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ABSTRACT

The lack of controlled stimuli transformations is an obstacle to the study of face identity
recognition. Researchers are often limited to verbalizable transformations in the creation of a
dataset. An alternative approach to verbalization for interpretability is finding image-based
measures that allow us to quantify transformations. We explore whether PCA could be used to
create controlled facial transformations by testing the effect of these transformations on human
perceptual similarity and on computational differences in Gabor, Pixel and DNN spaces. We
found that perceptual similarity and the three image-based spaces are linearly related, almost
perfectly in the case of the DNN, with a correlation of 0.94. This provides a controlled way to
alter the appearance of a face. In Experiment 2, the effect of familiarity on the perception of
multidimensional transformations was explored. Our findings show that there is a significant
relationship between the number of components transformed and both the perceptual
similarity and the same three image-based spaces used in Experiment 1. Furthermore, we found
that familiar faces are rated more similar overall than unfamiliar faces. The ability to quantify,
and thus control, these transformations is a powerful tool in exploring the factors that mediate
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a change in perceived identity.

Introduction

The lack of controlled stimuli transformations is an
obstacle to the study of face identity recognition.
The aim of this work is to explore a method for gen-
erating variations in the appearance of a face image,
and methods for assessing the likely effect on
human perceptions of such variations. We then use
these methods to test the effect of familiarity on the
perception of suitably controlled alterations to faces.

Most research that explores facial variation, uses
the approach of reverse engineering: manipulating
the visual input to assess whether this content is
used in face identity recognition. For example, chan-
ging facial components such as the nose, mouth
and eyes (Abudarham & Yovel, 2016) or displacing
them (Goffaux & Rossion, 2007). This approach is
useful but requires well-understood transformations
of the visual input to be meaningful. For example, a
change in eyebrow thickness is easily verbalized and
can be varied systematically, but a change based on
“morphing” — gradually changing from one identity

to another - is difficult to interpret in terms of dimen-
sional change. Verbalizable transformations are
insightful but are only a part of the complete story.
In order to successfully identify a face under a wide
range of viewing conditions, our internal represen-
tations of a face need to capture variability in appear-
ance, in order to “tell people together”, but also tell
people apart (Burton et al., 2011; Jenkins et al.,
2011). Burton et al. (2016) explored the way faces
vary using PCA, and found that the variation is idio-
syncratic. One identity may vary in ways that
another does not. As an example, someone with a
prominent brow ridge will show more variation in
lighting on their eyes. Although the exact nature of
between and within face variability has yet to be
determined, it is clear that this variation goes
beyond easy to verbalize features. An alternative
approach to verbalization for interpretability is
finding image-based measures that allow us to quan-
tify image transformations. Such an approach would
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need image-based measures that preferably correlate
with  perceptual space, and well-controlled
transformations.

Principal Component Analysis (PCA) was first pro-
posed as a means of face recognition by Kirby and Sir-
ovich (1990), and Turk and Pentland (1991). PCA
produces a compact representation of a face but is
very sensitive to image properties such as lighting.
Nevertheless, using controlled images, PCA will reveal
systematic differences between faces, such as gender
(OToole et al., 1998). The analysis is greatly improved
by first morphing all faces to the same average shape
and performing PCA on the shape vectors and the
“shape free” faces separately (Craw & Cameron, 1991).
This separate analysis yields significant correlations
with human perceptions of memorability and distinc-
tiveness of faces (Hancock et al., 1996). It can also be
used to synthesise novel face images (Hancock, 2000)
and by extension, provides a controlled way to
produce changes in the shape or surface appearance
of face images. It is this ability to produce controlled
transformations that is exploited here.

One aim of this work is to test the utility of PCA-
induced changes in face images to probe human face
perception. PCA can produce graded changes and it
is to be expected that a large PCA change will
produce a bigger perceptual difference than a smaller
one. However, it would be helpful to have a separate
computational measure of the likely perceptual effect
of varying different components or combinations of
them. If a purely image-based measure (without a bio-
logical premise) correlates with perceptual ratings, it
can be used in the creation of stimuli to make a predic-
tion of how a human observer will perceive the image.
For example, one could predict whether a certain image
transformation is strong enough for the altered face
and the original face to be perceived as different from
one another. Here, we test three different compu-
tational measures of image similarity.

