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ABSTRACT. The timing of biodiversity managers’ interventions can be critical to the success of conservation, especially in situations
of conflict between conservation objectives and human livelihood, i.e., conservation conflicts. Given the uncertainty associated with
complex social-ecological systems and the potentially irreversible consequences of delayed action for biodiversity and livelihoods,
managers tend to simply intervene as soon as possible by precaution. However, refraining from intervening when the situation allows
can be beneficial, notably by saving critical management resources. We introduce a strategy for managers to decide, based on monitoring,
whether intervention is required or if waiting is possible. This study evaluates the performance of this waiting strategy compared to a
strategy of unconditional intervention at every opportunity. We built an individual-based model of conservation conflict between a
manager aiming to conserve an animal population and farmers aiming to maximize yield by protecting their crop from wildlife damage.
We then simulated a budget-constrained adaptive management over time applying each strategy, while accounting for uncertainty
around population dynamics and around decision making of managers and farmers. Our results showed that when the decision for the
manager to intervene was based on a prediction of population trajectory, the waiting strategy performed at least as well as unconditional
intervention while also allowing managers to save resources by avoiding unnecessary interventions. Under difficult budgetary constraints
on managers, this waiting strategy ensured as high yields as unconditional intervention while significantly improving conservation
outcomes by compensating managers’ lack of resources with the benefits accrued over waiting periods. This suggests that waiting
strategies are worth considering in conservation conflicts because they can facilitate equitable management with a more efficient use
of management resources, which are often limiting in biodiversity conservation.

RESUME. Le timing d'intervention des gestionnaires de biodiversité peut étre déterminant dans le succés d'un programme de
conservation, tout particuliérement quand leurs objectifs sont incompatibles avec des activités humaines (conflits de conservation).
Mais l'incertitude associée aux systémes socio-écologiques, ainsi que l'irréversibilité potentielle des conséquences d'un retard d'action
peut pousser les gestionnaires a simplement intervenir dés que possible. Pourtant, y renoncer quand la situation le permet peut étre
bénéfique, notamment en mettant efficacement a profit les ressources non-utilisées. Nous proposons ici une stratégie basée sur le
monitoring pour choisir si une intervention est nécessaire ou si attendre est préférable. Cette étude évalue la capacité de cette stratégie
a satisfaire a la fois les objectifs de conservation et ceux des activités humaines en comparaison avec une stratégie d'intervention
systématique et inconditionnelle. Pour ce faire, nous avons développé un mode¢le individu-centré de conflit de conservation entre des
gestionnaires cherchant a conserver une population animale et des agriculteurs cherchant a en minimiser l'impact sur leurs cultures.
Nous avons ensuite simulé une gestion adaptative du conflit sous contrainte budgétaire pour chaque stratégie, tout en prenant en
compte l'incertitude associée a la dynamique de la population et a la prise de décision des parties prenantes. Quand la décision était
basée sur une prédiction de la trajectoire de la taille de la population, notre stratégie était au moins aussi performante qu'une intervention
inconditionnelle et permettait aux gestionnaires d'économiser des ressources en évitant des interventions non nécessaires. Lorsqu'un
budget trop faible rendait la gestion difficile, notre stratégie a considérablement amélioré les résultats relatifs a la conservation en
compensant le manque de ressources par les bénéfices accumulés au cours des périodes sans intervention. Ces résultats montrent que
notre stratégie devrait &tre envisagée car elle peut assurer une gestion équitable du conflit tout en permettant une utilisation plus efficace
des ressources de gestion, souvent limitantes en conservation de la biodiversité.

Key Words: adaptive management, conservation conflicts; decision-making modeling, individual-based modeling;, management strategy
evaluation; timing of intervention, uncertainty

INTRODUCTION

With a growing human population and rising standards of living,
the amount of Earth’s surface used for human activities is
increasingly large and often overlaps with the ranges of species
of conservation concern. A conservation conflict can arise when
such a speciesis strictly protected but also has animpact on human
livelihood, potentially leading to a clash of interests over
management decisions (Redpath et al. 2013, 2015). Diverging
objectives can lead land users to defect from policies by ignoring
or subverting them and engage in illegal activities often hindering
conservation objectives (Bunnefeld et al. 2013, Bainbridge 2017,

Glynatsi et al. 2018, Rakotonarivo et al. 2020). These conflicts
are especially serious when conservation and protection interferes
with essential livelihood activities such as agriculture (Behr et al.
2017, Mason et al. 2017). Conservation policies must therefore
be in line with land users’ interests to ensure compliance and
maximize conservation success while minimizing the impact on
food security and/or farmers’ income. Moreover, because
conservation conflicts form complex systems with multiple
biological, environmental, geographical, and social components,
the response to change in these interlinked social-ecological
systems (SES) is difficult to anticipate (van Wilgen and Biggs
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2011, Game et al. 2013, Mason et al. 2018). To avoid unforeseen
perturbations that might jeopardize biodiversity conservation or
human livelihood, management should also embrace the
uncertainty around ecological processes and human behavior
(Fryxell et al. 2010, Bunnefeld et al. 2011, Schliiter et al. 2012,
Cusack et al. 2020).

A practical way to deal with uncertainty challenges and complex
systems is adaptive management, a technique seeking to improve
management iteratively by learning from its outcomes (Williams
et al. 1996, Hicks et al. 2009, Keith et al. 2011). It is particularly
well adapted to conservation conflicts management because
regular monitoring and policy updates enhance the ability to
trade-off between opposing interests (Redpath et al. 2013, Wam
et al. 2016, Mason et al. 2018, Richardson et al. 2020). Adaptive
management thus tailors the conservation policy as closely as
possible to the system’s variations, however, when and why to
update the policy can be key to better management of SES and
conservation conflicts (Pérez et al. 2019). Because the
consequences of mismanagement can be detrimental and even
sometimes irreversible (e.g., crop losses and/or animal population
extinction; Kaswamila et al. 2007), conventional wisdom might
suggest that reacting as often as possible with updated policy will
maximize conservation success. But waiting can ultimately lead
to better management results when well planned, because it can
bring a variety of benefits, including enhancing knowledge
through monitoring or research (Walters 1986, Gregory et al.
2006, Nicol et al. 2018). For example, Sims and Finnoff (2013)
modeled the progression of the slow and predicable spread of an
invasive species and showed that, due to the knowledge acquired
during the period of waiting, a delayed time of first intervention
was more efficient in reducing both the spread and damages on
the focal ecosystem than intervention immediately after detection
of the invasion. In contrast, a delayed intervention when the
invasion was fast and erratic caused a loss of control over the
species progression, eventually leading to a state in which any
intervention became pointless. In an adaptive management
context, lacona et al. (2017) modeled national parks’ bird
diversity protection schemes and showed that waiting and saving
conservation funds to accrue interest before spending it
progressively on protection achieved a higher number of
protected species and a quicker recovery of the extinction debt
than front-load spending. Because financial and human resources
for management are often limited (Hughey et al. 2003,
McDonald-Madden et al. 2008), waiting when the benefits
outweigh the risks can avoid unnecessary spending, provided that
constraints on conservation funding allocation allow it (Ruiz-
Miranda et al. 2020, Wu et al. 2020). This trade-off between
instances of intervention and waiting in an adaptive management
process hasnot yet, to our knowledge, been explored in the context
of conservation conflicts. We hypothesize that by refraining from
intervening when conflicting stakeholder interests are already
aligned, managers could save resources and use them to enhance
impact when intervention will be most needed to deliver
conservation and/or land users’ objectives. We predict that it is
likely to be especially relevant in situations in which a manager’s
lack of resources could be compensated for by benefits
accumulated over a period of waiting.

