
the same, or slightly worse than the fine-tuned models using
aerial images.

As noted in the previous experiment, the results of networks
using only ground images were worse than the aerial image
models. Through the experiments, we noted that using a network
that merges and combines features of both images from the
start leads to no improvements, in the fine-tune scenario. This
issue can also be justified by the same feature degradation
phenomenon, aforementioned. However, when the networks are
trained from scratch, it seems to learn how to better extract
and combine features of both images, which yields a slightly
superior performance of these models, comparing to the results
previously reported in Table VI. For these experiments, we also
measured the estimated training time of each network model.
Those times can be checked in Table VIII. As can be noted,
again, the AlexNet [20] was the model that converged faster,
and the selective kernels network [28] was the one that took the
most time to train.

CV-BrCT Late Fusion: We tested the fusion of the two image
types in all the five methods discussed in Section IV-B2. All the
results are show in Table IX.

Overall, all fusion methods improved the results of the net-
works trained with a single type, in both the initially randomized
and fine-tuned cases. The results across fusion methods are sim-
ilar, although some techniques show a consistent improvement,
e.g., weighted sum, and other do not appears to have a noticeable
effect, e.g., minimum.

As the networks trained with only ground images are less
reliable classifiers, i.e., they have achieved worse results than the
aerial models, the score each one assign to a sample is smaller
than the aerial model. Henceforth, the impact these classifiers
have in the final prediction, regardless of the fusion method, is
less significant; thus, the improvement exists but is relatively
small. Besides that, the best overall results from the models

TABLE VIII
BENCHMARKED METHODS PROPERTIES FOR CV-BRCT DATASET

Note: It is important to mention that all the times were calculated using RTX2080TI and it
was accounted only forward and backward time during the training phase using the strategy
of training from scratch.

trained from scratch were achieved by DenseNet [25], but it
was also one of the models that took the longest to converge,
losing only to selective kernels networks [28], as can be seen in
Table VIII. Regarding the best results using pre-trained models,
this was achieved by selective kernels networks. Finally, com-
paring the late fusion algorithms, it is notable that the product
fusion usually resulted in the best enhancements.

Similar to Fig. 10(a), we also produced a figure to the CV-
BrCT dataset. In Fig. 10(b), we can see the impact of the different
fusion methods in each class of the dataset, for each single-
image-type network model (in this case, the VGG model). As we
can see, all classes have an improvement in relation to the single-
type networks of ground images. Furthermore, the Hospital class
is the one mostly impacted by the addition of the aerial data. As
hospital, usually, have large footprints, a single image from a
frontal perspective can capture a facade easily confoundable
with other classes facades. Consequently, the addition of an
aerial view can distinguish an ambiguous hospital sample. In
contrast, the aerial models display few improvements—probably
a few ambiguous samples were corrected by frontal images—to
all classes but Hospitals.

In Fig. 9(b), we see different examples of predictions in the
CV-BrCT dataset. In three cases, where the final prediction is
incorrect, it is arguably a plausible mistake, given the similarity
between the images and the predicted classes. In general, the
predictions of each individual model are befitting to the ambigu-
ous visual of the images in the inputs. The cases with incorrect
predictions, usually, have multiple classes’ features, i.e., the first
column where the parking lot is below an apartment building.

Remark: As can be noted in Tables VII and IX, for CV-BrCT,
the late fusion models tended to achieve slightly better results
than the early fusion networks. Again, some early fusion models
achieved competitive results compared to the late fusion ones.
For instance, analyzing models trained from scratch, the early
fusion adaptation of Inception [23] matches to the late fusion
approach for the same network, and for fine-tuned models, the
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Fig. 10. Values represent the ratio of the accuracy per class between a single VGG [21], trained/fine-tuned in one specific domain, and a fusion of two VGGs [21],
trained/fine-tuned on both aerial and ground views. In the numerator of this ratio, we calculated the difference between the late fusion accuracy and the accuracy
using only one view, for each class. Therefore, positive/blue values indicate that the classification of that class was improved when comparing the network trained
on a specific view and the fusion method, while the negative/red values indicate that the classification of that class worsened.
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TABLE IX
RESULTS OF THE EVALUATED LATE FUSION TECHNIQUES FOR CV-BRCT DATASET

The † symbols mark the best overall network and fusion strategy.
Bold values indicates the best results achieved by each type of data and/or training strategy.

same happened to selective kernels networks [28]. Finally, we
would like to highlight the times spent to train each model
in the CV-BrCT dataset. As can be noted in Table IV, it also
demonstrates that early fusion models tend to converge faster
than late fusion ones.

VII. CONCLUSION

In this work, we introduced two new publicly avail-
able datasets for multiview image tasks, which were named
AiRound and CV-BrCT. We conducted extensive experiments
in which results can be summarized as follows.

1) Early and late fusion-based aerial and ground feature
combination yielded very relevant results, but there is
still room for improvements, especially in the CV-BrCT
dataset.

2) Fine-tuned models with feature fusion are quite effective.
3) Some classes in the dataset were unable to benefit from the

multispectral information present in the Sentinel-2 images
from AiRound.

Future works include the expansion of both AiRound and
CV-BrCT to include more samples and classes to the proposed
multiview benchmark. The addition of a multitude of classes
containing few samples could allow for a standard evaluation of
multiview few-shot learning algorithms. This would follow the
steps of many other datasets in the computer vision literature
[32]–[34] that propose standard evaluation protocols for zero-,
one-, or few-shot scenarios.

We also point out the need for deeper studies about feature fu-
sion involving multispectral data, multiview domain adaptation,
the use of metalearning, i.e., few-shot learning and/or zero-shot
learning, involving multiview fusion, and more sophisticated
feature fusion techniques, such as hybrid fusion or techniques
that can handle well with lack of data or the presence of noisy
images.
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