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Abstract
Muscle disuse leads to a rapid decline in muscle mass, with reduced muscle pro-
tein synthesis (MPS) considered the primary physiological mechanism. Here, 
we employed a systems biology approach to uncover molecular networks and 
key molecular candidates that quantitatively link to the degree of muscle atro-
phy and/or extent of decline in MPS during short-term disuse in humans. After 
consuming a bolus dose of deuterium oxide (D2O; 3  mL.kg−1), eight healthy 
males (22 ± 2 years) underwent 4 days of unilateral lower-limb immobilization. 
Bilateral muscle biopsies were obtained post-intervention for RNA sequencing 
and D2O-derived measurement of MPS, with thigh lean mass quantified using 
dual-energy X-ray absorptiometry. Application of weighted gene co-expression 
network analysis identified 15 distinct gene clusters (“modules”) with an expres-
sion profile regulated by disuse and/or quantitatively connected to disuse-induced 
muscle mass or MPS changes. Module scans for candidate targets established an 
experimentally tractable set of candidate regulatory molecules (242 hub genes, 31 
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1   |   INTRODUCTION

Reduced physical activity occurring during injury, illness, 
spaceflight, or with certain lifestyle choices, results in mus-
cle disuse. Even in healthy people, muscle disuse leads to 
muscle atrophy,1,2 the health consequences of which in-
clude reduced strength and endurance,3 impaired insulin 
sensitivity,4 and reduced anabolic responsiveness to protein 
intake.5 Temporally, muscle disuse atrophy is a rapidly oc-
curring phenomenon, with the rate of muscle loss being 
most pronounced during the initial stages (ie, ≤7 days) of 
disuse.6,7 This has significant clinical bearing, not only since 
the typical length of hospital stay or home-based inactivity 
following illness/injury is ≤1 week,7-11 but also because the 
aggregation of such short periods of disuse throughout life 
accelerates age-related muscle loss (ie, “sarcopenia”).6 With 
acute hospital admissions and the aging population expand-
ing,12,13 the contribution of short-term muscle disuse to 
muscle dysfunction is of increasing concern. Muscle disuse 
atrophy is a phenomenon intrinsic to the affected muscle(s) 
(thus termed “simple” atrophy),14,15 yet there are often co-
morbidities present that may contribute further to atrophy, 
such as whole-body insulin resistance16 or systemic inflam-
mation17 as seen in aging18 or metabolic disease.19

The most frequently used models for studying mus-
cle disuse atrophy in humans are bed rest, and unilateral 
lower-limb immobilization (ULLI; as with musculoskel-
etal rehabilitation) via, for example, bracing/casting or 
limb suspension.6 Although bed rest is arguably more 
clinically relevant, whether it is an appropriate mechanis-
tic model to study disuse atrophy has been debated.1,20,21 
Indeed, systemic influences arising during bed rest (eg, 
systemic inflammation, hormonal alterations) make it dif-
ficult to isolate the intrinsic mechanisms driving disuse 
atrophy.1,20 In contrast, this issue is moderated with ULLI, 
since disuse remains isolated to a single limb or muscle 
group. Such a model also permits use of the contralateral 

leg as a co-temporal control, enabling a more robust phys-
iologic/molecular signal to be obtained within individu-
als. As a consequence, ULLI can be considered a highly 
appropriate experimental model to better understand the 
mechanisms driving short-term disuse atrophy per se.1

Muscle mass is maintained through a dynamic balance 
between muscle protein synthesis (MPS) and muscle protein 
breakdown (MPB).22 Disuse atrophy must, therefore, be un-
derpinned by net imbalance between the two. MPS (both fed 
and fasted) has been shown to decline with short-term im-
mobilization (5 days) in younger, healthy individuals,5 while 
there remains a lack of direct evidence for any quantifiable 
change in MPB in humans.14,15 On this basis, attenuated MPS 
is considered the predominant physiological mechanism 
of (non-diseased) short-term disuse atrophy23 and hence a 
primary target for therapeutic intervention.23,24 A critical 
limiting factor in this regard, however, is that the molecular 
regulation of MPS remains poorly understood in the context 
of short-term disuse. Indeed, of the few benchmark molec-
ular investigations that exist to date (ie, those utilizing ULLI 
in younger, healthy cohorts), most remain as targeted anal-
ysis of “established” MPS markers (eg, Akt/mTOR), with 
either a lack of direct relation to, or inclusion of, measures 
of MPS/muscle mass across most previous research efforts: 
hindering the ability for one to draw more robust conclu-
sions on molecular causality.5,25-30 In any case, the molecu-
lar complexity of muscle is overlooked by viewing molecular 
changes as isolated events, as is the case for targeted molec-
ular profiling or transcriptome-wide gene-level differential 
expression efforts that have been undertaken to date.5,25-30 
Further worthy of consideration is that, while muscle mass 
and MPS do indeed decline as a result of disuse, there also 
appears to exist notable inter-individual variability in mus-
cle physiologic responses to unloading,7,26,31 implying that 
molecular regulation of muscle disuse is too somewhat het-
erogeneous. Accounting for such molecular/physiological 
heterogeneity consequently helps identify molecules that 

