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ABSTRACT
We propose looking at the phenomenon of fitness landscape fun-
nels in terms of their depth. In particular, we examine how the
depth of funnels in Local Optima Networks (LONs) of benchmark
Quadratic Assignment Problem instances relate to metaheuristic
performance. Three distinct iterated local search (ILS) acceptance
strategies are considered: better-or-equal (standard), annealing-like,
and restart. Funnel measurements are analysed for their connection
to ILS performance on the underlying combinatorial problems. We
communicate the findings through hierarchical clustering of LONs,
network visualisations, subgroup analysis, correlation analysis, and
Random Forest regression models. The results show that funnel
depth is associated with search difficulty, and that there is an inter-
play between funnel structure and acceptance strategy. Standard
and annealing acceptance work better than restart on both deep-
funnel and shallow-funnel problems; standard acceptance is the
best strategy when optimal funnel(s) are deep, while annealing
acceptance is superior when they are shallow. Regression models
including funnel depth measurements could explain up to 96% of
ILS runtime variance (with annealing-like acceptance). The runtime
of ILS with restarts was less explainable using funnel features.
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1 INTRODUCTION
The study of landscape funnels in combinatorial optimisation might
be considered a nascent field: how precisely and intimately their
geometry relates to search difficulty remains enigmatic.

The notion of a funnel was introduced within the protein folding
community to describe “a region of configuration space that can be
described in terms of a set of downhill pathways that converge on
a single low-energy structure or a set of closely-related low-energy
structures” [6]. Energy landscapes are conceptually related to fitness
landscapes, and funnel structures have also been studied in both
continuous optimisation [9, 13, 14] and combinatorial optimisation
(see Section 2). The intuition is captured by Figure 1 where two
funnels are depicted as two groups of local optima.

global minimum

local minima

funnel sinks

Figure 1: Depiction of two funnels.

A funnel can be defined as a basin of attraction at the level of
local optima. One way to analyse these structures is through Local
Optima Networks (LONs) [18], which are graphs comprising local
optima (for nodes) and search transitions between them (for edges).
LONs can be constructed using metaheuristic search and therefore
reflect landscape dynamics on the associated problem.

A trajectory-based search algorithm which has induced a land-
scape funnel might become trapped at its terminus, unless the algo-
rithm design considers deleterious local optima or restarts. Indeed,
the phenomenon of multiple funnel organisations of local optima
has been connected to metaheuristic search difficulties [15, 16].

Little is known about the depth of funnels, however. Intuitively,
this aspect of their geometry could be critical in understanding
their interrelation with algorithm performance. Additionally, we
do not yet know the implications of funnel depth on algorithm
design. It might be, for example, that particular acceptance strategy
approaches are suited to problems with specific funnel depths. In
this study, we look to address these nebulous gaps in our knowledge
of the nature of funnels.

We consider a well-known benchmark combinatorial optimisa-
tion for study: the Quadratic Assignment Problem (QAP). From
QAP instances we construct LONs; we also run iterated local search
(ILS) variants on them to collect performance information. In order
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to study the effect of algorithm design on instances with different
funnel depth structure, we consider and compare three separate
acceptance strategies within ILS: better-or-equal (standard), anneal-
ing-like, and restarts.

From there, the relationship between funnel geometry in the
LONs (with particular attention to depth) and ILS performance is
examined. Results are presented through visualisation, subgroup
analysis, and regression models.

2 FUNNELS IN COMBINATORIAL
OPTIMISATION

The notion of funnels in combinatorial optimisation is related to
a conjecture proposed in the mid 1990s that the search space of
travelling salesman instances had a “globally convex" or “big valley"
structure, in which local optima are clustered around one central
global optimum [1]. This hypothesis was generally accepted and
has inspired the design of some modern search heuristics. The idea
of a single valley, however, has been challenged in recent research
indicating that the big valley deconstructs into several valleys or
funnels [7, 19]. An explicit definition for funnels in combinatorial
optimisation using LONs has been proposed [20] and used several
times in subsequent works [15–17, 23, 24]; the definition considers
a funnel to be an overarching structure leading down to the global
optimum.

The occurrence of multiple funnels has been linked to search
difficulty: one paper related the number of funnels and the size of
the optimal funnel to worsened search [15]; another argued that
there was a correlation between search and both the size of the
optimal funnel and the flow to its sink (the global optimum) [17].
Despite these advances, to the best of our knowledge, the depth of
funnels has not yet been studied in this way. Intuitively, this could
be of critical importance to search. Furthermore, we also notice that
funnel measurements have not been studied through the lens of
acceptance strategies in ILS. This paper addresses these vacancies
in the literature.

