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Abstract
1.	 Ecological data are collected over vast geographic areas using digital sensors such 

as camera traps and bioacoustic recorders. Camera traps have become the stand-
ard method for surveying many terrestrial mammals and birds, but camera trap 
arrays often generate millions of images that are time-consuming to label. This 
causes significant latency between data collection and subsequent inference, 
which impedes conservation at a time of ecological crisis. Machine learning algo-
rithms have been developed to improve the speed of labelling camera trap data, 
but it is uncertain how the outputs of these models can be used in ecological 
analyses without secondary validation by a human.

2.	 Here, we present our approach to developing, testing and applying a machine learn-
ing model to camera trap data for the purpose of achieving fully automated eco-
logical analyses. As a case-study, we built a model to classify 26 Central African 
forest mammal and bird species (or groups). The model generalizes to new spatially 
and temporally independent data (n  =  227 camera stations, n  =  23,868 images), 
and outperforms humans in several respects (e.g. detecting ‘invisible’ animals). We 
demonstrate how ecologists can evaluate a machine learning model's precision and 
accuracy in an ecological context by comparing species richness, activity patterns 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society

mailto:﻿
https://orcid.org/0000-0002-0127-6071
https://orcid.org/0000-0001-7005-8003
https://orcid.org/0000-0003-3841-6389
https://orcid.org/0000-0002-9949-4551
https://orcid.org/0000-0001-8131-5204
https://orcid.org/0000-0002-7865-0391
https://orcid.org/0000-0002-4327-7259
https://orcid.org/0000-0002-4529-8117
https://orcid.org/0000-0002-3574-0063
https://orcid.org/0000-0002-4060-3143
https://orcid.org/0000-0002-0393-9342
mailto:robbie.whytock1@stir.ac.uk
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13576&domain=pdf&date_stamp=2021-03-10


     |  1081Methods in Ecology and Evolu
onWHYTOCK et al.

1  | INTRODUC TION

The urgent need to understand how ecosystems are responding to 
rapid environmental change has driven a ‘big data’ revolution in ecol-
ogy and conservation (Farley et al., 2018). High resolution ecological 
data are now streamed in real-time from satellites, Global Positioning 
System tags, bioacoustic detectors, cameras and other sensor arrays. 
The data generated offer considerable opportunities to ecologists, 
but challenges such as data processing, data storage and data shar-
ing cause latency between data gathering and ecological inference 
(i.e. creating derived ecological metrics, testing ecological hypotheses 
and quantifying ecological change), sometimes in the order of years 
or more. For example, c. 40% of respondents from an international 
survey of camera trap users regarded data analysis and cataloguing 
images as an important or extremely important methodological barrier 
(Glover-Kapfer et al., 2019). Overcoming these challenges could open 
the gateway to ecological ‘forecasting’, where directional changes 
in ecological processes are detected in real time and near-term, fu-
ture change is predicted effectively using an iterative data gathering, 
model updating and model prediction approach (Dietze et al., 2018).

Digital camera traps or wildlife ‘trail cams’ have revolution-
ized wildlife monitoring and are now the ‘gold standard’ for mon-
itoring many medium to large terrestrial mammals (Glover-Kapfer 
et  al.,  2019). Animals and their behaviour are identified in images 
either by manual labelling, using citizen science platforms (Swanson 
et  al.,  2015) or, more recently, by using machine learning models 
(Norouzzadeh et al., 2018; Schneider et al., 2018; Tabak et al., 2019; 
Willi et al., 2019). Machine learning models can at minimum sepa-
rate true animal detections from non-detections (Wei et al., 2020) 
or in more sophisticated examples identify species, count individuals 
and describe behaviour (Norouzzadeh et al., 2018). These advances 
in machine learning have increased the speed at which camera trap 
data are labelled and analysed but, in all cases we are aware of, the 
outputs (e.g. species labels) are not used to make ecological inference 

directly. Instead, machine learning models are typically used as a ‘first 
pass’ to identify and group images belonging to individual species for 
full or partial manual validation at a later stage, or to cross-validate 
labels from citizen science platforms (Willi et al., 2019). These fully 
or partially validated labels are then used for ecological analyses. 
Thus, although machine learning models are reducing manual label-
ling times, ecologists are not yet comfortable using the outputs (e.g. 
species labels) as part of a completely automated workflow, from 
labelling to analyses. This is despite the development of advanced 
machine learning models that classify species in camera trap images 
with accuracy that (with some limitations) matches or exceeds hu-
mans (Schneider et al., 2019; Tabak et al., 2019; Willi et al., 2019).