transcriptional regulators) associated with disuse-induced maladaptation, many 
themselves potently tied to disuse-induced reductions in muscle mass and/or 
MPS and, therefore, strong physiologically relevant candidates. Notably, we im-
plicate a putative role for muscle protein breakdown-related molecular networks 
in impairing MPS during short-term disuse, and further establish DEPTOR (a 
potent mTOR inhibitor) as a critical mechanistic candidate of disuse driven MPS 
suppression in humans. Overall, these findings offer a strong benchmark for ac-
celerating mechanistic understanding of short-term muscle disuse atrophy that 
may help expedite development of therapeutic interventions.
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regulate human muscle phenotypic adaptation.32-34 Studies 
employing more untargeted approaches that both take into 
account the molecular complexity of muscle and facilitate 
linkage between molecular, MPS, and muscle mass changes 
therefore remain necessary before a complete blueprint of 
the intrinsic mechanisms regulating short-term human dis-
use atrophy can be attained.

Recently, we confirmed the efficacy of deuterium oxide 
(D2O; “heavy water”) techniques for quantification of MPS 
in free-living conditions over extended durations (ie, days-
to-weeks).35-37 This approach permits measurement of MPS 
over an entire period of disuse, providing valuable data to de-
termine the mechanistic underpinnings of disuse atrophy.26 
More recently, we have demonstrated the power of network 
analysis as an advanced bioinformatic tool to uncover novel 
pathways and molecular drivers of human muscle (un)load-
ing phenotypes.34,38 As a systems biology concept, network 
analysis enables for the molecular complexity of a system to 
first be encapsulated by modeling interactions between its 
molecular components, with downstream network-driven 
analyses thereafter facilitating the discovery process of new, 
physiologically relevant molecules by providing an opti-
mal basis to make direct connections between molecular 
responses and endpoint physiological changes.39 Network 
analysis thus offers a judicious strategy to probe for novel 
molecular correlates of the short-term muscle disuse pheno-
type. Using data obtained as part of a new clinical study of 
healthy younger volunteers, we herein combined the above-
mentioned bioinformatic and metabolic techniques with 
robust measures of muscle mass to establish key molecules 
quantitatively linked to the degree of muscle atrophy and/
or extent of MPS suppression following 4 days of ULLI—in 
turn providing new insights into possible intrinsic mecha-
nisms of short-term disuse atrophy in humans.

2   |   MATERIALS AND METHODS

2.1  |  Subject characteristics

Eight young, healthy male volunteers (mean ± SD: age, 
22 ± 2 years; body mass index, 25 ± 3 kg.m−2) were in-
volved in this study. Volunteers were initially screened by 
medical questionnaire, with exclusions for history of any 
neuromuscular disorder or muscle/bone wasting disease, 
acute or chronic metabolic, respiratory or cardiovascu-
lar disorder, or any other signs of ill health. All subjects 
were recreationally active upon entry into the study, but 
were not routinely undertaking heavy, structured exer-
cise. Subjects did not use tobacco-containing products or 
consume excessive alcohol (>21 units per week). The ex-
perimental procedures outlined herein were approved by 
the Hamilton Integrated Research Ethics Board (HiREB 

#2192) as part of a wider clinical trial registered at trial-
register.nl (NTR6099) and conformed to the Declaration 
of Helsinki. Written informed consent was obtained from 
all subjects prior to their participation.

2.2  |  Overview of 
experimental procedures

This study involved a bilateral leg protocol, with one leg 
randomly assigned to be immobilized and the other con-
sequently used as a co-temporal contralateral control. 
Upon inclusion, subjects were asked to visit the labora-
tory on two separate occasions, both of which followed 
an overnight fast. On the first visit, participants had the 
thigh lean mass of both legs measured using dual-energy 
X-ray absorptiometry (DXA) (Lunar iDXA; GE Medical 
Systems, Mississauga, ON), before ingesting a bolus dose 
of D2O (3  mL.kg−1) for the measurement of integrated 
MPS rates. A saliva sample was obtained prior to and 
2 hours following D2O consumption for measurement of 
deuterium enrichment in body water. Thereafter, a knee 
brace (X-Act ROM; DonJoy, Dallas, TX, USA) was fitted to 
the immobilization leg and fixed at an angle of 60° of knee 
flexion. Participants wore the knee brace as described for 
a total duration of 4 full days, ambulating on crutches 
throughout the immobilization period and returning to 
the laboratory for their second visit exactly 4  days after 
their first visit. Upon arrival for visit 2, participants had 
their knee brace removed, the thigh lean mass of both legs 
again measured, and a further saliva sample was obtained. 
Finally, a skeletal muscle sample was collected from the 
m. vastus lateralis of each leg under local anesthesia using 
the Bergström needle technique,40 with extracted tissue 
snap-frozen in liquid nitrogen and stored at −80℃ until 
analysis.