3 DEFINITIONS
3.1 The Quadratic Assignment Problem
A solution to the QAP is generally written as a permutation 𝑠 of the
set {1, 2, ..., 𝑛}, where 𝑠𝑖 gives the location of item 𝑖 . Therefore, the
search space is of size 𝑛!. The cost, or fitness function associated
with a permutation 𝑠 is minimisation and is a quadratic function
of the distances between the locations, and the flow between the
facilities, 𝑓 (𝑠) = ∑𝑛

𝑖=1
∑𝑛

𝑗=1 𝑎𝑖 𝑗𝑏𝑠𝑖𝑠 𝑗 , where 𝑛 denotes the number
of facilities/locations and 𝐴 = {𝑎𝑖 𝑗 } and 𝐵 = {𝑏𝑖 𝑗 } are the distance
and flow matrices, respectively.

We consider all the instances from the QAPLIB1 [3] with between
25 and 50 facilities; these are ofmoderate size, and yet are not always
trivial to solve. Some of the instances in this group have not been
solved to optimality; for those, we use their best-known fitness as
the stand-in global optimum. In the rest of this paper, for simplicity
we refer to these as the global optimum, and to their funnels as
global optimal funnels. The QAPLIB instance naming convention

1http://www.seas.upenn.edu/qaplib/

has a two digit number 𝑛𝑛 to indicate the problem size. According
to [21, 22], most QAPLIB instances can be classified into four types:

(1) Uniform random distances and flows. In these problems, de-
noted by tainna, flows and distances are randomly drawn
from a uniform distribution.

(2) Random flows on grids. These problems consider rectangu-
lar distances. The flows are randomly generated, but not
necessarily uniformly. These problems are known to be sym-
metrical and may have multiple different optimal solutions.
The instances of this group are: nug, sko, tho and wil.

(3) Real-world problems. These problems arise from practical
applications. The names of the instance sets are bur, chr,
esc, kra, and ste.

(4) Random real-world like problems. These instances, denoted by
tainnb, are randomly generated in a way that they resemble
the structure of the real-world instances.

We note here that the there is a set of QAP instances identified
as lip which are not clear members of any of the four groups above.
These instances come from problem generators described in [11],
which provide asymmetric instances with known optimal solutions.

3.2 Compressed Monotonic LON Model
Neutrality has been observed at the LON level (i.e. connected sets
of optima that share the same fitness value) on several combina-
torial problems, including the QAP [17]. Therefore, we use here
the coarser LON model proposed in [20], which compresses the
local optima that are connected by neutrality into single nodes. The
relevant definitions are given below.

Local optima. We assume a search space 𝑆 with a fitness func-
tion 𝑓 (𝑆) and a neighbourhood function 𝑁 (𝑠). A local optimum,
which in the QAP is a minimum, is a solution 𝑙 such that ∀𝑠 ∈ 𝑁 (𝑙),
𝑓 (𝑙) ≤ 𝑓 (𝑠).

Monotonic perturbation edges. Edges are directed and based
on the perturbation operator (𝑘-exchange, 𝑘 > 2). There is an edge
from local optimum 𝑙1 to local optimum 𝑙2, if 𝑙2 can be obtained
after applying a random perturbation (𝑘-exchange) to 𝑙1 followed
by local search, and 𝑓 (𝑙2) ≤ 𝑓 (𝑙1). These edges are calledmonotonic
as they record only non-deteriorating transitions between optima.
Edges are weighted with estimated frequencies of transition. The
set of edges is denoted by 𝐸.

Compressed local optima. A compressed local optimum is a
set of connected nodes with the same fitness value. Two nodes are
connected if there is a monotonic perturbation edge between them.
The set of connected optima with the same fitness, denoted by 𝐶𝐿,
corresponds to the set of nodes in the Compressed Monotonic LON
model.

Compressed Monotonic LON. Is the directed graph CMLON
= (CL,CE), where nodes are compressed local optima 𝐶𝐿, and the
edges𝐶𝐸 are aggregated from themonotonic edge set 𝐸 by summing
up the edge weights.