The simplest measure of image similarity is pixel-
wise Euclidean distance. For this to have any chance
of working for face images, they need to be very care-
fully controlled. A simple misalignment between two
copies of the same image will produce a large differ-
ence, while changes in lighting will also result in a
large difference that may be barely noticed by a
human observer. Because of this, the measure is
little tested in face perception. However, since our
images are generated by a PCA model that is based

on averages and we select the later components
which result in filtering out variation such as lighting
and angle (for details, see Methods: apparatus and
stimuli), they are inherently well-controlled. Meytlis
(2011) used carefully controlled images and found
an almost perfect correlation between distinctiveness
ratings and Pixel Euclidean distance.

A more biologically plausible measure commonly
used in computer vision (Lades et al., 1993; Wiskott
et al., 1997) and neurocomputational models of face
recognition (Dailey & Cottrell, 1999; O'Reilly & Muna-
kata, 2000) is Gabor filtering. Gabor filters are found
to be a good representation of how cells in the
primary cortex respond to a certain scale and orien-
tation (De Valois & De Valois, 1990; Jones & Palmer,
1987; Ringach, 2002). As Gabor filtering reflects very
early processing and not any higher order processing,
it would seem unlikely that Gabor distances would
relate to perceptual similarity of faces. However, this
is exactly what Yue et al. (2012) found: Gabor-based
image measures strongly correlate with human per-
formance in a discrimination task with complex
figures. For this reason, we included Gabor space to
quantify image transformations.

Current artificial face recognition deploys deep
neural networks (DNNs) and their face matching
ability easily surpasses human performance in many
situations. Hancock et al. (2020) compared six state-
of-the-art DNNs with human performance on four
face matching tasks designed to be challenging for
human participants. The humans averaged 73.3%,
while the best DNN achieved an accuracy of 98.6%.
Despite the difference in accuracy, there were signifi-
cant correlations between the six DNN similarity
scores for a pair of faces and the human accuracy
on that pair. This was especially true for matching
pairs, where the two images do show the same
person. Humans and the DNNs seem to agree on
what makes faces look similar. However, the corre-
lation for mismatch face pairs was lower, indicating
that humans and the DNNs show less agreement on
what makes faces look different. Indeed, the DNNs
worked in distinctly non-human like ways, often
reporting that faces which differed in apparent race
or sex were the same identity. Given these discrepan-
cies, it is valuable to include DNN similarity measures
in the present analysis of controlled image changes.

Hancock et al. (1998) looked at correlations
between human similarity ratings and PCA on existing



face images. Here, we invert that process and ask
humans to rate the similarity of face images that
have been altered in a controlled way by varying prin-
cipal components. We compare the human data with
similarity scores obtained from Gabor, Pixel and DNN
analysis of the same images. In Experiment 1, we test
the effects of single component transformations of
both colour and shape, using unfamiliar faces, with
the aim of providing better methods for choosing
stimuli. In Experiment 2, we test the effect of multiple
component transformations on both familiar and
unfamiliar faces. This allows us to test the effect of
familiarity on perceptual similarity.

Experiment 1 - exploring the effects of single
component transformations

Background

One major issue in exploring face identity recog-
nition is finding an image transformation that
reflects a likely dimension in face space which can
also be interpreted in some meaningful way. PCA
transformations can be difficult to interpret, as they
reflect variation in pixel values that commonly
occur together. For example, a PCA component
that changes eye colour will also change hair
colour, because people with darker eyes often have
darker hair than people with lighter eye colours.
Thus, verbalizing the change of PCA components
can be difficult. On some occasions, a component
can be classified after visual review, such as a com-
ponent that varies apparent masculinity. However,
for most components the variation is difficult to clas-
sify. In this experiment, we will explore the effect of
single component transformations on Gabor, Pixel
and DNN space, and (human) perceptual space in
order to assess their usefulness in quantifying
image transformations.

Methods

Participants

We tested 25 participants (11 female, 13 male, 1 other,
mean age = 39.7 years, 2 missing values, SD = 16.3 age
range = 12-74 years). Participants were naive to the
purpose of the experiment and took part on a com-
pletely voluntary basis without any monetary com-
pensation. The experiment was approved by the
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local General University Ethics Panel of the University
of Stirling.