One significant challenge limiting the application of machine 
learning models to camera trap data is that models rarely general-
ize well to completely out-of-sample data (i.e. data from new, spa-
tially and temporally independent studies), particularly when used 
to classify animals to species level (Beery et  al.,  2018; Schneider 
et al., 2020). Models can quickly learn the features of specific cam-
era ‘stations’ (the spatial replicate in camera trap studies) such as 
the general background instead of learning features of the animal 
itself. This problem is further amplified by the fact that rare spe-
cies in the training data might only ever appear at a limited number 
of camera stations, so training and validation data are rarely inde-
pendent. Various approaches can be used to reduce these biases, 
such as carefully ensuring that training and validation data are in-
dependent (e.g. by using data from multiple studies), by using data 
augmentation such as adding noise to training data in the form of 
image transformations, focusing model optimization on rare spe-
cies classes and by using spatial k-fold cross-validation (Schneider 
et al., 2020). Until the problem of generalization can be overcome, 
machine learning models for classifying camera trap images will 
remain an important tool for reducing manual labelling effort, but 
they will not achieve their full potential for creating fully automated 
pipelines for data analysis.

(n = 4 species tested) and occupancy (n = 4 species tested) derived from machine 
learning labels with the same estimates derived from expert labels.

3.	 Results show that fully automated species labels can be equivalent to expert labels 
when calculating species richness, activity patterns (n = 4 species tested) and esti-
mating occupancy (n = 3 of 4 species tested) in a large, completely out-of-sample 
test dataset. Simple thresholding using the Softmax values (i.e. excluding ‘uncer-
tain’ labels) improved the model's performance when calculating activity patterns 
and estimating occupancy but did not improve estimates of species richness.

4.	 We conclude that, with adequate testing and evaluation in an ecological context, a ma-
chine learning model can generate labels for direct use in ecological analyses without 
the need for manual validation. We provide the user-community with a multi-platform, 
multi-language graphical user interface that can be used to run our model offline.
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Machine learning models also have the potential to be deployed 
inside camera trap hardware in the field at the ‘edge’ (i.e. on micro-
computers installed inside hardware that collects data), with sum-
marized results (e.g. species labels) transmitted in real-time via a 
Global System for Mobile Communications networks or via satellite 
(Glover-Kapfer et al., 2019). In geographically remote areas or time-
sensitive situations (e.g. law enforcement) this would greatly reduce 
the latency between data capture and interpretation, and reduce 
the expense and effort required to collect data in remote regions 
by removing the need to transfer data-heavy images across wireless 
networks. However, before ‘smart’ cameras become a reality, it is 
essential that users understand how uncertainty in machine learn-
ing model predictions might impact derived ecological metrics and 
analyses, which are often sensitive to biases (e.g. false positives in 
occupancy models; Royle & Link, 2006). To achieve this, there is a 
need to develop workflows that test the performance of machine 
learning models in an ecological modelling context that goes beyond 
simple measures of precision and accuracy.

Ideally, if machine learning models had 100% precision and accu-
racy (e.g. for species identification), camera trap data could be col-
lected, labelled automatically using the model and the results used 
to directly calculate ecological metrics or as variables in ecological 
models. However, the reality is that machine learning models are im-
perfect (Schneider et al., 2019). It is therefore uncertain what levels 
of precision and accuracy are needed to meet the requirements of 
ecological analyses. This is particularly the case for the spatial and 
temporal analyses of animal distributions in camera trap data, which 
require specialized ecological models (e.g. occupancy models) that 
account for imperfect detection (MacKenzie et al., 2003).

In this paper, we describe the approach used to build a machine 
learning model that identifies species in camera trap images (26 spe-
cies/groups of Central African forest mammals and birds) and which 
generalizes to spatially independent data. To evaluate how well the 
machine learning model labelling precision and accuracy performs 
in an ecological modelling context, we (a) evaluate how uncertain-
ties in the precision and accuracy of machine learning labels affect 
ecological inference (derived metrics of species richness, activity 
patterns and occupancy) compared to the same metrics calculated 
using expert, manually generated labels and (b) demonstrate a work-
flow to ‘ground truth’ the performance of machine learning models 

for camera trap data in an ecological modelling context. We discuss 
the implications of these results for making fully automated ecolog-
ical inference from camera trap data using the outputs of machine 
learning models. We also provide the user community with an easily 
installed, open-source graphical user interface that needs no under-
standing of machine learning to run the model offline on both cam-
era trap images and videos.