Monotonic Sequence. A monotonic sequence is a path of con-
nected nodes𝑀𝑆 = {𝑐𝑙1, 𝑐𝑙2, . . . , 𝑐𝑙𝑠 } where 𝑐𝑙𝑖 ∈ 𝐶𝐿. By definition
of the edges, 𝑓 (𝑐𝑙𝑖 ) ≤ 𝑓 (𝑐𝑙𝑖−1). There is a natural end to every
monotonic sequence, 𝑐𝑙𝑠 , when no improving transitions can be

http://www.seas.upenn.edu/qaplib/
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found. This node, 𝑐𝑙𝑠 , is called a sink as it does not have outgoing
edges2.

Funnel. A funnel in the CMLON comprises the aggregation of
all monotonic sequences ending at the same point (or sink).

3.3 Funnel Depths and LON metrics
Some of the LON metrics we calculate relate to properties of the
optimal funnel. As stipulated in Section 3.1, in certain cases the
global optimum is not known and for those instances, the label "op-
timal" refers to the best-known solution instead. To calculate funnel
depth measurements, we first compute all finite shortest paths in
the CMLON from origin nodes (local optima at the beginning of
ILS runs) towards sink nodes. A sink is the apex of a funnel. This
process is completed separately for optimal or suboptimal sinks.
From the resultant sets of shortest paths (which are monotonic in
nature) we can extract metrics. For both optimal and suboptimal
funnels, we consider the mean depth and the maximum depth of
them, i.e., the mean and maximum of the shortest paths which
reach them from origins.

Other LON metrics are included too: the incoming strength to
optimal sinks, and the relative size (in nodes) of the optimal fun-
nel(s). The former is calculated as the weighted incoming degree to
optimal sinks in CMLON — as a proportion of the total weighted
incoming degree to all sinks. The size of optimal funnel(s) is defined
to be the number of nodes which can reach the optimal sinks using
a monotonic path; the size is normalised by the total number of
nodes. Also considered is the landscape ruggedness (number of
local optima, simply the number of nodes).

4 EXPERIMENTAL SETUP
4.1 Iterated Local Search
We use Stützle’s iterated local search (ILS) for both gathering per-
formance data and as the foundation of LON construction [21].
The local search stage uses a strict first improvement hill-climbing
variant with the pairwise (2-exchange) neighbourhood. This oper-
ator swaps any two positions in a permutation. The perturbation
operator exchanges 𝑘 randomly chosen items. We configure per-
turbation strength as 𝑘 = 𝑁

2 , with 𝑁 being the problem dimension
— for both constructing the LONs and computing the performance
metrics. This setting was selected as large perturbation strengths
of around 50% of 𝑁 are generally advantageous in this problem
domain [17, 21].

4.1.1 Acceptance strategies. Performance metrics were computed
using three distinct acceptance strategies for the ILS. This design
decision came about because we hypothesised that acceptance strat-
egy might have some sort of relation to funnel deepness.

Better or equal. Only local optima which have improved or equal
fitness to the current are accepted. Worsening local optima are
never accepted.

Annealing. Improving and equal local optima are always ac-
cepted.Worsening local optima are accepted according to a probabil-
ity governed by an annealing-like cooling schedule. The parameters

2In directed graphs, a node without outgoing edges is called a 𝑠𝑖𝑛𝑘 .

of the cooling schedule are those which were present in the ILS for
QAP algorithm code [21] and are as follows: initial temperature 0.5;
end temperature 0.001; number of iterations at a temperature 25;
and alpha, 0.8.

Restart. Improving and equal local optima are always accepted.
If iterations since an improvement in local optima quality have
exceeded 3𝑁 , a restart happens.

4.1.2 Algorithm Performance Metrics. We compute two metrics
to summarise ILS performance on the instances. Runs terminate
when either the known best fitness is found or after 10000 iterations
(i.e., hill-climbing followed by perturbation) with no improvement.
Because three acceptance strategies are separately employed, there
are correspondingly six performance metrics. Each of them is the
mean over 100 runs starting at random solutions — this is not
the same set for each ILS variant. The measurements are: runtime,
which is the number of iterations upon termination; and success
rate, a normalised value — the proportion of successful runs (runs
where ILS reached the best-known fitness without reaching 10000
iterations with no improvement).

4.2 LON Construction and Metrics
The LON models are constructed by aggregating the unique nodes
and edges encountered during 100 independent ILS runs with the
standard acceptance strategy. These are distinct from the algorithm
performance runs. Runs terminate after 10000 non-improving iter-
ations; this is in order to empirically estimate the end of funnels.