To investigate the effect of the timing of intervention on
management quality while accounting for the different sources of
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uncertainty associated with conservation conflicts, we used
generalized management strategy evaluation framework (GMSE;
Duthie et al. 2018). Generalized management strategy evaluation
framework builds on management strategy evaluation (MSE)
framework, which explores the possible outcomes of alternative
management scenarios to assess their adequacy to managers’
objectives (Smith et al. 1999). Management strategy evaluation,
first developed in fisheries and later used for terrestrial species,
decomposes the process of natural resources adaptive
management over time with sub-models of population dynamics,
monitoring, management decision-making and harvesting
activities, which inform and influence each other. This structure
helps to isolate different components of uncertainty associated
with each process when evaluating a scenario (Bunnefeld et al.
2011). Generalized management strategy evaluation framework
uses an individual-based approach for all four sub-models,
simulating uncertainty intrinsically (Grimm 1999, DeAngelis and
Grimm 2014), and includes a decision-making sub-model
simulating goal-oriented behavior for manager and farmer agents,
with the possibility of sub-optimal choices (genetic algorithm;
Hamblin 2012, Duthie et al. 2018). Furthermore, by generating
differences between agents, individual-based models (IBMs) can
model another potential source of conflict: the inequitable
distribution of costs and benefits among stakeholders.
Rakotonarivo et al. (2020, 2021) showed that a higher perceived
equity in conservation measures among farmers increased the
propensity to choose pro-conservation options. Among-user
equity is thus important to model and monitor during
conservation conflicts management. Knowing this, we further
develop and apply GMSE to evaluate the efficiency of alternative
management timing strategies against unconditional intervention
and determine whether and how a profitable timing trade-off can
be found for conservation conflict management under
uncertainty.

We modeled a budget-constrained adaptive management of a
conservation conflict in which a wildlife animal population of
conservation concern has a negative impact on agricultural
activities, and farmers can respond by culling to minimize yield
loss. We propose two novel timing strategies for the manager to
determine whether the situation warrants intervention when the
resources saved by waiting generate long-term benefits. Through
simulations with GMSE, we assessed how each timing strategy
affected the quality of management regarding the conflict
between biodiversity conservation and agricultural production
objectives. We thereby determined for which conditions our
alternative strategies resulted in better management than
intervening at every opportunity.

METHODS
Model overview

Model case

To simulate conservation conflict management over time, we
develop an individual-based model with a population of wildlife
animals (referred to as “population”), farmers, and a manager,
all interacting on an agricultural landscape. The landscape is
divided into discrete cells, each of which produces an agricultural
yield and can hold any number of animals. Each farmer owns a
contiguous block of cells that forms their “land,” and the sum of
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its cells’ productivity determines the farmer’s yield. Animals
consume agricultural resources from landscape cells to survive
and reproduce, which consequently reduces the farmers’ yield.
Farmers can cull animals that are on their own land to reduce
yield loss. The manager attempts to avoid extinction by
maintaining the population around a predefined target size (7)),
as previously done in, e.g., the management of conflict between
mountain nyala antelope conservation and trophy hunting in
Ethiopia (Bunnefeld et al. 2013), or between farming and
migrating bird protection in Scotland or Sweden (Bainbridge
2017, Mason et al. 2017, Nilsson et al. 2021). This target was
chosen to be high enough to prevent extinction, but low enough
to ensure a satisfactory yield to farmers. The manager’s method
is to implement a policy incentivizing or disincentivizing culling
as appropriate to get the population size closer to T. Hence,
following an adaptive management process, the manager updates
this policy according to the monitoring of the population size
(N) at each time step ¢.

Manager policymaking

The manager receives a fixed, non-cumulative budget (B,,) at the
beginning of each time step, which we interpret to reflect the total
time, energy, or money available to the manager to implement a
change of policy and enforce culling restrictions. The policy is
modeled as a cost that farmers must pay to cull an animal on their
land. The manager can draw into B,, to raise this cost to
discourage farmers from culling and favor population growth and
can decrease it to facilitate culling and favor a population
decrease. To model the budget needed to enforce a restricting
policy, every increase of 1in the culling cost requires an investment
of 10 budget units (b.u.) from the manager. Conversely, as the
manager does not need to incentivize farmers to remove animals
when the policy allows high culling rates, they do not need to
spend budget to decrease the cost. The amount by which the
manager changes the culling cost is computed by GMSE’s
evolutionary algorithm according to their goal, which was
modeled as minimizing the distance between N, and T, given
farmers’ cull rate in response to the previous cost.

Timing strategies

We explored three timing strategies that determine whether a
manager intervenes and updates the policy or waits and leaves it
as is. The control strategy (CTL) was the null model in this study.
It corresponds to unconditional intervention at every opportunity
and was modeled as the manager updating the policy at every time
step. With the adaptive timing of intervention strategy (ATI), we
define a permissive range (P,) around 7' in the form of 7', + P,.
Within this range, the manager considers N, close enough to T,
and consequently, decides that the current policy results in a
sustainable culling rate for the population. Hence, the manager
will update the policy if and only if the population is monitored
outside 7', + P,. The trajectory strategy (TR1J) is the same as the
ATI strategy, except that when N, is inside 7', £ P, the manager
makes a prediction on next time step’s population size in the form
of a linear extrapolation based on the current and preceding
monitoring results. If this prediction falls inside T, £ P, the
manager leaves the policy unchanged; otherwise, they update it.
Inboth ATIand TR strategies, after a time step without updating
the policy, the manager receives an additional proportion (budget
bonus B,) of their initial budget to model the benefits associated
with waiting. This bonus can be accumulated over several
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consecutive time steps of waiting butislost assoon as the manager
draws into their budget to raise the level of restrictions again
(modeling details in Appendix 1).

Farmers action planning

At the beginning of each time step, each farmer receives a fixed,
non-cumulative budget (B), which they allocate to culling a
certain number of animals on the land that they own at the cost
set by the manager’s policy. A minimum cost of 10 b.u. models
the baseline budget needed for a farmer to cull an animal. The
number of animals culled is independently computed for each
farmer using GMSE’s evolutionary algorithm, meaning that each
farmer makes an independent decision for how to act according
to their goal: maximizing their own yield.

Simulations with generalized management strategy evaluation
framework (GMSE)

To simulate conservation conflict adaptive management with
different timing strategies under uncertainty, we used the R
package GMSE (Duthie et al. 2018). See Appendix 1 for further
details on modeling, parameter choices, and simulations.

Initial parameters

We modeled the landscape as a grid of 40 equally sized rectangular
pieces of land, each individually owned by a farmer. We modeled
a population that is stable in absence of culling, but under the
threat of extinction for a high culling rate. We defined the
population dynamics model parameters such that an equilibrium
size was reached quickly and steadily. The farmers were provided
with an initial budget high enough to cull up to the expected
number of animals on their land when the population is at
equilibrium (B, = 1000 b.u), so the population went extinct if the
conflict was left unmanaged. At first, the manager’s initial budget
was set equal to the farmers’ (B,, = B, = 1000 b.u) and manager’s
target was set at half the equilibrium size (7, = 2000 animals).
The initial population size was set at N, = 1000 animals, which is
sufficiently low for the population to be under immediate threat
of extinction and justify the initial involvement of a manager. We
chose these parameters for the control strategy to produce
adequate management while also leaving room for improvement
and to determine the extent to which alternative strategies can
generate better results.