2  | MATERIAL S AND METHODS

2.1 | Data preparation

As a case study, the model was developed for classifying terrestrial 
forest mammals and birds in Central Africa (see Table S1 for further 
details on species and groups), where camera traps are now fre-
quently deployed over large spatial scales to survey secretive birds 
and mammals in remote and inaccessible landscapes (Bahaa-el-din & 
Cusack, 2018; Bessone et al., 2020; O’Brien et al., 2020). Training data 
were obtained from multiple countries and sources (c. 1.6 million im-
ages; reduced to n = 347,120 images after data processing; Table 1). 
Each source used different camera trap models (Reconyx, Bushnell, 
Cuddeback, Panthera Cams) and images were diverse in resolution, 
quality (e.g. sharpness, illumination) and colour. Individual studies also 
used different field protocols for camera deployment but all were fo-
cused on detecting terrestrial forest mammals, with cameras installed 
on trees approximately 30–40 cm above ground level. The exception 
to this was data from (Cardoso et al., 2020) who installed cameras 
at a height of approximately 1 m for the purpose of detecting forest 
elephants Loxodonta cyclotis. Camera trap configuration was set to be 
highly sensitive in some cases and images were often captured in a 
series of rapid, short bursts (e.g. taking 10 images consecutively). This 
resulted in long sequences of very similar images, for example show-
ing an animal walking in front of the camera (Figure S1).

It was important to account for image sequences when selecting 
a validation set during the model training phase, since there was a 
risk of highly similar images being present in both the training and 
validation sets. To address this issue, the training and validation split 
was performed based on image metadata (timing of images and image 
source) to identify unique ‘events’ and camera locations that were 

Source Country Reference n images

n unique 
camera 
locations

Anabelle Cardoso Gabon Cardoso et al. (2020) 102,418 40

Kelly Boekee Cameroon — 123,954 60

Cisquet Kiebou 
Opepa

Republic of Congo — 60,393 64

Joeri Zwerts Cameroon — 36,027 30

Laila Bahaa-el-Din Gabon Bahaa-el-din et al. 
(2013)

16,558 40

Stephanie Brittain Cameroon — 7,770 32

TA B L E  1   Sources of training data used 
to train the machine learning model for 
classifying species in camera trap images, 
sorted by number of images provided. 
The final subset of data used to train the 
model was n = 347,120 images (see later)
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not replicated across the training and validation split (Norouzzadeh 
et al., 2019). This approach posed a challenge for maintaining class 
balances in the training and validation sets, but it reduced the risk of 
non-independent training and validation sets. A total of 27 classes 
were used to train the model, which were mostly mammals or mam-
mal groups (n = 21), birds (n = 4), humans (n = 1) and ‘blank’ images 
(i.e. no mammal, bird or human). Details of taxonomy and justifica-
tion for species groups are in Table S1.

2.2 | Issues identified in the training data

Our ‘real-life’ training data had not been pre-processed or profes-
sionally curated for the purposes of training machine learning mod-
els and naturally contained errors that arise from hardware faults, 
human error and different approaches to manual species labelling by 
experts. We identified three primary sources of error. The first was 
over-exposed images (a hardware fault) where the image foreground 
was ‘flooded’ by the flash (usually at night), making the image ap-
pear mostly white. Animals in these images were sometimes partially 
visible and could be classified by a skilled human observer, despite 
the loss of colour information, texture and other detail. However, 
over-exposed images presented a challenge for the machine learning 
model because white dominated the image regardless of the species.

The second main source of error was caused by under-exposed 
images. This error was revealed after inspecting model outputs 
during the training phase, and showed that highly under-exposed im-
ages appeared almost entirely or entirely black to a human observer, 
but the machine learning model was capable of using information 
in the image to detect and correctly classify the species (Figure 1).

The final source of error in the training data was mislabelled im-
ages (e.g. confusing similar species, such as chimpanzee Pan troglodytes 
and gorilla Gorilla gorilla) and using different approaches to labelling, 
for example one data source combined all primates into ‘monkey’, 
whereas other data sources separated apes from other primates.

We used an iterative approach to address these issues that 
consisted of model training, validation, error correction (correct-
ing mislabelled images in the training data) and model updating. In 

particular, we carefully inspected images that appeared to be incor-
rectly labelled by the model, but which were labelled with high con-
fidence. This approach revealed hidden problems in the data, such 
as the presence of animals in under-exposed images that would have 
otherwise led us to underestimate the model's performance.

2.3 | Machine learning model

Our primary objectives were to demonstrate and test how the out-
puts of a machine learning model can be evaluated in an ecological 
context and used directly in ecological analyses without manual vali-
dation. We therefore summarize our approach to building the ma-
chine learning model here. Full details of the machine learning training 
scheme and implementation can be found in Supporting Information 
and at our GitHub repository (Świeżewski & Whytock, 2021, 2021).

In summary, we used the established ResNet50 architecture to 
build the model (He et al., 2016) and transfer learning was used to 
speed up training with weights pre-trained on the ImageNet dataset. 
We identified species using the entire image frame without using 
bounding boxes and used basic augmentation (horizontal flips, ro-
tations, zoom, lighting and contrast adjustments, and warps) during 
training, but not during model validation. We used one-cycle pol-
icy training (Smith, 2018) and trained using progressive resizing in 
two stages. These approaches were implemented using the Fastai 
Python library (Howard & Gugger, 2020).