2.3  |  Quantification of thigh lean 
mass and MPS

DXA-derived thigh fat- and bone-free (ie, lean) mass 
(referred to herein as “muscle mass” for simplicity) was 
determined from the lowest point of the ischium to the 
knee space.41 Myofibrillar MPS was quantified using the 
same protocol as is described in full elsewhere.41 Post-
intervention DXA data were unable to be obtained for 
one participant due to a technical issue, with all mus-
cle mass-related analyses herein consequently based on 
data from seven of the eight participants. Physiologic 
data were analyzed via IBM SPSS (v26.0) using paired 
t  test (MPS) or two-way repeated measures ANOVA 
with Fisher's LSD post-hoc analysis (muscle mass), with 
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data presented as mean ± SD and statistical significance 
set at P < .05.

2.4  |  RNA-sequencing data generation

Muscle tissue (>30  mg per sample) was homogenized 
in Trizol reagent (Invitrogen) following the manufac-
turer's directions. After the addition of chloroform and 
subsequent centrifugation step the aqueous phase was 
transferred to RNeasy columns (Qiagen) for mRNA isola-
tion following manufacturer directions. RNA was quan-
tified using the Denovix DS11 FX+spectrophotometer 
(Denovix, UK). RNA quality was examined using the RNA 
iQ assay and the Qubit 4 instrument (Thermofisher, UK). 
All samples returned quality scores ≥8.1. Strand-specific 
mRNA libraries were prepared using the TruSeq Library 
Kit (Illumina, UK) and RNA sequenced to generate paired 
end reads using the NovaSeq 6000 instrument (Ilumina, 
UK) by Edinburgh Genomics, UK. All samples passed 
initial quality control. The RNA-sequenced reads were 
aligned to the human genome (version GrCH38, from 
Ensembl release 96) and summary counts generated using 
the R programming language and the Rsubread library.42

2.5  |  Differential gene-level 
expression analysis

Differential gene expression analysis was undertaken using 
the R programming language and the edgeR library.43 The 
count data were filtered using a counts-per-million bases 
threshold of 10 as recommended by the edgeR authors44 
and the filtered data normalized using the trimmed mean 
of M values algorithm as implemented in edgeR. To detect 
differential gene expression between the immobilized and 
non-immobilized legs we used a design matrix to account 
for the paired nature of the samples following guidance 
in the edgeR user's manual (Section 3.4—Additive mod-
els and blocking). Differential expression of genes was 
assessed with a likelihood ratio test using the glmLRT 
function of edgeR. The Benjamini-Hochberg procedure 
was used to control for false discovery rate (FDR). Genes 
with a Benjamini-Hochberg corrected P-value <.05 were 
defined as being differentially expressed.

2.6  |  Co-expression network 
analysis: Network construction and 
module detection

A gene-wise network was constructed using the weighted 
gene co-expression network analysis (WGCNA) R 

library.45 Before network construction, raw read counts of 
filtered genes were normalized using a variance-stabilizing 
transformation46 in order to attain homoscedastic expres-
sion data. An adjacency matrix quantifying the connec-
tion strength between each pair of genes was then defined, 
in which entries equaled the 12th power of the Pearson's 
correlation coefficient between a given gene pair when the 
coefficient was positive, and zero otherwise. Such an adja-
cency structure is the basis for building a signed hybrid co-
expression network—selected on the premise that signed 
variants appear more effective in identifying biologically 
coherent network modules than unsigned counterparts.47 
Moreover, the power of 12 was chosen following the scale-
free topology criterion48 and was the lowest exponent for 
which the corresponding scale-free topology fitting index 
metric (signed-R2) achieved an appropriately high value 
(≥0.9). A relative interconnectedness measure for each 
gene pair (dissimilarity topological overlap) was then 
quantified from the adjacency matrix and subject to aver-
age linkage hierarchical clustering to generate a network 
tree, with network modules in turn determined using the 
cutreeDynamic algorithm.49 Of note, a minimum mod-
ule size of 50 genes was selected when defining modules, 
which were subsequently merged if their composite ex-
pression (module eigengene; first principal component of 
module gene expression) was very similar (correlation ≥ 
0.75)—undertaken to obtain moderately large and distinct 
modules.47,50 Modules were then assigned a unique nu-
merical label “Mi” for identification. Genes which could 
not be distinctly clustered were assigned to a module la-
beled “M0” and excluded from all subsequent analyses 
(but included in background gene lists where applicable).

2.7  |  Co-expression network analysis: 
Defining disuse-associated modules

Molecular networks associated with short-term muscle 
disuse were characterized in two ways. First, molecular 
networks responsive to disuse were established by apply-
ing differential analysis (immobilization vs control) to the 
module eigengene. Such analysis was performed using 
empirical Bayes-moderated paired t tests as implemented 
in the limma package for R,51 with differentially regulated 
modules selected as those with a Benjamini-Hochberg cor-
rected P-value <.05. Second, module eigengene patterns 
were correlated with disuse-induced muscle mass (% loss, 
pre-to-post intervention of the immobilized leg) and MPS 
(% decrease, control vs immobilized leg) changes to eluci-
date molecular networks of possible physiologic relevance 
in the context of short-term disuse muscle adaptation. 
Physiologically relevant modules were subsequently de-
fined as any network module for which the difference (Δ) 
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in eigengene expression between control and immobilized 
legs was significantly correlated (|r| > 0.7, P < .05) with a 
given physiologic variable.