Functions from the R package igraph assist in calculating the
LON metrics. The shortest paths which are required to calculate
funnel depths are computed using distances (computes pairs of
edge distances between nodes in networks); the function strength
(sums up the amount of edges are their weight to a given node)
facilitates calculation of optimal funnel(s) strength; and subcom-
ponent (identifies all nodes which are reachable from the chosen
node) determines the optimal funnel(s) size.

At this stage, two instances were removed from the set: esc32e
and esc32f; their local optima networks are uninteresting to study
because we found that every node has the same (optimal) fitness.
Removing these anomalies left us with the remaining moderate-size
(between 25 and 50, inclusive) QAPLIB: 46 instances. Also, some of
the esc instance LONs contained large global optimum plateaus;
consequently, during the computation of their funnel depths, we
noticed that certain funnel depths were zero. This is due to some
global optima which were both the origin of the search (i.e., the first
local optimum obtained after improving the initial random solution)
and also the termination point, or sink. For the purposes of analysis,
we remove any length-zero funnel depths before computing the
mean and maximum depths for the LONs. This was conducted so
that the metrics can intuitively represent the funnel depth if there
is in fact a funnel present.

4.3 Correlations and Predictive Models
4.3.1 Correlations. For our correlation analysis, a metric which
does not hold the assumption of normality must be used: the vari-
ables are not normally distributed. This fact can be observed from
the density plots in the diagonal panels of Figure 4. We therefore
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use the non-parametric Spearman’s rank correlation coefficient
[25] and indicate the associated 𝑝-values.

4.3.2 Predictive Models. Predictive modelling is conducted with
regression using the randomForest package [12] in R statistical
programming language. Random Forests [2] include design mecha-
nisms intended to prevent overfitting to the training data: bootstrap-
ping (re-sampling of the training instances), and sub-setting of the
independent variables. These overfitting-prevention mechanisms
are the reason Random Forest is chosen for this work. A test set
of 20% is kept aside during model training and is then tested on
to obtain quality measurements. The training set is selected ran-
domly and without replacement; the test set is the remaining rows.
Random sampling is important here, because "similar" LONs (those
sharing a name prefix such as esc) are next to each other in the
dataset.

Candidate independent variables. The features are:

(1) Number of local optima: local.optima
(2) Maximum optimal funnel depth: depth.gfunnel.max
(3) Mean optimal funnel depth: depth.gfunnel.avg
(4) Maximum sub-optimal funnel depth: depth.sofunnel.max
(5) Mean sub-optimal funnel depth: depth.sofunnel.avg
(6) Incoming strength to optimal sinks: strength.gfunnel
(7) Size of optimal funnels, in proportion to the number of nodes:

size.gfunnel

Iterated local search runtimes on the instances serve as response
variables, making this a regression setting. Using the other ILS
performance variable, success rate, resulted in very poor models;
these are therefore not shown. We think that this is because a
success rate of 1.0 is a common value. For modelling purposes,
the runtimes are taken as their natural logarithm so that resultant
error values are more easy to interpret. We aimed for models with
as few independent variables as possible, owing to the limited
number of eligible QAPLIB instances of moderate size. The one-in-
ten rule [8] stipulates that roughly ten observations are required
per independent variable. Our training set is of size 36 — so we
correspondingly set the maximum number of independents as three
and conduct feature selection, as described now.

Recursive Feature Elimination. Backwards recursive feature elimi-
nation (RFE) was used to select model configurations with subsets
of the predictors. We employ the R package caret [10] for this
purpose, and use Root Mean Squared Error (RMSE) as the quality
metric for model comparisons. RMSE is the square-root of the MSE,
which itself is the mean squared difference between the predicted
values and true values. For the experiments, we configure RFE as
follows. Random Forest is the modelling method, and only the train-
ing data (80%) is supplied. The number of repeats is set at 10; we
consider feature subset sizes of one, two, and three from a set of
seven candidates (listed earlier). The RFE cross-validation is set to
10-fold; consequently, quality metrics are the mean and standard
deviation over 10 validation folds. Two such metrics are reported to
accompany the models selected by RFE: RMSE, and the R-Squared
(𝑅2, computed as 1 − 𝑀𝑆𝐸

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑡 ) , where 𝑡 is the response variable).
𝑅2 can be interpreted as the proportion of variance explained.

Models using selected features. After feature selection, Random
Forest regression is conducted using the selected features only.
There are three separate models, owing to the three variants of ILS.
Models are trained using the 80% training data, and then tested on
the set-aside 20% testing data. Quality metrics are computed from
the predictions made on the test set. The first includedmeasurement
is 𝑅2, detailed earlier. Also considered is the RMSE, which is easy
to interpret because it follows the same unit range as the response
variable.