Population dynamics sub-model

Generalized management strategy evaluations population
dynamics model features a population of N animals, each of
which has an age and a position on the landscape. In each time
step, each animal moves from its current cell to a random cell
within a defined range. Upon arrival, the animal consumes a
proportion of 0.5 of the cell’s remaining yield. All animals move
12 times during a single time step in a random order. After all
movement and feeding, animals asexually produce one offspring
for every five resource units consumed, which are added to the
population as new individuals. Next, animals that have consumed
over four and three-quarters resource units and have an age < five
time steps survive, the others are removed from the population.
This consumption criterium leads to density-dependent intra-
specific competition for resources, and modeling life events
discretely generates inter-individual variability as well as
geographical and demographic stochasticity, therefore accounting
for several sources of uncertainty around population dynamics.
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Monitoring sub-model

We assumed that the manager makes no errors during monitoring,
thus N, represents the exact population size at each time step. This
assumption avoided modeled stochastic monitoring errors that
would have challenged a full understanding of management
dynamics.

Decision-making sub-model

In each time step, manager and farmer decision making is
independently modeled using evolutionary algorithms, allowing
the emergence of a conflict when agents’ goals are opposed. This
approach computes practical but not necessarily optimal
decisions, recognizing that most people cannot think of every
single possibility to choose the optimal one, but can choose the
best option among those they could conceive (Hamblin 2012,
Duthie et al. 2018), generating uncertainty around stakeholders’
individual decision making.

Experimental plan

Systematic parameter exploration

To assess management quality of ATI and TRIJ in terms of
population dynamics and farmers yield, we varied the
permissiveness P, and budget bonus B, across a range of values
for each strategy and compared the outcomes with those of CTL.
P ranged from 0% of the manager’s target T, (unconditional
update at every time step, i.e., CTL) to 100% of T, (update only
in the extreme situations in which the population is extinct or
close to natural equilibrium in absence of culling) by 10%
increments. B, ranged from 0% of the manager’s initial budget
B, (no bonus following a time step of waiting) to 100% of B,, by
10% increments. For each unique combination of P, and B, we
ran 100 independent simulation replicates of management over a
period of 20 time steps under identical initial conditions.

Management outcomes

We defined the most desirable outcomes as when management
prevents the population from going extinct (1), while keeping it
as close as possible to target (2) and ensuring the highest yield to
farmers (3) with the lowest inequity among them (4). For a
particular combination of parameters, extinction risk (1) was
assessed as the frequency of extinction events over all replicates,
denoted as f, . We measured how close to target the population
was (2) with the difference between the population size (V) and
the manager’s target (T',) weighted by T at theend of a simulation
averaged over all replicates, denoted d, in % of T'. Farmers’ total
yield (3) was calculated as the ratio of the sum of all cell’s yield
at the end of a simulation over the maximum yield the landscape
can provide in the absence of animal consumption (40,000 yield
units) averaged over all replicates and denoted Y, ,in % of the
landscape’s maximum productivity. The among-farmer inequity
(4) was measured as the difference between the lowest and highest
farmer’s yields weighted by the highest yield at the end of a
simulation, averaged over all replicates, denoted Yier in % of the
highest yield. Finally, we computed the proportion of time steps
without manager’s intervention over the time length of a
simulation and averaged it over all replicates, denoted #,, (1-¢, is
thus the proportion of policy updates). We computed 95%
bootstrapped confidence interval around each average (Manly
2007). The between-stakeholder equity was assessed by
systematically confronting the conservation and the agricultural
outcomes to detect unbalanced repartition of costs and benefits.
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Sensitivity to manager’s budget

We hypothesized that the effect of the budget bonus amount (B,)
on management quality would be stronger in situations of higher
budget constraint on the manager. To test for this, we selected the
permissiveness of 50%, in which outcomes with TRJ were not
different from CTL but with a weak B, effect. We decreased the
manager’s initial budget (B,,) from 1000 to 500 b.u. by 100 b.u.
increments. For each B,,, we varied B, from 0 to 100% of B,, by
10% increments in 100 replicates and measured the same outcome
proxies as the previous section to investigate the effect of B,
amount on management quality according to B,,. We also
simulated management with CTL for each B,, value to check how
well the waiting strategies performed in comparison.

RESULTS
Adaptive timing of intervention strategy

Conservation outcomes

When applying the adaptive timing of intervention (ATI) strategy,
increasing the permissiveness value caused the extinction risk to
increase and the final population size to decrease below target
with no marked effect of the budget bonus (B,; Fig. 1 and
Appendix 2, Fig. A2.1). No combination of permissiveness and
bonus amount resulted in equivalent or lower extinction risk than
CTL strategy (f,,, = 0.15 with [0.08; 0.22] 95% confidence
interval). No parameter combination of ATI strategy resulted in
the population being closer nor equally close to target as CTL
strategy (d, = -24.90% [-33.78; -16.26]) either, which is not
surprising given that extinction was almost certain for most
combinations (f, > 0.9 for P> 20%).

Fig. 1. Extinction frequency (f, ) according to the
permissiveness (P) and budget bonus (B,) combinations in an
individual-based model simulating the management of a
population under conditions of conservation conflict. The
greener, the lower the risk of extinction. The band formed by
P, =0 and the corresponding B, values are the f, , obtained
with the control strategy (CTL). With adaptive timing of
intervention strategy (ATI; left panel), there was no
combination of P, and B, parameters resulting in as low a f, ,
as control strategy (CTL; 0.15 [0.08; 0.22] 95% CI), and
population extinction was almost certain in most cases, with a
weak positive effect of B, regardless of the permissive range
size. With the trajectory strategy (TRJ; right panel), most areas
are as green as or greener than CTL’s £, value, meaning TRJ
performed at least as well as CTL regarding extinction risk. The

effect of B, on f, , was weak to absent.

ATI TR)

100 100:

Permissiveness (%)

100 0 20 40 60 80 100

Budget bonus (%)
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Agricultural outcomes

Increasing permissiveness caused the farmers’ final yield to
increase, and among-farmer yield inequity to decrease with no
effect of the budget bonus amount (Appendix 2, Figs. A2.2 and
A2.3). Farmers’ final yield was > 90% of the maximum for all
ATI parameter combinations, which was slightly more than CTL
(Y,,, = 89.64% [88.04; 90.90]). The among-farmer inequity was
slightlylower than CTL results (Y, =5.68%[4.97;6.34]). Indeed,
as permissiveness increased, there were fewer animals feeding on
farmers’ land so the impact on yield was lower, and the farmers’
yield got closer to maximum. Also, the highest yields attained the
maximum value while the lowest kept increasing, which reduced
inequity.