2.8  |  Ontological analysis of disuse-
associated expression changes

The functional characteristics of differentially expressed 
genes and disuse-associated network modules were de-
rived by testing the relevant gene lists for enrichment of 
Gene Ontology (GO) terms. Analyses was undertaken 
using the clusterProfiler package in R,52 with the corre-
sponding background gene list used in each instance being 
the genes used as input during differential expression test-
ing/network construction. Each of the three separate GO 
categories (biological process, BP; cellular component, 
CC; and molecular function, MF) were considered dur-
ing analyses, and enriched terms selected as those with a 
Benjamini-Hochberg corrected P-value <.05.

2.9  |  Network-driven 
identification of key molecular drivers of 
disuse muscle adaptation

Primary candidate targets of disuse-induced human mus-
cle adaptation were determined via two approaches. First, 
key molecular drivers within disuse-associated modules 
(module “hub” genes) were established as based on their 
scaled within-module connectivity (kIM),53 such that 
genes within a given module with a scaled kIM value ≥ 
0.7 were classified as module hubs.38 Hub genes of mod-
ules associated with muscle mass and/or MPS changes 
were also further prioritized by those ranked in the upper 
quartile of their module's gene set on the basis of their in-
dividual “gene significance” (GS; |correlation coefficient|) 
to the given endpoint measure. Second, putative tran-
scriptional regulators of disuse-associated modules were 
predicted by testing their corresponding gene lists for en-
riched transcription factor binding site(s) (TFBS) in the 
5  kb upstream/downstream region encompassing tran-
scription start sites. In particular, the oPOSSUM-3 web-
server54 was used to query JASPAR core vertebrae profiles 
with a minimum specificity of 8 bits meeting a conserva-
tion cut-off of 0.4 and similarity matrix score threshold of 
85%, with the corresponding background gene list in each 
case constituting the genes inputted during network con-
struction. Of note, large modules (>1000 genes) were rep-
resented by their top 75% most connected genes. Enriched 
TFBS were selected as those with a corresponding Z-score 
and Fisher score ≥ the mean + 1.5 SD of their respective 
distributions.

3   |   RESULTS

3.1  |  Physiologic characteristics

Thigh muscle mass tended to change over time in a leg-
dependent manner (leg x time interaction P = .076). At 
baseline, thigh muscle mass did not differ between legs 
(P  =  .424) and remained unchanged in the control leg 
throughout the study (P = .457). However, 4 days of im-
mobilization lead to a 1.68  ±  1.71% decrease in thigh 
muscle mass of the immobilized leg (P = .036), with daily 
MPS rates concomitantly 16.16 ± 9.57% lower in the im-
mobilized leg compared to the control leg (P  =  .004). 
Nevertheless, as expected, inter-individual variability in 
physiologic responses to immobilization was observed 
(Figure  1), with declines in muscle mass ranging from 
−0.4% to 4% (Figure 1A) and concomitant MPS deficits 
ranging from 3% to 30% (Figure 1B).

3.2  |  Gene-level expression changes 
following 4 days of leg immobilization

We first compared individual gene expression changes 
in immobilized muscle vs control muscle and identified 
a total of 595 genes differentially expressed between con-
ditions (FDR < 5%), the majority of which were found 
to be downregulated in immobilized muscle (455 genes; 
Table S1). GO term enrichment analysis of differentially 
expressed gene sets revealed a clear ontological profile 
only for genes downregulated following immobilization 
(Figure  2A,B, Table S2). Downregulated genes were en-
riched for BP terms related to energy metabolism and mus-
cle development/contraction (Figure 2A), CC terms mainly 
of contractile apparatus/sarcoplasmic origin (Figure  2B), 
and MF terms related to actin binding and ion transporter 
activity (Figure  2B). To provide additional functional in-
sight of gene-level expression changes, we then determined 
the top-ranking up- and downregulated genes based on 
their log2 fold change (Figure 3)—noting several plausible 
candidates in the process. For example, among genes most 
potently upregulated by immobilization is that which en-
codes the well-established cytokine interleukin 18 (IL18). 
The top-ranked downregulated gene was identified to be 
the Leucine Rich Repeat Containing 52 gene (LRRC52). 
Several novel transcripts were also identified (Figure 3).