Details. For all feature selection and subsequent modelling, the
default hyperparameters for Random Forest in R are used, namely:
500 trees; minimum size of terminal nodes set to five; a sample size
of 𝑁 (the number of observations); resampling with replacement;
features considered per split set to one-third of the number of
features. Independent variables are standardised as follows: 𝑝 =
(𝑝−𝐸 (𝑝))
𝑠𝑑 (𝑝) , with 𝑝 being the predictor in question, 𝐸 the expected

value (mean), and 𝑠𝑑 the standard deviation.
We report model quality measurements rounded to two decimal

places — this is for consistency, because the R randomForest
package returns variance explained (which is part of our results)
rounded in this manner.

5 RESULTS
5.1 Clustering Analysis
This section explores whether LON features provide a way of organ-
ising the overall (funnel) structure of QAP fitness landscapes into
groups, and whether these groups relate to both the types of QAP
instances discussed in Section 3.1, and to the ILS performance with
the studied acceptance strategies. We use hierarchical clustering to
identify groups according to the Euclidean distances between the
LON numerical features. We used a wider set of LON features, not
only the funnel depth metrics, as the wider set produced a clearer
clustering. Specifically, we used the 7 LON metrics described in
Section 4.3.2 plus the following 5: number of compressed nodes,
mean size of compressed nodes, number of global optima, number
of global funnels and number of sub-optimal funnels. The results
are presented in Figure 2a. Colour indicates cluster membership
and each QAPLIB instance is labelled. We set the number of clusters
to 𝐾 = 4 after visually inspecting the dendrogram. Furthermore,
Figure 2b shows the distribution of ILS success rate with different
acceptance strategies across the clusters. We can see that the restart
strategy performs the worst in all cases. The default strategy has a
slightly higher success rate on the instances in cluster 1, while for
cluster 2 the annealing strategy has superior performance.

The four clusters contain, respectively: 8 (red), 14 (blue), 18 (red)
and 6 (purple) instances. A close inspection reveals that cluster 1
(red) contains all the uniform random distances and flows instances
tainna, as well as three of the largest random flows on grids in-
stances. Cluster 1 thus contains the hardest instances, as can be
confirmed by looking at the very low ILS success rate in this cluster
(Fig. 2b). Cluster 2 (blue) groups the rest of the random flows on
grids, some of the real-world instances and the largest lip instances.
These instances are of intermediate difficulty in terms of success
rate (Fig. 2b). Notice that for cluster 2 the annealing acceptance
strategy produces higher mean success rate. We argue that this is



On Funnel Depths GECCO ’22, July 9–13, 2022, Boston, MA, USA
0

1
0

2
0

3
0

4
0

5
0

H
e

ig
h

t

ta
i3

0
a

ta
i3

5
a

ta
i4

0
a

ta
i5

0
a

s
k
o

4
9

w
il5

0
ta

i2
5

a
th

o
4

0
s
te

3
6

c
n

u
g

3
0

th
o

3
0

c
h

r2
5

a
k
ra

3
0

a
lip

a
3

0
a

k
ra

3
0

b
k
ra

3
2

n
u

g
2

8
ta

i5
0

b
s
k
o

4
2

s
te

3
6

a
lip

a
4

0
a

lip
a

5
0

a
ta

i3
5

b
ta

i4
0

b
s
te

3
6

b
ta

i3
0

b
lip

a
4

0
b

lip
a

5
0

b
b

u
r2

6
e

lip
a

3
0

b
b

u
r2

6
h

b
u

r2
6

f
b

u
r2

6
g

b
u

r2
6

b
b

u
r2

6
d

n
u

g
2

7
b

u
r2

6
a

b
u

r2
6

c
n

u
g

2
5

ta
i2

5
b

e
s
c
3

2
c

e
s
c
3

2
g

e
s
c
3

2
a

e
s
c
3

2
b

e
s
c
3

2
d

e
s
c
3

2
h

Cluster 1 Cluster 2 Cluster 3 Cluster 4

(a) Hierarchical clustering

0.00

0.25

0.50

0.75

1.00

1 2 3 4

Cluster no.