2.4 | Out-of-sample test data

One of the major limitations to model performance for camera 
trap images is the ability to generalize predictions to new, inde-
pendent camera stations, that is, unique locations with different 
backgrounds not seen during model training (Beery et  al.,  2018; 
Schneider et al., 2020). Since we aimed to create a model that could 
generalize well to new camera locations, we tested the final model's 
performance using a new out-of-sample dataset that was com-
pletely spatially and temporally independent from the data used to 

F I G U R E  1   (Left) Raw image from the dataset, labelled by experts as ‘blank’, but classified by the machine learning model with high 
certainty as a red duiker. (Right) The same image but manually brightened by narrowing the displayed colour spectrum, reveals a red duiker is 
present and the model was correct
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train and validate the model. These out-of-sample data consisted of 
23,868 images from 227 unique camera locations surveyed between 
16 January 2018 and 4 October 2019 in Gabon from three distinct 
study areas totalling 3,701 km2 of forest (Orbell & Whytock, 2021). 
Cameras also differed from the models used in the training data 
(Panthera Cams V4 and V5), but field protocols were similar and 
cameras were placed approximately 30 cm above the ground on a 
tree at a distance of c. 3–5 m perpendicular to the centre of animal 
trails. Single-frame images were captured using medium sensitivity 
settings, and images were separated by a minimum of 1 s. The aim 
of the study was to survey the small-to-large mammal community, 
with a particular focus on great apes (Pan troglodytes, Gorilla gorilla), 
forest elephants Loxodonta cyclotis, leopard Panthera pardus and 
African golden cat Caracal aurata. These data (n = 227 camera sta-
tions, n = 23,868 images, median 75, range 1–545 images per sta-
tion) were manually labelled by an expert (co-author CO).

2.5 | Summary of model's general performance

To allow general comparison of our model's performance with 
other similar models in the literature (Norouzzadeh et  al.,  2018; 
Schneider et  al.,  2018; Tabak et  al.,  2019; Willi et  al.,  2019) we 
calculated top one and top five accuracies using the out-of-sample 
data (n = 227 camera stations). Top one accuracy is the percent 
of expert labels that match the top-ranking label generated by 
the machine learning model. Top five accuracy calculates the per-
cent of expert labels that match any of the top five ranking ma-
chine learning generated labels. Top one accuracy for the overall 
machine learning model was 77.63% and top five accuracy was 
94.24% (Table S2; Figures S2, S3 and S4). After aggregating labels 
of similar species that were frequently mis-classified by the model 
into a reduced set of 11 classes, top one and top five accuracies 
increased to 79.92% and 95.99%, respectively (Figures S5 and S6). 
The model can classify around 4,000 images (c. 0.5  MB in size) 
per hour using an Intel® Core™ i7-8665U CPU @ 1.90  GHz  ×  8. 
For comparison, based on our experience, manual labelling can be 
done at speeds ranging from 125 to 500 images per hour depend-
ing on the quality of the images and if images are captured in se-
quences (which can be faster to label manually).

We also compared the precision and recall for each species from our 
optimal model with the precision and recall for the same species reported 
for the model used by the WildlifeInsights web-platform (www.wildl​ifein​
sights.org; Ahumada et al., 2020). This global project uses a deep con-
volutional neural network trained using Google's Tensorflow framework 
and a training dataset of 8.7 M images, comprising 614 species.

2.6 | Comparing derived ecological metrics using 
machine learning labels and expert labels

We calculated three common ecological metrics for the out-of-
sample data (raw species richness at individual camera stations, 

activity patterns for four focal species, and occupancy for four 
focal species) separately using the manually generated, expert la-
bels and the machine learning generated labels. Species richness 
(the number of species in a discrete unit of space and time) can 
be used to quantify temporal and spatial changes in biodiversity. 
Although other measures of species diversity exist, we chose this 
simple metric because it is widely used in the ecology literature 
despite its limitations. Activity patterns describe the diel activity 
patterns of focal species (Rowcliffe et al., 2014) and are typically 
calculated using camera trap data to understand fundamental life 
history traits and behaviour such as temporal niche partitioning. 
Occupancy models are hierarchical models commonly fitted to 
camera trap data because they can account for imperfect detec-
tion (which rarely equals 1) to estimate the conditional probabil-
ity that a site is ‘occupied’ by a species given it was not detected 
(MacKenzie et  al., 2002, 2003). Covariates such as measures of 
vegetation cover can be included in both the detection and oc-
cupancy component models. These models are relatively complex, 
and small changes in detection histories (presence or absence of 
a species during a discrete time interval), false positives or false 
negatives can dramatically affect results (Royle & Link, 2006). We 
therefore predicted that occupancy estimates obtained using ma-
chine learning generated labels would compare poorly with esti-
mates using expert, manually generated labels. Other commonly 
used metrics such as spatially explicit capture recapture methods 
(Borchers & Efford, 2008) and the random encounter model (Lucas 
et al., 2015) were not evaluated because they either required an 
additional layer of analysis (e.g. individual identification and re-
identification), or because the sampling design of our test data was 
unsuitable (e.g. non-random camera placement).