3.3  |  Network-level expression changes 
following leg immobilization

To gain a systems-level understanding of the muscle tran-
scriptional response to short-term muscle disuse, we next 
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implemented WGCNA.48 In doing so, we identified a total of 
49 distinct groups of co-regulated genes (ie, network “mod-
ules”) in our dataset (Table S3), nine of which were found 
to have an expression profile differentially regulated by im-
mobilization vs control (FDR < 5%; Figure 4, Table S4). Of 
these, seven could be subsequently labeled for function via 
enrichment analysis of GO terms (Figure 4, Table S5). In 
keeping with the overarching themes identified by gene-
level differential analysis, network analysis also revealed 
gene signatures related to mitochondrial function (M49) 
and myogenesis (M35) as being downregulated in immo-
bilized muscle. Nevertheless, network analysis also un-
covered several molecular features of immobilization that 

were not established using standard gene-level differential 
analysis alone. In particular, immobilization was addition-
ally found to upregulate muscle gene networks related to 
ribosome biogenesis (M2), proteasomal ubiquitin-(in)de-
pendent protein catabolism (M28) and ribonucleoprotein 
complex organization/mRNA processing (M42).

3.4  |  Molecular networks associated 
with the short-term disuse phenotype

WGCNA also facilitates discovery of the molecular signa-
tures that underpin phenotypic change in a given state.39 

F I G U R E  1   Inter-individual physiologic responsiveness to immobilization. Panel (A): Rank-ordered individual muscle mass declines (%) 
of the immobilized leg. Panel (B): Rank-ordered individual MPS deficits (%) with immobilization

(A) (B)

F I G U R E  2   Functional enrichment of genes significantly downregulated following muscle disuse. Panel (A): Top 20 enriched Gene 
Ontology biological process terms for genes significantly downregulated following disuse. Panel (B): Top 10 enriched Gene Ontology cellular 
component (blue shading) and molecular function (green shading) terms for genes significantly downregulated following disuse. In any 
case, the strength of color shading depicts the magnitude of enrichment significance, given by the negative log10 of that term's enrichment 
FDR P-value (with darker shading analogous with a stronger FDR P-value). Terms are ordered within each category broadly by functional 
classes

(A) (B)
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Capitalizing on the observed heterogeneity in muscle 
physiologic responses, we used WGCNA to identify 
network modules with expression change correlating 
with muscle mass/MPS declines. We identified a total 
of four network modules that were regulated in propor-
tion to the extent of muscle lost after immobilization 
(M5, M15, M20, and M31) and a further three that were 
regulated in proportion to the magnitude of MPS sup-
pression (M8, M10, and M33) (Figure  4, Table S4). Of 
those modules regulated in proportion to muscle mass 
declines, one had expression positively scaling with the 
extent of muscle mass lost (M15) and was enriched for 
genes involved in mitochondria function. The remaining 
muscle mass-related modules all had expression nega-
tively scaling with the magnitude of muscle mass lost 
and were enriched for genes involved in protein folding 
(M5), histone acetyltransferase activity (M20), and ex-
tracellular matrix (ECM) organization (M31). All three 
MPS-related network modules had expression positively 
scaling with the extent of MPS suppression following 
disuse. Of these, only one could be labeled for function 

via enrichment analysis of GO terms (M10—ubiquitin-
protein transferase activity).

3.5  |  Network-driven identification of 
key disuse-associated candidates

We established key molecular drivers of the short-term 
muscle disuse phenotype by searching for highly con-
nected “hub” genes within disuse-associated modules.53 
In doing so, we identified 242 module hubs from 7158 
genes across the 15 disuse-associated network modules 
(Table S6). Notably, the top-ranked hub gene of each 
module regulated in proportion to the extent of muscle 
mass (Figure 5) or MPS declines (Figure 6) was also found 
to be strongly associated with consequent muscle mass/
MPS decrements following immobilization (Figures  5 
and 6). These particular seven genes (AGO2, ADAMTS2, 
DEPTOR, FOXO3B, LRRC30, MTATP6P1, and TP53BP1), 
along with the other module hubs that tightly connect 
to muscle mass/MPS declines (Figures  5 and 6), thus 

F I G U R E  3   Top ranking differentially expressed genes following muscle disuse. Top 10 significantly upregulated (red shading) and 
downregulated (blue shading) genes, as based on log2 fold change (log2 FC). Strength of shading depicts the magnitude of significant 
differential expression for a given gene, given by the negative log10 of its FDR P-value (with darker shading corresponding to a stronger FDR 
P-value)
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represent strong physiologically relevant mechanistic 
candidates in the context of short-term disuse atrophy.

3.6  |  Putative transcriptional 
regulators of co-expression

Finally, we established putative regulatory factors driving 
co-expression of disuse-associated modules, by searching 
module genes for conserved TFBS.54 A core set of 31 pu-
tative transcriptional regulators was subsequently identi-
fied, with each pertinent module displaying enrichment 
for at least one TFBS (Figure  4). Interestingly, just over 
two-thirds (21 of the 31) of the identified transcription 
factors were predicted to regulate only a single of the 
disuse-associated network modules, perhaps implicating 
the upstream mechanisms that regulate critical molecu-
lar responses during short-term muscle disuse are largely 
unique. Moreover, within six of the seven muscle mass/
MPS-related modules, most of the hub genes strongly as-
sociated with muscle mass/MPS declines were predicted 
to contain a binding site for at least one of the predicted 
transcription factors for that module (Figures 5 and 6). In 
module M15 (mitochondria function), just one of the hub 
genes (DLD) was predicted to contain a binding site for 

this module's only predicted transcription factor (NKX2-
5). Overall, these specific transcription factors may 
therefore play a central role in the mediating molecular 
mechanisms of short-term disuse atrophy.