S
u

c
c
e

s
s
 r

a
te

Acceptance annealing default restart

(b) ILS success rates split by cluster and acceptance strategy

Figure 2: Hierarchical clustering of instances using Euclidean
distances between standardised LON features. Colours corre-
spond to the order in which results are presented.

due to the presence of suboptimal funnels (see Figures 3b and 3c
for visualisations of LONs from this cluster). Accepting worsening
solutions, as is the case with annealing acceptance, may help in
escaping suboptimal funnels. Cluster 3 contains the rest of the real-
world instances as well as all the random real-world like problems
tainnb. Finally, Cluster 4 (purple) contains all the esc instances,
which were found to have high neutrality and very shallow funnels
(see Fig. 3f). Thus, clusters 3 and 4 contain the easy instances with
very high ILS success rate for both the default and annealing strate-
gies. Collectively, these observations suggest that certain QAPLIB

instance types (as described in Section 3.1) lend to similar LONs,
indicating that the model captures important landscape character-
istics. Moreover, the best choice of the acceptance criterion may be
related to the LON (funnel) structure.

5.2 Network Visualisation
Networks are a powerful means of representing patterns of con-
nection, and visualising them can bring useful insight into their
structure. Figure 3 illustrates CMLONs for selected QAP instances
with different funnel structure. In the images, each node is a com-
pressed optimum, and edges are monotonic perturbation transitions.
Plots were produced with R using force-directed layout methods as
implemented in the igraph library [4]. The decorations reflect fea-
tures relevant to search — the size of nodes is proportional to their
incoming weighted degree (strength), which indicates how much a
node ‘attracts’ the search process. Red nodes belong to the global
optimal funnel(s), while blue nodes belong to suboptimal funnels.
In the case of tai30a (Figure 3a) and sko42 (Figure 3b), the global
optimum is not known and the best-known fitness is used instead.
The funnels’ terminating nodes (sinks) are highlighted with a more
intense colour. The plots in Fig. 3 are organised from left to right
according to increasing ILS success rate with the default strategy.
The top row shows hard instances (in clusters 1 and 2), while the
bottom row shows easy instances (in clusters 3 and 4). The hard
instances have a large number of suboptimal funnels (visualised
in blue) and longer global funnel depths, while the easy instances
lack suboptimal funnels and have shorter global funnel depths.

5.3 Correlation Study
Figure 4 shows correlations for pairs of variables: performance
metrics and LON features. Abbreviations used for the LON metrics
are detailed in Section 4.3.2. Metrics for ILS runtime on the instances
(specifics in Section 4.1.2) begin with ILS. There are three of them
— one for each acceptance strategy, as described in Section 4.1.1.

ILS.default.iters is "better-or-equal" acceptance;
ILS.annealing.iters is annealing acceptance;
ILS.restart.iters is a restart strategy.
In the Figure, the lower triangle contains pairwise scatter plots.

On the diagonal is density plots, and the upper triangle presents the
pairwise Spearman rank correlation, 𝑟 , with indication of 𝑝-value:
∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05.

Of particular interest to us is any correlations between algo-
rithm performance and funnel depth measurements. These can be
observed by checking the intersections between ILS columns (the
last three in the Figure) and funnel metric rows (rows 2-5, labelled
on the right).

The correlations show that there are strong, positive associations
between ILS runtimes and three funnel depth metrics:

depth.gfunnel.avg, depth.sofunnel.max, and depth.sofunnel.avg.
This implies that these are correlated with longer runtimes, that
is, more search difficulty. We also computed correlations between
the other ILS performance metric included in this study (success
rate, detailed in Section 4.1.2) and funnel depth features. The corre-
lations were similarly strong there (although negative in nature);
they are not presented in Figure 4 in the interest of space, but fell
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(a) tai30a, cl = 1, sr = 0.01, fd = 14
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Figure 3: Local optima network visualisations of selected QAP instances with different funnel structure. For each instance, the
cluster membership (cl), the ILS success rate with the default strategy (sr), and the mean optimal funnel depth (rounded to the
nearest integer fd) are indicated.

between −0.946 and −0.787 for the three funnel depth measure-
ments just mentioned. Likewise we calculated correlations relating
to strength.gfunnel and size.gfunnel — listed in Section 4.3.2 — and
noted that these display strong negative correlations with runtime:
between −0.926 and −0.849, and strong positive correlations with
success rate: between 0.833 and 0.960.