The four focal species used for calculating activity patterns 
and occupancy were African golden cat, chimpanzee, leopard and 
African forest elephant. These species were chosen because they 
were the focus of the camera trap survey that generated the out-of-
sample test data and because they are conservation priority species 
in Central Africa. We also initially included western lowland gorilla, 
but we had too few unique captures of this species (only seven of 
227 out-of-sample stations having >5 captures) to fit either activity 
pattern models or occupancy models.

2.7 | Thresholding and overall model performance

All three metrics derived from machine learning labels were re-
calculated using a threshold approach, where labels were excluded 
if the model's predicted ‘confidence’ (softmax output) was below a 
given threshold. While these softmax values are not strictly describ-
ing the model's ‘confidence’, and they are fallible under malicious 
attack (Guo et  al.,  2017; Kurakin et  al.,  2017), they do in general 
correlate with prediction accuracy (e.g. see Results). For the sake 
of brevity we refer to these values as ‘confidence’ hereafter. The 
thresholds tested ranged from 0 (no threshold) to 90%, increasing 
in 10% intervals. For each of the three ecological metrics, we then 

http://www.wildlifeinsights.org
http://www.wildlifeinsights.org
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re-calculated results using the machine learning labels and com-
pared these with results from the full, expert labelled dataset using 
various statistical measures (see later). Secondarily, we also made 
the same comparison using the matching subset of machine learn-
ing labels and expert labels after thresholding, but this was consid-
ered less challenging for the model. We also calculated the effect of 
removing data on sample size, top one balanced accuracy and top 
five accuracy for the overall model, and on four standard measures 
of model precision and accuracy (precision, recall, F1 score and bal-
anced accuracy for each species using the confusionMatrix function 
in the caret R package (Kuhn, 2020).

Estimated species richness from machine learning generated la-
bels and expert labels was compared using linear regression fitted 
by least squares. Species richness from expert labels was used as 
the predictor variable and species richness from machine learning 
labels was used as the response. For each threshold, we evaluated 
how well species richness from machine learning labels correlated 
with expert labels by calculating the slope coefficient and variance 
explained (R2).

Diel activity patterns (proportion of 24 hr day active) were cal-
culated using circular kernel probability density functions for all four 
focal species, fitted using the fitact function (with 200 bootstrap 
replicates) from the activity R package (Rowcliffe,  2019; Rowcliffe 
et al., 2014). For each species and threshold combination, we tested 
if there was a significant difference (Wald test on chi-squared dis-
tribution with 1 degree of freedom) in diel activity estimated by 
machine learning labels and expert labels using the compareAct 
function (Rowcliffe, 2019), expecting no difference using an alpha 
level of 0.05.

Single season, single species occupancy models were fitted by 
maximum likelihood using the occu function from the unmarked R 
package (Fiske & Chandler,  2011), where the occupancy state Zi 
(1 = occupied, 0 = unoccupied) of a site M (camera station) is mod-
elled as:

and the observation process Y on sampling occasion i at site j as:

Detection histories were collapsed to 5-day sampling occasions as a 
compromise between achieving model stability and ensuring an ade-
quate number of replicates for each site. In the detection (observation 
process) model, we included covariates (using a logit link) of Elevation 
(m), Date (first day of the 5-day occasion length) and Date2 (to allow 
for non-linear, seasonal changes in detection). In the occupancy com-
ponent model, we included covariates of Elevation (m), Distance to 
the Nearest River (m), Distance to the Nearest Road (m) and mean 
distance to the Nearest Village (m) as continuous predictors without 
interactions. All covariates were mean-centred and scaled by 1 SD to 
prevent convergence issues. We did not perform model selection and 
predicted occupancy for the 227 camera stations using the full model. 

We then compared occupancy predictions (n = 227 camera stations) 
for no threshold (i.e. using all data), and the nine thresholds using linear 
regression fitted by least squares as described previously for the spe-
cies richness comparisons.

3  | RESULTS

3.1 | Effect of thresholding on overall model 
performance

Regardless of the threshold used, top five accuracy for the overall 
model predictions on the out-of-sample data (n = 227 independent 
camera stations) were consistently close to or above 95% (Figure 2). 
To achieve a top one balanced accuracy of 90% or more for the over-
all model, a threshold of ≥70% confidence was required and >25% of 
the data were discarded (Figure 2).