4   |   DISCUSSION

Periods of short-term muscle disuse occur regularly 
throughout life (eg, with minor injury or illness) and 
often result in muscle atrophy,6,7 with the amalga-
mation of such short periods of muscle disuse conse-
quently regarded as an important driver of sarcopenia.6 
Nevertheless, irrespective of age, the mechanisms that 
underlie short-term disuse atrophy remain poorly de-
fined, hindering the development of optimal preven-
tative strategies that might in turn help to mitigate 
sarcopenic progression. Here, for the first time, this 
study combined robust muscle morphological (muscle 
mass) and metabolic (MPS) assessment with data-driven 
network analysis to elucidate new mechanistic candi-
dates of short-term disuse atrophy in humans, namely by 
establishing molecular networks and key regulatory mol-
ecules quantitatively linked to muscle mass and/or MPS 
changes following 4 days of immobilization.

F I G U R E  4   Muscle disuse-associated network modules and molecular candidates. Modules shown are those differentially regulated 
by disuse and/or regulated in proportion to the extent of muscle mass lost/MPS suppression with disuse. Red and blue shading denote 
significant upregulation and downregulation following immobilization (immob; vs control), respectively. Orange and purple shading depict 
a significant positive or negative correlation between a given module's expression pattern change (Δ; immob minus control) and percent loss 
of the given physiological variable, respectively. Also provided is each module's top ranked hub gene and transcription factors with enriched 
binding site(s) (TFBS)
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Muscle loss ensues at a rapid rate following the onset 
of disuse, occurring in a matter of days,7,55 although there 
does exist notable inter-individual variability,7,31 implying 
that regulation of short-term disuse atrophy is heteroge-
neous. Consistent with this, we identified a number of 
molecular networks that were not globally regulated by 
disuse per se, but rather, were “activated” directly in pro-
portion to the extent of disuse muscle atrophy experienced. 
Networks that showed the greatest expression reduction 
in proportion to losses of muscle mass were enriched for 
genes involved in ECM organization (M31), protein fold-
ing (M5), and histone acetyltransferase activity (M20). In 

recent network analyses of a multi-study tissue biobank, 
Stokes et al similarly show that gene networks centered 
upon ECM remodeling form to become a top feature in 
muscle under different loading states,34 with decreased 
ECM gene expression being further noted in both rodent 
and human models of short-term immobilization.29,56 
ECM remodeling and protein folding, in particular, are 
both highly mechanosensitive events, and consequently, 
play a central role in regulating muscle mass by maintain-
ing structural integrity as well as via downstream mech-
anotransduction of other signaling cascades responsible 
for muscle growth/maintenance.57-60 Collectively, such 

F I G U R E  5   Hub gene networks for modules regulated in proportion to the extent of muscle mass lost with disuse. Each network 
visualization comprises all corresponding hub genes of the given module, with the top ranked hub gene given by a larger node. Red borders 
illustrate hub genes within each module that are also highly linked to the extent of mass loss (ie, within the upper quartile of corresponding 
module's genes ranked by their gene significance to declines in mass), with node fill colors illustrating whether the corresponding hub gene 
is among the module genes that are enriched with binding site(s) for the given transcription factor (TF). Visualizations were generated using 
Cytoscape (v3.7.1)92
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findings indicate that the downregulation of processes 
involved in muscle structural dynamics is part of potent 
intrinsic mechanisms contributing to short-term disuse 
atrophy, presumably as a direct result of the musculature 
rapidly adapting to alterations in muscle loading.

Unloading also plays a fundamental role in regulating 
MPS,61-63 the decrement in which is proposed to be the 
dominant mechanism underpinning short-term disuse 
atrophy.23 Here, we obtained D2O-derived measurements 
of MPS to assess integrated MPS changes across the entire 
period of disuse, in contrast to traditional “acute” (ie, 
stable isotopically labeled amino acid infusion) tracer 
methods.35,64 The D2O method remains novel in human 
disuse research.26,65 Exploiting this approach in tandem 
with untargeted transcriptomic profiling thus provided 
a powerful basis through which to directly connect key 
molecular and MPS changes and, in turn, identify new 
mechanistic candidates of disuse-induced MPS suppres-
sion. In doing so, we identified a molecular network that 
was both activated by disuse and positively correlated 
with declines in MPS (M8)—that is, those with greater 

upregulation of this network also experienced a greater 
suppression of MPS. While this network demonstrated 
no particular ontological annotation, the top-ranked 
“hub” gene was DEPTOR, which is a potent inhibitor 
of mTOR:66 a regulatory complex through which MPS 
is positively controlled in response to mechanical (un)
loading.67 Work in rodents has shown DEPTOR activ-
ity to be tightly linked to MPS,68 with DEPTOR knock-
down ameliorating disuse atrophy in vivo via enhanced 
MPS.69 However, to our knowledge the current study 
is the first to provide evidence for DEPTOR as a key 
mechanistic target of disuse driven MPS suppression 
directly in humans. While presumably mTOR related, 
the precise action by which DEPTOR might inhibit MPS 
during short-term disuse warrants elucidation. Indeed, 
DEPTOR is a common inhibitory component of both 
mTOR complexes 1 and 2 (mTORC1/2),70-72 and could 
thus theoretically inhibit MPS during disuse directly up-
stream of Akt (via mTORC2 inhibition), at the intersec-
tion of Akt and mTORC1 (via PRAS40 inhibition), and/
or directly at the level of mTORC1 (ie, independent of 