Mechanisms underlying the outcomes

With ATI, most extinction events occurred when the population
was monitored to exceed the permissive range, and in response,
the manager lowered the level of culling restrictions to favor a
population decrease down to target. A problem arose when, in
the following time step, the population was monitored inside the
permissive range because it caused the manager to leave the policy
unchanged. Farmers then continued to cull at a low cost, driving
the population to extinction at the next time step (Fig. 2, ATI
panel). Consequently, the larger the permissive range around
target, the more likely this was to happen, thereby explaining why
the extinction frequency and deviation from target increased with
permissiveness values. This misinterpretation from the manager
regularly occurred in the ATI parameter areas with very high
extinction frequency (Fig. 1), in which the population deviation
from target at the time step preceding extinction was within the
manager’s permissive range (Appendix 2, Fig. A2.4). Hence, the
most effective strategy for avoiding population extinction here
was to intervene unconditionally in every time step, at the expense
of slightly decreasing farmers’ final yield.

Trajectory strategy

Conservation outcomes

When applying TRJ, the extinction frequency and deviation from
target were at least as close to 0 as CTL for permissiveness values
up to 80%, without the manager intervening up to 40% of the
time (Fig. 1; Appendix 3, Figs. A3.1 and A3.2). The budget bonus
value had either no effect or a weak effect on the outcomes. Several
combinations resulted in an extinction frequency under 0.1, even
0 sometimes, while f, = 0.15[0.08; 0.22] with CTL. The effect of
bonus amount was slightly stronger in the 40 and 50%
permissiveness range (Appendix 3, Fig. A3.2), where bonus values
between 20 and 50% resulted in the population being closer to
target than CTL (d, = -24.90% [-33.78; -16.26]). We chose the
50% parameter area for the experiment on sensitivity to manager’s
initial budget to test whether this weak effect could amplify when
applying stronger budget constraints on the manager.

Agricultural outcomes

With TRJ, the farmers’ final yield was as close to the maximum
landscape production capacity as the CTL strategy regardless of
the permissiveness and budget bonus values (Appendix 3, Fig.
A3.3). Similarly, the among-farmer yield inequity was as low as
CTL regardless of the permissiveness and budget bonus values
(Appendix 3, Fig. A3.4).
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Fig. 2. Average population size over time of 10 simulation
replicates with an individual-based model simulating the
adaptive management of a population under conditions of
conservation conflict.

Upper left: when manager intervenes unconditionally (control
strategy, CTL). The extinctions happened when the population
got too far below target size (T,) between two consecutive time
steps for the manager to be able to rectify by increasing
restrictions.

Upper right: when applying the adaptive timing of intervention
strategy (ATL; permissiveness (P,) = 30%, Budget bonus (B,) =
10%). Most extinctions happened when population size was
over the permissive range, then was monitored into it the
following time step. Thus, managers did not update the policy,
allowing farmers to continue culling at a low cost, frequently
driving the population to extinction at the following time step.
Note: in the replicate that did not result in extinction, the
population was never monitored into the permissive range
during a decrease, causing the manager to update the costs and
control the situation with better timing.

Lower left: when applying the trajectory strategy (TRJ; T, =
30%, B, = 0%). The TRJ strategy avoided some extinction
events.
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Mechanisms underlying the outcomes

The rare extinction events with CTL seem to have occurred when
population was over target and the manager decreased the level
of restrictions by too much, or when farmers happened to cull
more than expected, which caused the population to decrease
beyond reparation (Fig. 2, CTL panel). The TRJ strategy may
have avoided this imprecision by offering managers the possibility
not to intervene at these moments where the population is in the
upper permissive range and keep the population closer to target
(Fig. 2, TRJ panel). The absence of effect from the budget bonus
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amount was most likely caused by the manager initial budget
alone often being enough to efficiently ensure both population
maintenance and farmers’yield given our initial parameter values,
leaving no room for improvement due to a bonus. Thus, TRJ
achieved similarly good management outcomes to CTL without
managers having to intervene at every time step and regardless of
the amount of benefit obtained from waiting periods.

Sensitivity to manager’s initial budget

Conservation outcomes

The extinction frequency increased, and the final population size
decreased below target, with decreasing manager’s initial budgets
(Fig. 3). But for B, = 800 b.u., the extinction frequency steadily
decreased from 0.71 [0.61; 0.80] without budget bonus, to 0.07
[0.02;0.12] for a bonus of 30% of B,,(Fig. 3), whichis significantly
closer to zero than CTL for the same initial budget (f, , = 0.76
[0.67; 0.83]). At higher bonuses, the extinction frequency
increased again between 0.3-0.6, which is lower than CTL,
although still a high extinction risk. The same trend was observed
in the distance to target, which rose from-78.4% of T',,[84.9;-70.9]
without budget bonus, to -11.4% [-21.4; -2.1] for the same bonus
of 30% of B,, (Appendix 4, Fig. A4.1); CTL being -83.7%
[-88.7; -78.0;] (Appendix 4, Fig. A4.1).

Fig. 3. Extinction frequency when applying the trajectory
strategy (TRJ); permissiveness (P,) = 50%, according to
manager’s initial budget (B,,) and budget bonus amount (B,) in
an individual-based model simulating the adaptive management
of a population under conditions of conservation conflict. The
greener, the lower the extinction frequency. For B,, = 800 b.u.
(violet square, detail on the right panel), a pit forms along
increasing B, values, meaning that low to intermediate values
for B, markedly lowered the extinction risk. Error bars show
95% bootstrapped confidence intervals. The black line is the f, ,
with control strategy for the same initial budget and the gray
shaded area the 95% confidence interval around it.
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Agricultural outcomes

The farmers’ final yield increased, and the among-farmer inequity
decreased with decreasing manager’s initial budget (B,,) because
of the positive effect on extinction risk and the positive effect on
population size (Appendix 4, Figs. A4.3 and A4.4). In the B, =
800 b.u. area, the farmers’ final yield was between 85% and 100%
(for the highest extinction frequency) without varying markedly
with the bonus amount. With the bonus of 30% that critically
improved conservation outcomes, the final yield was 89.20%
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[87.47;90.76] instead of 97.18% [96.14; 99] with the CTL strategy
for the same manager’s budget (at the expense of a very high
extinction risk). The inequity was 5.94% [5.23; 6.68] instead of
2.11% [1.65; 2.6] with CTL, which is still relatively low.

Mechanisms underlying the outcomes

For the manager’s initial budget value that maximized the budget
bonus’ negative effect on extinction risk and positive effect on
population size (B,,= 800 b.u.),if the manager intervened at every
time step or used TRJ but without getting any benefit from the
waiting periods, extinctions occurred when the population fell to
too low a population size. It was then challenging for the manager
to rectify the population trajectory with only their initial budget
because the culling cost was always too low to efficiently reduce
farmers’ culling rate (Fig. 4, CTL). If, in this situation, the
manager accumulated budget bonus from previous waiting period
(s), they had enough power to enforce higher restrictions on
farmers as soon as the population did, or was predicted to, fall
under the manager’s permissive range. Intermediate bonus
amounts ensured that when the latter happened, the population
could increase closer to the manager’s target (Fig. 4, TRJ). The
TRJ thus appeared to be more efficient than CTL in situations
of stronger budget constraint on the manager. In such situations,
the role of the budget bonus was critical in decreasing the
extinction risk, while maintaining a high and equitable yield to
farmers and allowing the manager to save 20 to 30% of their
interventions (Appendix 4, Fig. A4.2).