Table  2 shows performance statistics for each class com-
pared to the WildlifeInsights model. Note that this comparison 
should be interpreted with caution. Ideally, we would run the 
WildlifeInsights model on our out-of-sample test data, but data 
sharing restrictions prevented this. Where our species or groups 
could not be compared with an equivalent class on WildlifeInsights 
this is indicated as no equivalent class (NE). If precision and recall 
could not be estimated because of insufficient training and vali-
dation data this is indicated as ‘needs more data’ (NMD). With a 
threshold of 70% confidence (i.e. excluding labelled images below 
70% confidence), top one balanced accuracies for 16 of the 27 
classes were >90% and a further five were >75% (Table  2). Top 
one balanced accuracies for the remaining seven classes ranged 

Zi ∼ Bernoulli(� ) for i = 1, 2, …, M,

Yij |Zi ∼ Bernoulli(Zip ) for j = 1, 2, …, Ji.

F I G U R E  2   Relationship between threshold level to accept top 
label, % of data discarded and overall top five and top one balanced 
accuracy (±95% CI) for predictions on out-of-sample test data
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from 50% to 70% (Table  2). All other measures of accuracy and 
precision at all thresholds are in Table S3 and Figure 3 shows the 
confusion matrix for the out-of-sample data after excluding labels 
below 70% confidence (see Figure S5 for the confusion matrix of 
aggregated labels after thresholding).

3.2 | Species richness

Species richness estimated by machine learning labels and expert 
labels was strongly correlated at all thresholds used (Figure 4). There 
was a general tendency for species richness to be underestimated 
by machine learning as the threshold increased, and the slope of the 
relationship was close to one with no threshold. A repeat analysis 
comparing machine learning labels and matching subsets of expert 
labels for each threshold is shown in Figure S8.

3.3 | Activity patterns

Above a threshold of 70% there was no significant difference between 
diel activity patterns estimated by machine learning labels and ex-
pert labels for all four focal species in the full out-of-sample test data 
(Figure 5; Table S4). The difference became non-significant at a thresh-
old of 50% when comparing matching subsets of machine learning 
labelled data and manually labelled data at each threshold (Table S5).

3.4 | Occupancy models

As expected, occupancy estimates made using machine learning 
labels were sometimes inconsistent with those made using expert 
labels, and thresholding had a strongly improved inference in some 
cases (Figure  6). For golden cat and leopard, which are predicted 

Species Precision % Recall % F1 Prevalence
Balanced 
accuracy

Civet_African_Palm NMD (NMD) NMD (NMD) NA NA NA

Gorilla NMD (NMD) NMD (NMD) NA 0.4 50

Rail_Nkulengu 0.0 (47.2) 0.0 (48.6) NA NA 50

Guineafowl_Cresteda  100 (99.8) 5.3 (91.2) 10 0.1 52.6

Mandrillus 83.9 (96.1) 29 (72.3) 43.1 1.8 64.5

Blank 98.1 (98.3) 40.3 (78.7) 57.1 3.6 70.1

Buffalo_African 97.5 (91.1) 55.7 (73.6) 70.9 1.2 77.8

Bird 11.2 (NE) 60.0 (NE) 18.9 0.1 79.7

Chevrotain_Water 100 (NMD) 67.4 (NMD) 80.6 0.2 83.7

Guineafowl_Black 70.6 (79.6) 72.7 (79.5) 71.6 0.2 86.3

Cat_Golden 96.0 (NMD) 78.0 (NMD) 86.1 1 89

Pangolin 94.1 (NMD) 80.0 (NMD) 86.5 0.1 90

Duiker_Yellow_Backed 97.5 (88.8) 83.8 (72.3) 90.2 2.9 91.9

Human 78.4 (84.8) 87.4 (75.2) 82.6 4 93.2

Chimpanzee 83.5 (87) 88.4 (71.4) 85.9 2.2 94

Monkey 70.7 (NE) 92.0 (NE) 80 2.9 95.4

Mongoose 83.5 (NMD) 91.0 (NMD) 87.1 0.4 95.5

Rat_Giant 68.2 (76) 93.8 (75.8) 78.9 0.1 96.9

Duiker_Redb  95.9 (95.6) 96.5 (79.6) 96.2 30.8 97.3

Duiker_Blue 90.04 (98.2) 97.0 (65.7) 93.6 17.6 97.4

Hog_Red_River 97.0 (82.7) 95.7 (84.7) 96.3 6.5 97.7

Squirrel 85.9 (98.6) 95.8 (67.6) 90.6 0.9 97.8

Leopard_African 92.8 (85.2) 96.0 (61.4) 94.4 2.2 97.9

Elephant_African 91.9 (94.4) 98.4 (84.2) 95.1 19.3 98.2

Porcupine_Brush_
Tailed

93.9 (89.4) 98.9 (42.1) 96.3 0.5 99.4

Genet 95.3 (89.2) 99.3 (65.6) 97.2 0.8 99.6

Mongoose_Black_
Footed

92.9 (NMD) 100 (NMD) 96.3 0.1 100

aUsed precision and recall for similar Guttera plumifera from WildlifeInsights. 
bUsed precision and recall for Cephalophus callipygus from WildlifeInsights. 