F I G U R E  6   Hub gene networks for modules regulated in proportion to the extent of MPS suppression with disuse. Each network 
visualization comprises all corresponding hub genes of the given module, with the top ranked hub gene given by a larger node. Red 
borders illustrate hub genes within each module that are also highly linked to the extent of MPS decline (ie, within the upper quartile 
of corresponding module's genes ranked by their gene significance to declines in MPS), with node fill colors illustrating whether the 
corresponding hub gene is among the module genes that are enriched with binding site(s) for the given transcription factor (TF). 
Visualizations were generated using Cytoscape (v3.7.1)92
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Akt altogether).69-72 Nevertheless, augmentation of both 
4E-BP1 and S6K1 signaling upon DEPTOR knockdown69 
suggests that DEPTOR may suppress MPS during disuse 
by impairing both translation initiation and elongation. 
Given that this network was not associated with mus-
cle mass changes, it remains to be established how any 
such DEPTOR-induced MPS suppression might relate to 
corresponding atrophy. Nonetheless, our direct linking 
of transcriptomics to MPS suggests DEPTOR-dependent, 
mTOR-related suppression of MPS could be an import-
ant mechanism of atrophy during disuse in humans.

Two additional molecular networks were found to 
quantitatively connect to alterations in MPS, with both 
tending to display greater expression increases in subjects 
with a more pronounced decline in MPS (M10—ubiquitin-
protein transferase activity, M33—undetermined func-
tion). Interestingly, more than half of the top-ranked hub 
genes contained within M10 putatively serve to function 
in proteolytic-related pathways (FOXO3B, ATG2B, WDR7, 
TTC37, RBM25, BIRC6, and UFL1),73 while FBXO32 (ie, 
MAFbx/Atrogin-1) was among the top-ranked hub genes 
of M33. The untargeted identification of FBXO32 is par-
ticularly striking, given that it is widely considered a 
universal atrophy-related gene (“atrogene”) involved in 
initiating proteolysis across a wide range of catabolic con-
ditions74 and is unsurprisingly found upregulated often in 
human models of simple disuse.26,27,55,75-78 Nevertheless, 
our data extend beyond previous studies by suggesting a 
central regulatory role for FBXO32 in suppressing MPS 
during short-term human disuse atrophy. More generally, 
our above-mentioned data seem to imply an associative 
link between increased proteolytic marker expression—
and thus ostensibly MPB processes—and declines in MPS 
during short-term disuse. Whether or not MPB plays a 
direct role in human muscle disuse atrophy remains up 
for debate. Secondary evidence for increased MPB during 
human disuse can indeed be derived from other “static” 
markers of myofibrillar breakdown (eg, increased in-
terstitial 3-methylhistidine and proteasomal/lysosomal 
molecule expression).26,77,79 On the other hand, both 
model-derived and direct quantifications, although scant, 
have found no appreciable change in “bulk” MPB,80,81 
with mathematical estimates further showing that at-
tenuated MPS alone is sufficient to explain muscle loss 
during disuse.23,25 Thus, if observed increases in markers 
of MPB play a mechanistic role in human disuse atrophy, 
it seems likely to be beyond functionally regulating bulk 
myofibrillar proteolysis, which itself does not appear to be 
a necessity of human disuse atrophy. An alternative con-
tention which may then both explain and be supported 
by our current data is that increases in static markers of 
MPB are actually acting to degrade specific components 
of the protein-synthetic machinery (and thus regulating 

the capacity for MPS), rather than regulating bulk MPB 
per se.14 This indeed seems plausible especially in the case 
of FBXO32, which holds a strong potential to suppress 
MPS during disuse via degradation of EIF-3F: an essential 
protein in instigating translation initiation.14 Although, 
such inferences should remain taken with caution given 
the lack of available data that currently exists on dynamic 
MPB changes during human disuse as opposed to changes 
in MPS.14,15