DISCUSSION

Summary of the study

When adaptively managing a conservation conflict in a social-
ecological system, our modeling of strategies dynamically
alternating between intervention and waiting found that
management outcomes were better when the decision to intervene
was made based on a prediction of the system’s response than
when based on the latest monitoring results alone. With
prediction-based decisions, conservation and agricultural
outcomes were at least as good as intervening unconditionally,
while allowing the manager to save management resources and
avoid unnecessary, potentially harmful interventions. When a low
budget limited a manager’s ability to effectively manage the
conservation conflict, the benefits accrued during waiting periods
were applied when intervention was most critical and greatly
improved conservation outcomes with only a weak impact on
farmers’ yields and equity. Naturally, the main risk with waiting
strategies is to decide to wait when intervention is needed, or to
intervene when waiting is preferable. Basing intervention only on
current monitoring should be avoided because when population
density is monitored inside the permissive range during a sharp
increase or decrease, managers can mistakenly conclude that the
policy is adequate when, in fact, keeping the same policy running
again can lead to extinction or critical yield loss. Basing
intervention on population trajectory instead also includes a risk
of inaccurately predicting the population density to be within the
permissive range causing the managers to wait while the policy is
inadequate to align conservation and agricultural objectives.
Nevertheless, the consequences for yield loss or population
decline were reversible when using an adequate permissive range.
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Fig. 4. Population size over time averaged over 50 replicates
(thick black line, error bars being the 95% confidence intervals)
plotted on 10 replicates (thin gray lines) with an individual-
based model simulating the adaptive management of a
population under conditions of conservation conflict and an
initial budget of 800 b.u. The green dotted line shows manager’s
target (7',), and the green area represents the permissive range
T,t P,

Left panel: when applying the control strategy (CTL).
Extinctions happened when the population got too far below
the manager’s target (green dotted line) between two
consecutive time steps for the manager to be able to rectify with
their initial budget only.

Right panel: when applying the trajectory strategy (TRJ; P, =
50%, B, = 30%). Thanks to the benefits accumulated over
waiting periods, the manager was able to raise the culling cost
high enough to maintain farmers’ culling rate at a sustainable
value. The replicate that resulted in extinction was caused by a
strong misprediction of time step 10’s population size, causing
the manager to wait while intervention was needed.

o cTL| o TRJ
(=3 (=3
o o
< <
o o
o o
(=] (=]

QO ™

N

7]

)

S8 3L

-— O o

T N I3

S

g

a3 3
S S
o o

024 6 8 11 14 17 20 024 68 11 14 17" 20
Time

Importance of budget and monitoring in waiting strategy’s
efficiency

The superiority of our trajectory strategy over unconditional
intervention depended on the manager’s budget. When the budget
was high enough to manage the situation efficiently, the outcomes
with the trajectory strategy were at least as good as unconditional
updates regardless of the budget bonus amount. This suggests
that interventions when the population was monitored within the
permissive range and predicted to stay in it (i.e., oscillating close
to target) were less useful. Because the initial budget was sufficient
for satisfactory management, the benefits reaped during waiting
periods with the trajectory strategy could not further improve the
management outcomes. This is relevant because human,
financial, and time resources are limited in conservation and there
is a constant competition for their allocation to cases (Hughey et
al. 2003, McDonald-Madden et al. 2008, Jachowski and Kesler
2009, Ruiz-Miranda et al. 2020). It is also increasingly recognized
that different species can impact human livelihood in different
ways and at different times within the same geographical area,
which should be considered in management (Pozo et al. 2020,
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2021). Intervention in one conflict could thus be a priority for a
time and then deprioritized when another requires intervention
more urgently. Therefore, resources unused during periods of
waiting in a well-funded case could instead be allocated to other,
potentially less well-funded and/or more pressing cases and
improve overall conservation benefits (Wu et al. 2020). Our
trajectory strategy can thus help a dynamic allocation of
management resources to cases that need them the most at a given
instance.

When a limited budget made management more challenging, the
resources saved when not intervening using the trajectory strategy
could generate enough benefits to compensate for the lack of
resources. We emphasize that the prediction based on population
trajectory is a means for managers to reduce the risk of misjudging
the timing of intervention; what improved management here was
better access to the benefits accumulated over waiting periods.
This result supports previous modeling results in Iacona et al.
(2017), in which national park managers did not have enough
budget to put every endangered bird species under protection at
once but could maximize success by waiting and saving their funds
to gradually enhance their monetary power. Importantly, this is
only possible if unused management resources are not revoked or
reallocated when less needed. A review of exit-strategies in
conservation by Ruiz-Miranda et al. (2020) found that
withdrawing funds when objectives are attained is very
uncommon in adaptive management (but should be more
considered and carefully planned). The present study suggests
that the budget saved during waiting periods should be reallocated
if the management resources are not limiting but invested in
improving future interventions if they are.

To isolate the effect of various timing strategies on management
quality, we assumed that the manager had perfect knowledge of
population size. But real-world monitoring involves uncertainty
that plays an important role in the success of conservation
(Bunnefeld et al. 2011, Nuno et al. 2013). Monitoring uncertainty
will cause errors in estimating population density and therefore
errors in deciding if the situation requires intervention. This will
decrease the efficiency of both unconditional intervention and
trajectory strategies, but the latter might be more impacted
because errors will influence both monitoring and trajectory
prediction, therefore mitigating the advantage over unconditional
intervention. Indeed, the efficacy of trajectory strategy might rely
onmoreregular and accurate monitoring, which might not always
be possible or affordable. Testing the effect of observation
accuracy or cost on management quality is beyond the scope of
this study, but it is an important aspect to consider when applying
timing strategies (McDonald-Madden et al. 2011, Milner-
Gulland 2011, Wu et al. 2020).

Because our focus is on management strategy and not on control
measures, we limited farmers’ options to culling for the sake of
simplicity and ease of model interpretation. We did not model
indirect measures such as fencing, widespread in the management
of conservation conflicts over land use (Nyhus 2016, Pooley et al.
2017) because these measures are rather permanent constructions
that are not always fitted to the regular changes and updates of
our adaptive management process. Nevertheless, future modeling
might usefully consider a range of alternative options for
population management.
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Modeling novelties for adaptive management

The ongoing 6" mass extinction under a rapidly changing climate
(Ceballos et al. 2017) and the consequences of land-use conflicts
between agriculture and wildlife protection on food security often
put conservation managers under urgency (Du Toit 2010). Our
results suggest that the urgency to act should not mean systematic,
unconditional intervention and stress the importance of
acquiring information to choose wisely how and when to
intervene. As with software such as ISIS-fish (Mahévas and
Pelletier 2004) or FLR (Kell et al. 2007) in fisheries management,
the method developed here can inform managers’ policymaking.
Parameterizing GMSE with empirical data from a conflict
between farming and common cranes in Sweden has previously
permitted the evaluation of subsidy levels that best balanced
culling and scaring to maintain both birds’ population and
farmers’ income(Nilsson et al. 2021). Likewise, targeted
parameterization of our model can give managers information to
decide how permissive they should be and how much gain they
should expect from waiting periods for our strategy to be useful
regarding conservation and land-users’ objectives and
management resources allocation efficiency.