TA B L E  2   Precision, recall, balanced 
accuracy ((sensitivity + specificity)/2), 
F1 score and prevalence (%s of each 
class) for the 27 classes (Table S1) in the 
out-of-sample test data after removing 
labels with a predicted confidence <70%. 
The same measures for the full dataset 
without any thresholding are given 
in Table S2. Species are sorted from 
lowest to highest balanced accuracy. For 
comparison, the precision and recall for 
the model used by the wildlifeinsights.
org web platform are given in brackets. 
Orange indicates our model performed 
worse than the WildlifeInsights model for 
a given species, and purple indicates our 
model performed better
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with high accuracy and precision by our machine learning model, oc-
cupancy estimates from machine learning labels and expert labels 
were highly correlated at all thresholds (Figure S9). African elephant 
occupancy estimates using machine learning labels improved dra-
matically as the threshold increased, but chimpanzee occupancy es-
timates from machine learning labels were consistently uncorrelated 
with those estimated using expert labels (Figure  6). Comparisons 
between matching subsets of machine learning labelled data and 
manually labelled data at each threshold showed much stronger cor-
relations for all groups and thresholds (Figure S10).

4  | DISCUSSION

Machine learning models have the potential to fully automate la-
belling of camera trap images without the need for manual valida-
tion. This would allow ecologists to rapidly process data and use 
the outputs (e.g. species labels) directly in ecological analyses, but 
it has been uncertain how this can be achieved. In particular, mod-
els published to date do not evaluate their predictive performance 
in an ecological modelling context (Beery et al., 2018; Norouzzadeh 
et al., 2018; Tabak et al., 2019; Willi et al., 2019). Here, we compared 

F I G U R E  3   Confusion matrix (% correct labels for each species/group) showing model performance on out of sample test data after 
excluding labels below a confidence threshold of 70% (each row is normalized independently). Figure S7 shows the confusion matrix with 
absolute numbers
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ecological metrics calculated on an out-of-sample test dataset using 
machine learning labels with the same metrics calculated using ex-
pert, manually generated labels. Using our optimal species classifica-
tion model that generalizes to out-of-sample data, we show machine 
learning labels have the potential to be used in a fully automated 
workflow that could remove the need for manual validation prior to 
conducting ecological analyses.

Most of the training approaches and many of the mechanisms 
we used to enhance the training of the machine learning model were 
taken directly or almost directly from the open source fast.ai Python 
library (Howard & Gugger, 2020), demonstrating the strength of this 
flexible library for species classification tasks. We used an estab-
lished architecture (ResNet50) for the machine learning model but 
other more recent architectures could yield further increases in per-
formance (Schneider et al., 2020). The ResNeXt (Xie et al., 2017), the 
ResNeSt (Zhang et al., 2020) and the EfficientNet (Tan & Le, 2020) 
families of network architectures are particularly worth exploring in 
this context. Another avenue of possible further improvement is to 

use an approach based on a sequence of models. One natural step is 
to first detect a bounding box for an animal with a localization model 
(Beery et al., 2019) and later classify only the content found in that 
box. Independently, another step can be introduced where a model 
is trained to first identify an aggregated species class (comprised of 
species that share similar characteristics; e.g. see Figure  S6), and 
later dedicated models are trained to identify the individual species 
within these aggregated classes. However, in at least one example 
used to classify invertebrates in images this approach resulted in 
lower performance (Ärje et al., 2019).

We used a relatively small training set (c. 300,000 images here 
vs. 3.2 million in (Norouzzadeh et  al.,  2018) and 8.7  M used by 
WildlifeInsights (Ahumada et al., 2020) and a large number of indi-
vidual classes, yet our model achieved relatively high precision and 
accuracy even when tested on completely out-of-sample data, which 
is considered a significant challenge for the field (Beery et al., ,2018, 
2019; Schneider et al., 2019). We believe this encouraging result can 
be explained both by the machine learning approaches used (e.g. 