It is also important to acknowledge those molecular 
networks that did not link to muscle mass/MPS changes 
but were nevertheless found to be regulated in direct re-
sponse to the disuse intervention. Such networks could 
theoretically contribute to short-term disuse atrophy via 
mechanisms beyond those we have considered and/or be 
molecular events that precede atrophy occurring beyond 
4 days of disuse. Of note are the functional expression pat-
terns that remained consistent across both our differential 
module-level and gene-level analyses; namely the concor-
dant downregulation of genes functionally related to mi-
tochondrial function, muscle cell differentiation and ion 
transmembrane transporter activity. Tight coordination of 
the mitochondrial transcriptome corroborates with recent 
large-scale network analysis of differential muscle loading 
responses to resistance training/immobilization, in spite 
of a longer duration of disuse (14 days) having been em-
ployed.34 In fact, downregulation of mitochondria-related 
genes appears a general feature of muscle disuse (ie, inde-
pendent of duration or model),28-30,82,83 and on the whole 
is likely indicative of a disuse-induced impairment in 
mitochondrial function. The downregulation of genes in-
volved in ion transmembrane transporter activity was also 
notable, given that it remains a relatively novel finding 
in the context of human muscle disuse. Interestingly, the 
top-ranking hub gene of this specific molecular network 
was identified as ACHE, the primary function of which 
is to hydrolyze acetylcholine at neuromuscular junctions. 
ACHE deficiency is associated with impaired neuromus-
cular junction function in the form of reduced neuromus-
cular transmission.84 The possible physiological relevance 
of this specific network is thus perhaps more likely to lie 
within the realms of disuse-induced muscle dysfunction 
(eg, impaired muscle contractibility).

Worthwhile appraising are the relative merits of our 
study design. By subjecting healthy younger individuals 
to disuse via ULLI, we were able to isolate the effects of 
disuse on muscle tissue per se independently of any co-
morbid factors. By integrating muscle mass and MPS 
measurements with network-driven analysis, we were sub-
sequently able to generate new insight into potential path-
ways and key molecules associated with the short-term 
human muscle disuse phenotype; crucially, direct links 
between MPS deficits and both DEPTOR and molecular 
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MPB biomarker upregulation. Nevertheless, we acknowl-
edge that our design of comparing end-intervention 
biopsies between legs to assess immobilization effects 
could, in theory, be complicated by having a weight bear-
ing “control” limb that is supporting more of a person's 
bodyweight. In which instance, we would be comparing 
biopsies from a limb bearing more weight to one bear-
ing no weight and thus the non-immobilized leg biopsy 
would not be a true control nor our model consequently 
a true representation of immobilization per se. While we 
cannot discount such a possibility, if this were indeed the 
case then it might be reasonable to postulate improved 
conditioning in the non-immobilized leg. Regarding our 
physiologic variables, however, in line with others,7,85,86 
muscle mass was unchanged in the non-immobilized leg 
herein, with further evidence demonstrating that D2O-
derived integrative MPS rates remain stable over 7 days in 
a non-immobilized leg while declining in the immobilized 
leg.26 Equally, it may even be that the non-immobilized 
leg is bearing less weight across the immobilization phase 
of the study as people on crutches simply do less and are 
more sedentary as the work of ambulation on crutches is 
taxing compared to normal ambulation. Some support for 
this comes from our previous observation that both legs 
during a ULLI model showed evidence of reduced vascu-
lar response to shear stress, demonstrating at least some 
level of deconditioning can take place in both limbs.87 
Evidence also shows that muscles, including the m. vas-
tus lateralis, can do less work (ie, reduced loading) during 
crutching and single-leg immobilization and thus may not 
necessary always be loaded to a greater extent.88 Either 
way, however, it is likely that initial responses of the im-
mobilized and non-immobilized leg muscles are manifest 
at the mRNA level. As a result, we cannot fully exclude 
the possibility of some transcriptomic perturbation having 
occurred in the non-immobilized leg (convergent, diver-
gent, or even entirely distinct from the immobilized leg) 
if it was in fact either over- or under-loaded throughout, 
and which theoretically could have still arisen in spite of 
muscle mass (and plausibly MPS) of this leg remaining 
stable. Relatedly, given the number of genes analyzed, the 
potential for at least some within-individual molecular 
variability and/or cross-leg “transfer” response also can-
not be ruled out entirely. Clearly, to resolve these issues 
we could have taken a baseline biopsy from each leg to 
derive and compare temporal mRNA changes in each leg. 
Without these biopsies we thus acquiesce that our results 
might not provide an entirely clear transcriptomic inter-
pretation of the impact of immobilization per se and fur-
ther work should add pre-intervention biopsies to account 
for the potential confounding of using a post-intervention 
biopsy from the non-immobilized leg as a control.

We also recognize a further need for caution when in-
ferring true intervention effects of this work due to the 
relatively small number of individuals that were included 
herein. Although, the number of samples used was within 
the WGCNA developers recommendations,89 and the net-
work approaches employed shown to perform strongly 
even when applied to smaller (~20 samples)/paired design 
datasets.90,91 Thus, while further work incorporating larger 
cohort sizes and deeper quantitative/mechanistic investi-
gation is ultimately warranted as a next step, a major novel 
outcome of our current work is the network-driven identi-
fication of an experimentally tractable set of physiologically 
relevant mechanistic targets: key candidates that quanti-
tatively connect to the primary physiological/metabolic 
consequences of muscle disuse—that is, muscle atrophy 
and blunted MPS. Our findings therefore offer a strong 
benchmark to expedite mechanistic understanding of 
short-term human disuse atrophy and, in turn, may help 
to accelerate the development of effective countermeasure 
approaches.
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