The individual-based nature of our model and the modularity of
GMSE framework accounts for several sources of uncertainty
around population dynamics and stakeholders’ individual
decision making. Our mechanistic model simulates population
dynamics with intrinsic demographical uncertainty (inter-
individual variability in the realization of life events) and
geographical uncertainty (animals’ movement is stochastic;
Uchmanski and Grimm 1996, Stillman et al. 2015). Future work
could also include explicit modeling of environmental
uncertainty, potentially in the form of stochastic extreme events
impacting both population dynamics and farmers’ yields.
Currently, our results are robust even if population dynamics are
uncertain and if spatial distribution can induce inequity by having
the animals sometimes being more numerous on one farmer’s land
than another. Rakotonarivo et al. (2020, 2021) showed that the
perceived equity in the balance of costs and benefits of
conservation actions between and among stakeholders’ groups
plays an important role in land-users’ propensity to choose pro-
conservation strategies. However, the aspect of equity in
conservation conflicts has scarcely been incorporated in modeling
results. For example, Wam et al. (2016) used a measure of
monetary equity between different stakeholder groups in their
management model balancing logging, livestock grazing, and
game hunting activities in a boreal forest. Our method also
controls between-stakeholder equity by systematically confronting
the population dynamics and the farmers’ yield. In addition, we
used a new indicator parameter for among-stakeholder equity by
measuring the success of our strategies against the difference
between the lowest and highest farmers’ yields. Among-
stakeholder equity, to our knowledge, has not been modeled
before in conservation conflicts, and modeling stakeholders
individually like the present study offers a direct measure of equity
among members of the same group, thus allowing its monitoring
as an important outcome of management.

The lack of dynamic stakeholder behavior modeling has been
identified as a major cause of failure in conservation (Schliiter et
al. 2012). Previous studies have addressed this by modeling
decision making using game theory (Colyvan et al. 2011, Glynasti
et al. 2018). Nevertheless, a game-theoretic framework can have
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limitations when applied to management decision making,
including fixed behavior rules, finite sets of actions (e.g.,
cooperate or defect), and the assumption that players are perfectly
rational and aware of the best options for them (Myerson 1997).
In this model, we use evolutionary algorithms, a form of artificial
intelligence, for managers and farmers to make decisions, which
we show offers a heuristic to find practical solutions when the
panel of options is too large for game theoretic problems
(Hamblin 2012). We combined the evolutionary algorithms with
an individual-based approach and model decision making
independently for each stakeholder with the possibility for sub-
optimal choices along a continuum of possible actions (see also
Kamra et al. 2018, Cusack et al. 2020, Nilsson et al. 2021).
Simulating these different sources of uncertainty in our
experiments allowed us to conclude that the strategy we proposed
is relevant even if managers do not always make the most efficient
policies and if farmers do not always behave as they were expected
to.

CONCLUSION

We use an uncertainty-robust modeling tool to compare the
management quality of waiting strategies against unconditional
intervention regarding conservation and agricultural objectives
and discuss which strategy to use according to cases of
conservation conflicts. We propose a strategy for managers to
dynamically alternate between intervening and waiting informed
by population monitoring. When the decision to intervene or wait
is based on a prediction of population trajectory, our strategy can
result in a better, more equitable management of conservation
conflicts, especially in situations of limiting budget. By saving
time, energy and/or money when intervention is not necessary, it
can also ensure a more efficient use of management resources.

Responses to this article can be read online at:
https://www.ecologyandsociety.org/issues/responses.
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Appendix 1.
Modelling details.

Model overview

Model case.

To simulate conservation conflict management over time, we develop an individual-based
model with a population of discrete animals, discrete farmers, and a biodiversity manager, all
interacting on an agricultural landscape. The landscape is divided into discrete cells, each of
which produces an agricultural yield and can hold any number of animals. Each farmer owns
a contiguous block of cells that forms their ‘land’, and the sum of its cells’ productivity
determines the farmer’s yield. Each animal’s reproduction and survival depend on the amount
of agricultural resources it consumes from landscape cells, which consequently reduces the
farmers’ yield. Farmers can cull animals that are on their own land to reduce yield loss. We
chose population parameter values to ensure that unrestricted culling consistently drove the
animal population to extinction (see the ‘initial parameters’ section below). The manager
attempts to avoid extinction by maintaining the population around a predefined target size
(Tn). This target was chosen to be high enough to prevent extinction, but low enough to
ensure a satisfactory yield to farmers. The manager’s method is to implement a policy
incentivizing or disincentivizing culling as appropriate to increase or decrease population size
to be closer to Tn. Hence, following an adaptive management process, the manager updates
this policy according to the monitoring of the population size (N:) at each time step t.
Farmers’ and manager’s actions are constrained by finite budgets (respectively Br and Bw),
which we interpret to reflect the total time, energy or money that a farmer can allocate to
realize culling actions, or the manager to implement a change of policy and enforce culling
restrictions at each time step. Furthermore, a conservation conflict will arise when the policy
enforced by the manager prevents the farmers from culling as many animals as they want to
minimize yield loss. Our case’s conflict dynamics are therefore affected by both the ecology
of the population and the flexible, goal-oriented decision-making of the manager and
farmers.

Manager policymaking.

To maintain the population as close as possible to Tn, the manager receives a fixed, non-
cumulative budget Bwm at the beginning of each time step (i.e., it is completely lost if unused at
the end of the time step). They can allocate it into setting a cost that farmers must pay to cull
an animal on their land. A minimum cost of 10 budget units (b.u.) models the baseline budget
needed for a farmer to cull an animal. The manager can draw into Bwm to raise this cost to
discourage farmers from culling and favor population growth and can decrease it to facilitate
culling and favor a population decrease. To model the budget needed to enforce a policy



restricting culling, a raise of 1 in the culling cost requires an investment of 10 b.u. from the
manager. Conversely, as the manager does not need to incentivize farmers to remove animals
when the policy allows high culling rates, they do not need to spend budget to decrease the
cost. The amount by which the manager changes the culling cost is computed according to
their goal (see the ‘decision-making sub-model’ section below), i.e., keeping the population as
close as possible to target. Manager’s goal was modelled as minimizing the distance between
the monitored population size Nt and Ty.

Timing strategies.

We included three timing strategies that determine whether a manager intervenes and updates
the policy or waits and leaves it as is. The Control strategy (CTL) was the null model in this
study. It corresponds to unconditional intervention at every opportunity and was modelled as
the manager simply updating the policy at every time step. With the Adaptive Timing of
Intervention strategy (ATI), the manager dynamically alternates between intervening and
waiting based on the distance between Nt and Tn. ATI defines a permissive range Pt around
Tn in the form of Tn £ P+ Within this range, the manager considers N; close enough to Tn, and
consequently, that the current policy results in a sustainable culling rate for the population.
Hence, at a given time step, the manager will update the policy if and only if the population is
monitored outside this Tn + Pt range. The Trajectory (TRJ) strategy is the same as the ATI
strategy, except that when Nt is into Tn £ Pr, the manager makes a prediction on next time
step’s population size based on the current and preceding monitoring results. If this prediction
falls into the Tn + Pt range, the manager assumes that the policy is effective and leaves it
unchanged; otherwise, they update it. In both ATI and TRJ strategies, after a time step
without updating the policy, the manager receives an additional proportion By of Bm to model
the benefits associated with waiting (e.g., the money, time or energy saved by not engaging in
the process of updating the policy and enforce the change on farmers, or the interests gained
from putting up the money saved). This bonus can be accumulated over several consecutive
time steps of waiting but is lost as soon as the manager draws into their budget to raise the
level of restrictions again.