F I G U R E  4   Relationship between species richness at each camera station (n = 227) predicted by the machine learning model (y-axis) and 
species richness predicted from expert labels (x-axis) for no threshold and the nine thresholds used after predicting on the out-of-sample 
test data (see Figure S8 for comparison between estimates from machine learning labels and matching subsets of manual data at each 
threshold). The dotted line shows where a 1:1 relationship would fit the data
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the fast.ai framework and image augmentation), and because for-
est camera traps in Central Africa are often deployed in very sim-
ilar settings and using standard protocols (e.g. typically attached 
to trees 30–40 cm above ground level), with animals captured at a 
predictable distance from the camera (usually on a path) with a gen-
eral background of green and brown vegetation. This is in contrast 
to camera trap images from more open habitats, where animals are 
often detected across a wide range of distances and backgrounds 
(Beery et al., 2018). On the other hand, informational richness in the 
background of photos taken in forest settings poses a significant 

challenge to machine learning models as well as human experts 
(Figure 7).

Thresholding improved the overall performance of the model 
and its performance for individual species. In our tests we ‘dis-
carded’ labels with low ‘confidence’ but these data could equally 
be classified manually if sample sizes were small. It is important to 
note, however, that this additional effort to manually label low con-
fidence images would not have improved inference in our example 
ecological analyses, with the exception of chimpanzee occupancy 
estimates. Chimpanzee images had the lowest measure of precision 

F I G U R E  5   Estimated activity patterns 
for the four focal species in the out-of-
sample test data using machine learning 
labels (orange; n = 18,078 observations 
after excluding labels below 70% 
confidence) and expert labels from the full 
dataset (blue; n = 23,868 observations)
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thresholds tested are shown in Figure S9
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among the four focal species, which suggests that true detection 
events were probably missed frequently, resulting in false negatives 
(Figure S2). Species that were classified with the highest precision 
and accuracy were either relatively unique in their shape, colour 
and pattern (e.g. African leopard, the ‘Genet’ group) or were well 
represented in the training data. To allow users in Central Africa to 
use our model, we have created an offline, multi-platform software 
tool that can label large batches of images or videos, and display 
simple maps of species presence/absence and species richness 
(see details in Świeżewski & Whytock et al., 2021). The software 
also outputs the labels in a format that can be used for calculating 
activity patterns or for use in occupancy models. We do not fully 
automate these analyses at present, but we anticipate these fea-
tures will be integrated into future releases.

If machine learning models can fully automate labelling of camera 
trap images, the first question likely to be posed by most ecologists 
is ‘Should we?’. Camera trap images contain a wealth of information 
beyond species identity that would be missed using our model such 
as behaviour, demography, individual phenotype and body con-
dition. A trained model is also limited to detecting and classifying 
the species in the training dataset, and by definition cannot detect 
new species. Some machine learning models can already classify 
behaviour (Norouzzadeh et al., 2018) and other future models will 
achieve this and much more. In our opinion, fully automated labels 
can and should be used in ecological analyses, but only after valida-
tion (and re-validation) of the model's performance, and to answer 
clearly defined questions. Each use-case will also differ in the bene-
fits that can be gained from fully automated analysis. A conservation 
manager with tens of thousands of images collected on a rolling basis 
might accept a trade-off between increased speed of data analysis 
and having to discard images with uncertain labels, but a scientist 

testing hypotheses for peer-reviewed publication might prefer to 
view all of the images manually. We recommend that in all cases 
model performance should be validated regularly using sub-sampled 
data to detect potentially new or hidden biases. Model accuracy 
could change if field protocols or environmental conditions change 
in seasonal or unexpected ways (e.g. heavy snowfall in temperate 
zones). However, during model evaluation we found that expert  
labels in the training and validation data were also never ‘perfect’, 
and perhaps high performance machine learning models offer a more 
consistent means of analysing camera trap data than manual label-
ling because biases are predictable and can be quantified explicitly.

Camera traps are commonly used worldwide by conservation 
practitioners whose normal scope of work might not allow sufficient 
time for the handling, processing and analysing of large quantities 
of digital data. The authors personally know of several large cam-
era trap databases that have not been analysed years after data 
collection ended, often because of a lack of resources or technical 
expertise. New web-based platforms for ecological data are seek-
ing to address this problem by allowing users to upload data to the 
cloud where it is stored and analysed using machine learning models 
(Ahumada et al., 2020; Aide et al., 2013) but a lack of fast internet ac-
cess can be a barrier to using such platforms and our offline applica-
tion can fill this important gap. The next generation of camera traps 
will also have embedded machine learning models. Together, edge 
and cloud computing will open the door to national and international 
real-time ecological forecasting at unprecedented spatial and tem-
poral scales. We anticipate that the workflow presented here could 
substantially improve how camera trap data are processed and an-
alysed, and conclude that, with careful testing and evaluation in an 
ecological context, high performance machine learning models can 
be used for fully automated labelling of camera trap images.
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