Notice in the Figure that when compared to the other ILS vari-
ables, the correlations are stronger between ILS.default.iters and
sub-optimal funnel depth measurements (depth.sofunnel.avg and
depth.sofunnel.max). That ILS variant used a "better-or-equal" ac-
ceptance strategy. This suggests that this algorithm design is highly
related to suboptimal funnel geometry. Every correlation discussed
has associated ∗∗∗𝑝 < 0.001. Operating under the assumption that
0.05 is a reasonable maximum limit for statistical significance [5],
we can posit that these correlations appear to be significant for this
data sample.

5.4 Funnel Depths and Acceptance Criteria
In this Section, the considered QAPLIB instances are dichotomised
by funnel depth for subgroup analysis. Optimal funnels — instead

of suboptimal — serve as the factors for this partitioning because
some LONs do not contain any suboptimal funnels. One of the
two sets comprises instances whose LONs contain deeper optimal
funnel(s): where the mean optimal funnel depth is greater than
the mean for this variable over the whole set of LONs. The other
instance set contains all others, i.e., instances whose LONs contain
shallower optimal funnels. After the division, there are two groups
consisting of 23 instances each. We intend to study how funnel
depth relates to acceptance criteria in ILS — to do so, with each
group of 23 instanceswe compute themean for performancemetrics
and present the results in Table 1.

Notice by comparing columns one and three in the Table that,
for all three acceptance strategies (rows), ILS required less runtime
on the shallower funnel(s) instances group. In the case of better-
or-equal acceptance, the average number of iterations required for
shallow-funnel instances was around 10% of those required for
deeper-funnel instances. For annealing, this is even lower: 8.6%. For
the restart design, the percentage is much higher: 71.30%. These
findings indicate that ILS with a restart strategy is not overly sus-
ceptible to funnel depth, but ILS with standard or annealing-like
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Figure 4: Correlation matrix of ILS runtime performance metrics and LON features.

Table 1: Algorithm performance metrics for ILS on QAPLIB
instances, split into two groups: deeper optimal funnel(s) in
the LON and shallower optimal funnel(s). Each group con-
tains 23 instances/LONs and the values are the mean in the
group. The runtime is rounded to the nearest integer (lower
values are better), the success rate is naturally in the range
[0, 1] (larger values are better) Bold text means the best in a
column.

deeper funnel(s) shallower funnel(s)

runtime success rate runtime success rate

better-or-equal 10200 0.4382 1024 0.9613
annealing 11544 0.4300 998 0.9639
restart 14723 0.0265 10497 0.4239

acceptance may well be: those ILS variants suffered much longer
runtimes on deeper-funnel instances.

For all three acceptance strategies, the success rate is higher for
the shallower funnels group (compare column two with column
four in Table 1). On instances with LONs containing deeper funnels,
better-or-equal and annealing strategies result in success rates
16.5 times and 16.2 times higher (respectively) than using restart
strategy (this can be seen by contrasting the entries in column two).
In the shallow funnels group, success rates for better-or-equal and
annealing are each approximately 2.3 times higher than the rate
obtained a restart strategy (column four).

These findings suggest that better-or-equal and annealing-like
approaches to acceptance work better than restart on both deep-
funnel and shallow-funnel problems; this being said, the difference
in performance is orders of magnitude larger when the funnels are
deeper. Notice from the bold text (which indicates the best value in
a column) that for both runtime and success rate, annealing is the
best-performing strategy when the optimal funnel(s) are shallow
(columns three and four). When the funnel(s) are deeper, however,
better-or-equal acceptance performs best (columns one and two).

5.5 Predictive Models
5.5.1 Feature Selection. Table 2 communicates the feature(s) which
were selected by recursive feature elimination (RFE) and quality
metrics for the three model setups — each row presents informa-
tion for a particular setup. The first column indicates the response
variable, and the second contains the RMSE for the model setup
with its standard deviation. The third column is RMSE taken as
a percentage of the range for the response variable. After that is
the R-Squared (𝑅2) with its standard deviation; and finally, the fea-
ture(s) selected by RFE from seven candidates (with the maximum
allowed being three). Bold text draws attention to the best values
within a column.

Notice from the "selected" column of the Table that in all three
cases, mean optimal funnel depth was among the selected features.
This measurement is the average monotonic path length within
optimal funnels in the LON. Recall that funnels are comprised of a
constellation of monotonic pathways which terminate at the same
local optimum sink (definition in Section 3.2) — in this case a global
optimum.