Farmers' action planning.

At the beginning of each time step, each farmer receives a fixed, non-cumulative budget B,
which they allocate into culling a certain number of animals on the land that they own at the
cost set by the manager’s policy. The number of animal culled is independently computed for
cach farmer using GMSE’s evolutionary algorithm (see the ‘decision-making sub-model’
section below), meaning that each farmer makes an independent decision for how to act
according to their goal: maximizing their own yield. We used this model case to investigate
how different timing strategies for a biodiversity manager’s intervention can affect the
outcomes of an adaptively managed conservation conflict.



Simulations with GMSE

To simulate a conservation conflict management with different strategies under uncertainty,
we used the R package ‘GMSE’ (Duthie et al. 2018). GMSE is a flexible modelling tool to
simulate key aspects of natural resource management over time and address adaptive
management questions in silico (Cusack et al. 2020, Nilsson et al. 2021). GMSE offers a
range of parameters to simulate resource variations and management policy options with
individual-based models of population dynamics, monitoring, manager decision-making and
farmer decision-making.

Initial parameters.

We modelled a spatially explicit landscape with a grid of 200 by 200 cells, divided into 40
equally sized rectangular pieces of land, each individually owned by one of 40 farmers. For
the animals, we wanted to model a population that is stable in absence of culling, but under an
important threat of extinction under a high culling rate. We defined the population dynamics
model parameters such that, under constraint of density-dependent intra-specific resource
competition only, an equilibrium was reached quickly and steadily, as a stable natural
population would. The size at equilibrium (K) was sought such that the expected number of
animals per farmer’s land was about a hundred on average (i.e., around 4000 individuals on
the landscape). The farmers were provided with an initial budget high enough to cull up to the
expected number of animals on their land at the baseline cost (i.e., 1000 b.u), and at first, the
manager’s initial budget was set equal to the farmers’ one. We set Ty at half the equilibrium
size, which was low enough to maintain farmers’ yield over 90% of their maximum yield, but
high enough to ensure a relatively low extinction risk of around 15% with the Control strategy
(c.f. Management outcomes and Results sections in main document). We intentionally chose
these parameters for the Control strategy to produce adequate management while also leaving
room for improvement in order to determine the extent to which alternative strategies can
generate better results. We set the initial population size No = 1000, which is sufficiently far
below K for the population to be under extinction threat and justify the initial involvement of
a manager.

Population dynamics sub-model.

GMSE’s population dynamics model features a population of N animals, each of which has an
age as well as an x and y landscape position, all initialized at random (integers sampled with
equal probabilities along the range of possible values). In each time step, each animal moves
from its current cell to a random cell within a defined range of cells in any direction
(including the original cell). After arriving at a cell, the animal feeds and consumes a
proportion of 0.5 of the cell’s remaining yield. All animals move 12 times during a single



time step, but individual movement across all animals occurs in a random order to avoid
having a subset of animals complete all their moving and feeding before the others have
started. After all movement and feeding has occurred, the animals asexually produce one
offspring for every 5 resource units consumed (e.g., if an animal has consumed 12 resource
units it produces 2 offspring). The offspring are added to the population as new individuals of
age 0 on the cell on which they were produced. Next, animals that have consumed over 4.75
resource units and have an age under or equal to 5 time steps survive to the next one. Animals
that do not survive are removed from the population. This consumption criteria lead to
density-dependent intra-specific competition for resource, and modelling life events discretely
and probabilistically generates inter-individual variability, as well as geographical and
demographic stochasticity, therefore accounting for several sources of uncertainty around
population dynamics.

Monitoring sub-model.

We assumed that the manager makes no errors during monitoring, thus N; represents the exact
population size at each time step. This assumption avoided modelled stochastic monitoring
errors that would have challenged a full understanding of management dynamics.

Decision-making sub-model.

Manager and farmer decision-making is modelled in GMSE using evolutionary algorithms
(Hamblin 2012). Each time an agent makes a decision, the GMSE evolutionary algorithm
generates a set of random possible policies for managers (culling costs) or action plans for
farmers (number of culls), and then allows this set to evolve on its own self-contained
timescale. Policies or action plans that are better aligned to an agent's goal have a relatively
high fitness, and the fittest ones are selected to be the agent’s policy/action plan when the
conditions for the algorithm termination are met (see supporting information S1 in Duthie et
al. 2018, and GMSE documentation for further details). Our model thereby computes a
practical but not necessarily optimal decision, recognizing that most people cannot think of
every single possibility to choose the optimal one, but can choose the best option among those
they could conceive. This process generates inter-individual variability, errors, and
stochasticity in agents’ decision-making, therefore simulating several sources of uncertainty
around human behavior.

Timing strategies implementation.

CTL is the default strategy in GMSE: at each time step t, the evolutionary algorithm
calculates an appropriate cost of culling (most likely a raise in the cost when Ni< Ty and a
decrease when Nt > Ty). In contrast, when applying ATI, the manager updates the policy only
if Nt is out of the permissive range (Tn = Pr). Hence, the evolutionary algorithm is called only
if
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Otherwise, the cost is left the same as the previous time step. Lastly, when applying TRJ, the
process is the same as ATI, except that the decision to update is based on a prediction of next
time step’s population size N,,, instead of Ni. We chose as a predicting function a simple
linear extrapolation based on the current (Nt) and previous (Nt1) population sizes that has the
advantage of including the influence of the active policy on population variation in a simple
way. Hence, with TRJ the condition for calling the evolutionary algorithm is

—

Nt+1 -1

> Py

N

With Nf+1 = Nt + (Nt - Nt—l)'
Otherwise, the cost stays the same as previous time step. After a time step without calling the

evolutionary algorithm, the manager starts the next one with an addition of a proportion By, of
Bwm b.u. to their regular budget Bw. (See Fig. A5 for a flowchart of the different strategies.)

ATI Ny TRJ

CTL

Call GA

Cost updated

no End no

Fig. Al. Flowchart of the three timing strategies.

Table Al.1. Summary of useful symbols.



Symbol Status Description Unit
tmax constant | max simulation time times steps
TN constant | manager’s target for nb. of individuals
population size
No constant | initial population size nb. of individuals
N¢ variable | population size monitored at nb. of individuals
time step t
Pr variable | permissiveness around Tn % of Tn
Bwm variable | manager’s initial budget b.u.
Bb variable | budget bonus amount % of Bw
fext outcome | extinction frequency over a set | % of replicates
of replicates
Yend outcome | average farmers’ yield at the % of landscape max
end of a simulation. productivity
Yineq outcome | average differential between % of highest yield
lowest and highest farmers'
yields at the end of a
simulation
dr outcome | Average distance between Nt | % of Ty
and Ty at the end of a
simulation
tw outcome | Average proportion of time % of simulation time
steps without intervention

Table A1.2. GMSE parameter values. Parameters not mentioned here were set to default (as
in https://confoobio.github.io/gmse/articles/S13.html).

Parameter Value Description
time_max 20 Maximum time steps in simulation
land_dim1 200 Width of landscape (horizontal cells)
land_dim2 200 Length of landscape
res_death_type 0 Rules affecting resource death (consumption-based)
res_birth_type 0 Rules affecting resource birth (consumption-based)
observe_type 3 Type of resource observation (transect observation)
res_move_obs FALSE Resource move during transect observation
res_consume 0.5 Pr. of alandscape cell’s value reduced by

the presence of a resource in a time step
max_ages 5 The maximum number of time steps a resource

can persist before it is removed
minimumcost 10 The minimum cost of a farmer performing culling
user_budget 1000 A farmer’s budget per time step for performing

any number of actions



manager_budget 1000 A manager’s budget per time step for setting policy

manage_target 2000 The manager’s target resource abundance

RESOURCE _init 1000 The initial abundance of resources

culling TRUE Resource culling (removes a resource entirely)
is a policy option

stakeholders 40 Number of farmers in the simulation

landownership TRUE farmers own land and increase utility indirectly
from landscape instead of resource use

manager_sense 0.15 A metric of managers accuracy in predicting
change in stakeholder behaviour given a change
in cost

consume_surv 4.75 Amount of cell value for a resource to eventually

survive until the next time step

consume_repr 5 Amount of cell value for a resource to eventually
produce offspring

times_feeding 12 Maximum number of times a resource consumes
landscape value per time step



Appendix 2.

Additional figures of the adaptive timing of intervention strategy experiment results.
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Figure A2.1. Population’s average deviation from target (dv) at the final time step of simulation
according to permissiveness (Pt) and budget bonus (Bp) values when applying the Adaptive
Timing of Intervention strategy. Results from simulations with an individual-based model
simulating the adaptive management of a population under conditions of conservation conflict.
The greener, the closer the population to manager’s target (Tn). Given the numerous extinctions
(see Fig.1), the population very often ended at a size of 0, meaning a —100% deviation from target,
hence the large red area. With Control strategy, the population was under target by —30 to —20%.
Expectedly, this reflects the same tendency as the extinction frequency fex:.
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Figure A2.2. Average farmers’ yield (Yend) at the final time step of simulation according to
permissiveness (Pr) and budget bonus (Bn) values when applying the Adaptive Timing of
Intervention strategy. Results from simulations with an individual-based model simulating the
adaptive management of a population under conditions of conservation conflict. The greener, the
closer the farmers’ yield to landscape maximal productivity. Given the numerous extinctions (see
Fig.1), farmers very often reach their maximal yield, hence the large green area. With control
strategy, farmers got between 85 and 90% of their maximal yield on average because the
population was more efficiently managed and thus larger.
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Figure A2.3. Average farmers’ yield inequity (Yineq) at the final time step of simulation according
to permissiveness (Pr) and budget bonus (Bb) values when applying the Adaptive Timing of
Intervention strategy. Results from simulations with an individual-based model simulating the
adaptive management of a population under conditions of conservation conflict. The greener, the
smaller the difference between the highest and lowest farmer’s yields. Given the numerous
extinctions (see Fig.1), farmers very often reach their maximal yield while the lower yields were
higher than with control strategy, hence the very low inequity.
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Figure A2.4. Population’s average deviation from target (dr) at the time step before the end of
simulation (tmax Or extinction) according to permissiveness (Pt) and budget bonus (Bb) values.
Results from simulations with an individual-based model simulating the adaptive management of
a population under conditions of conservation conflict. The greener, the closer the population to
manager’s target (Tn). Note that in most areas of high extinction risk (red areas in Fig.1), the
population size was monitored into the corresponding permissive range in the time step preceding
extinction, causing the manager to wait when intervention was urgent.
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Figure A2.5. Average proportion of time steps without manager’s intervention (tw) during a
simulation according to permissiveness (Pt) and budget bonus (Bb) values when applying the
adaptive timing of intervention strategy. Results from simulations with an individual-based model
simulating the adaptive management of a population under conditions of conservation conflict.
The lighter, the larger the number of time steps without intervention.



Appendix 3.

Additional figures of the trajectory strategy experiment results.
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Figure A3.1. Average proportion of time steps without manager’s intervention (tw) during a
simulation according to permissiveness (Pr) and budget bonus (By) values when applying the
Trajectory strategy. Results from simulations with an individual-based model simulating the
adaptive management of a population under conditions of conservation conflict. The lighter, the
larger the number of time steps without intervention. In the 30% Pt parameter area, the manager
could save between 10 and 20% of their interventions.
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Figure A3.2. Population’s average deviation from target (dt) at the final time step of simulation
according to permissiveness (Pt) and budget bonus (By) values when applying the Trajectory
strategy. Results from simulations with an individual-based model simulating the adaptive
management of a population under conditions of conservation conflict. The greener, the closer the
population to manager’s target (Tn). Most areas are greener than the control strategy (P+ = 0 band)
meaning that the trajectory strategy maintained the population closer to target. Note that in the Pt
= 30 parameter area, dr is the closest to O for every By, values.
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Figure A3.3. Average farmers’ yield (Yend) at the final time step of simulation according to
permissiveness (Pr) and budget bonus (Bsb) values when applying the Trajectory strategy. Results
from simulations with an individual-based model simulating the adaptive management of a
population under conditions of conservation conflict. The greener, the closer the farmers’ yield to

landscape maximal productivity. Most areas are as green as control strategy, with a final farmers’
yield over 85% of their maximum.
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Figure A3.4. Average farmers’ yield inequity (Yineq) at the final time step of simulation according
to permissiveness (Pt) and budget bonus (Bp) values when applying the trajectory strategy. Results
from simulations with an individual-based model simulating the adaptive management of a
population under conditions of conservation conflict. The greener, the smaller the difference

between the highest and lowest farmer’s yields. Most areas are as equitable, or slightly less
equitable than control strategy.



Appendix 4.

Additional figures of the sensitivity to manager’s initial budget experiment results.
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Figure A4.1. Population’s average deviation from target (d7) at the final time step of simulation
according to manager’s initial budget (Bm) and budget bonus (Bp) values when applying the
Trajectory strategy. Results from simulations with an individual-based model simulating the
adaptive management of a population under conditions of conservation conflict. The greener, the
closer the population to manager’s target (Tn).
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Figure A4.2. Average proportion of time steps without manager’s intervention (tw) during a
simulation according to manager’s initial budget (Bwm) and budget bonus (Bp) values when applying
the Trajectory strategy. Results from simulations with an individual-based model simulating the
adaptive management of a population under conditions of conservation conflict. The lighter, the
larger the number of time steps without intervention. The By = 800 b.u. and 20-30% By, parameter
area was also the one where the manager needed to intervene less, another sign that the population
is often close enough to target not to need an intervention.
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Figure A4.3. Average farmers’ yield (Yend) at the final time step of simulation according to
manager's initial budget (Bwm) and budget bonus (Bb) values when applying the Trajectory strategy.
Results from simulations with an individual-based model simulating the adaptive management of
a population under conditions of conservation conflict. The greener, the closer the farmers’ yield
to landscape maximal productivity. In the areas where the extinction frequency is acceptable, the
farmers’ final yield is over 85% of their maximum, which is comparable to the previous
experiments.
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Figure A4.4. Average farmers’ yield inequity (Yineg) at the final time step of simulation according
to manager’s initial budget (Bm) and budget bonus (Bp) values when applying the trajectory
strategy. Results from simulations with an individual-based model simulating the adaptive
management of a population under conditions of conservation conflict. The greener, the smaller
the difference between the highest and lowest farmer’s yields. In the areas where the extinction

frequency is acceptable, the inequity is between 4 and 6% which is comparable to the previous
experiments.
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