GECCO ’22, July 9–13, 2022, Boston, MA, USA Sarah L. Thomson and Gabriela Ochoa

Table 2: Information about models selected with recursive feature elimination in a Random Forest setting. Provided are
model quality metrics on validation data (RMSE and 𝑅2) alongside their standard deviations over 10 folds in parentheses. The
RMSE%range column also contains the RMSE as a percentage of the response variable range in parentheses. The final column
presents the feature(s) which were selected from seven candidates (with the maximum allowed being three). The independent
variable candidates are funnel measurements; response variables are the natural logarithm of ILS runtimes.

response variable RMSE (sd) RMSE%range 𝑅2 (sd) selected

[mean optimal funnel depth
runtime — better-or-equal 1.11 (0.66) 11.2% 0.86 (0.17) maximum suboptimal funnel depth

mean suboptimal funnel depth]

runtime — annealing 1.07 (0.45) 10.9% 0.85 (0.19) [mean optimal funnel depth]

[mean optimal funnel depth,
runtime — restart 0.09 (0.06) 13.7% 0.84 (0.24) maximum suboptimal funnel depth,

strength optimal funnel]

Table 3: Information about predictive models for algorithm runtime estimation using Random Forest regression; model quality
metrics are computed on a set-aside test set. The format of the Table mirrors Table 2.

response variable RMSE RMSE%range 𝑅2 predictors

[mean optimal funnel depth
runtime — better-or-equal 0.61 6.2% 0.90 maximum suboptimal funnel depth

mean suboptimal funnel depth]

runtime — annealing 0.41 4.2% 0.96 [mean optimal funnel depth]

[mean optimal funnel depth,
runtime — restart 0.10 15.2% 0.73 maximum suboptimal funnel depth ,

strength optimal funnel]

The appearance of this measurement in all three models com-
municates its salience as a feature to train models for ILS runtime
prediction. Another funnel depth feature,maximum suboptimal fun-
nel depth, is selected for two models: "runtime — better-or-equal"
and "runtime — restart".

Comparing the three rows of the Table, we notice that the strongest
models are the first and second, which have ILS runtime with
"better-or-equal" and "annealing" acceptance, respectively, as the
response variables. These model setups result in the highest 𝑅2 (in
the case of the better-or-equal model) and the lowest RMSE (the an-
nealing model). The 𝑅2 for these two convey that around 85-86% of
ILS runtime variance is explained with these model configurations.

5.5.2 Models using selected features. Now we build models con-
structed according to the feature selection conducted in the pre-
vious stage. Three predictive models are built using the training
data, and then predictions are made on the set-aside test data. Ta-
ble 3 presents quality metrics computed from these ILS runtime
performance predictions.

Two of the three models appear to be of excellent quality: "better-
or-equal" ILS runtime prediction, and "annealing" ILS runtime pre-
diction — these have high 𝑅2 values and low relative RMSE (check
the 𝑅2 and RMSE%range columns). The strongest model uses the
"annealing" ILS design as the target variable, and explains around
96% of variance on the test data.

The weakest model, by a large margin, attempts to predict ILS
runtime with the restart strategy (row three). The reason for larger
RMSE and lower variance explained is probably that funnel depth
metrics cannot explain the length of ILS search when restarts are
involved. We posit that this is because restarts regularly "jump" out

of funnels by restarting from a new solution. It would follow that
the depth of funnels does not matter as much to the search success,
at least when compared to ILS with "better-or-equal" or "annealing"
acceptance designs.

6 CONCLUSIONS
We considered the interplay between landscape funnel depth and
metaheuristic algorithm proficiency. The domain was the Quadratic
Assignment Problem (QAP) and the metaheuristic was Iterated
Local Search (ILS) with different acceptance criteria.

The results showed that funnel depth measurements are related
to worsened ILS performance. Correlation analysis and regression
models captured this. Regression models using funnel depth proper-
ties could explain up to around 96% of ILS runtime variance (using
annealing-like acceptance). It appears that ILS with restarts is less
affiliated with optimal funnel depth than standard or annealing-like
ILS. Annealing acceptance was the best strategy when the optimal
funnel(s) were shallow, and standard acceptance was the winner
when the optimal funnel(s) were deeper.

As a final note, we acknowledge that larger sizes of QAP in-
stances, and other problem domains, should be studied next. This
is necessary in order to provide more evidence that the findings
are generalisable. That being said, we are confident that owing to
the range of problem sizes and diversity of instances considered
in this study, the resultant conclusions apply to QAP instances of
moderate size.

Data Publishing. The data from this work is publicly available3.

3https://github.com/sarahlouisethomson/funnel-depths-acceptance-criteria

https://github.com/sarahlouisethomson/funnel-depths-acceptance-criteria
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