Apparatus and stimuli

The experiment was programmed through the online
platform Qualtrics and participation was allowed via
PC, laptop, phones and tablets. Face image stimuli
were generated from a PCA-based face model,
written in Matlab (MATLAB, 2019). The PCA space
was calculated from 72 eye-aligned images, each an
average of 10 images of a famous (mostly Caucasian)
female. Psychomorph (Tiddeman et al, 2001) was
used to create the averages. Use of average images
helps to reduce variations due to lighting and view-
point. Even so, the first few components encode
image properties such as lighting and head move-
ments, so we selected components 10-16 to alter.
Three different types of transformations were used:
shape-only, colour-only and both. To explore the
effect of the size of the transformation, two transform-
ation sizes were used: 3 and 6 SD. The SD for each
component was scaled according to the variance in
the (72- eye-aligned) original images. This gave 42
pairs in total: 7 shape, 7 colour and 7 both, two trans-
formation sizes each. For each pair a different face
image was generated by setting the first 20 shape
and colour components to a random normal value,
mean zero, SD 1, though truncated at +/— 2SD to
prevent faces looking too strange. An example of
the transformation is shown in Figure 1. In addition
to the PCA transformations, three single feature trans-
formations derived from Independent Component
Analysis (ICA) were added. However, these were
purely exploratory; a discussion is given in sup-
plementary materials. The images produced were all
420 by 595 pixels, size in the experiment was
browser and screen dependent.

Procedure

Participants were shown an information sheet and
then gave consent online. The face matching task
consisted of 45 trials (14 alterations for three con-
ditions and the 3 exploratory ICA transformations)
that were presented in a random order. In each trial,
two faces were presented along with the question
“Could these be two pictures of the same person? 1
- certain no; 2 - think no; 3 - guess no; 4 — guess
yes; 5 — think yes; 6 — certain yes”. An example of a
trial is shown in Figure 2.
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Figure 1. Example of the transformations used. On the left, 3SD transformations and on the right 6SD transformations. For each size of
change, the left column shows one end of the scale which is —1.5 and —3 SD from the original respectively and the right column is the
other end of the scale which is +1.5 and +3 SD. The top row shows shape transformations only, the middle row shows colour trans-
formations only and the last row shows shape and colour transformations. The base image for each pair was generated at random, as

described in the text.

The three computational spaces

Gabor

We used the Gabor Features in Signal and Image Pro-
cessing Toolbox (Kamardinen et al., 2002b, 2002a),
written in Matlab (2019). This requires a 256 square
input image, so the original images were cropped to
just below the chin, resized and converted to mono-
chrome, Figure 3. We used the default settings of
the toolbox, which computes phase and magnitude
for 8 orientations and 5 scales across a 10 x 10 grid,
giving a vector of 8000 values for each image. The

difference between two images is given by the Eucli-
dean distance between the two vectors, calculated
using the norm function in Matlab (MATLAB, 2019).

Pixel

A simple way to compare two images is Euclidean dis-
tance in pixel space. Since our images are all aligned
by the eyes, pixel distance might plausibly capture
the perceptual changes caused by variations purely
in the colour space. However, shape transformations
will result in different face features being compared,
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Figure 2. Example of a trial.

or face pixels in one image compared with back-
ground in another. Meytlis (2011) normalized each
image to the same average grey level and cropped
them to a tight oval. Since we are comparing pairs
of images that differ by adding a principal component
that is inherently zero mean we did not normalize the
colour values, but did crop tightly around the face
with an oval 378 x 277 pixels, see Figure 3. The differ-
ence between images was computed by concatenat-
ing the RGB vectors and calculating the Euclidean
distance between them using the norm function in
Matlab (MATLAB, 2019).

DNN

The DNN used was an experimental system from the
University of Surrey. It produces an output vector of
length 512. The similarity of the two images was
given by the cosine of the angle between the two
output vectors. Identical images give a similarity of
1, with smaller values being less similar. This is in con-
trast to the Euclidean distance of Gabor and Pixel
spaces where larger numbers mean less similar.

@ &
- N F
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Results

We treat our participant responses, about whether
the two faces look like different people, as a similarity
scale, with 6 being the most similar. On a 6-point
scale, 3 was “guess different” and 4 was “guess
same”. Thus, the boundary for same or different iden-
tity was at 3.5. We found a significant negative corre-
lation between the human similarity ratings and the
Gabor distances (r=—-.87, p=<.001, shown in Figure
4), the Pixel distances (r=-.85, p=<.001, Figure 5),
and the DNN distances (r=.94, p =<.001, Figure 6).

Discussion experiment 1

The linear relationship between the DNN similarity
space and human similarity is remarkable. The
human response scale is, strictly speaking, ordinal:
there is no reason to think that the differences
between “guess”, “think” and “certain” should be
the same number, and the same as the difference
between “guess same” and “guess different”. The
DNN similarity space is given by the cosine of the
angle between the feature vectors. Cosine is clearly
non-linear, although most of the non-linearity
occurs in the region above 0.8 and most of our
points are below that, so within the relatively linear
region. Yet these two non-linear spaces, averaged
over a number of observations, contrive to give an
almost perfect straight-line relationship.

Previous work indicates that humans and DNNs
seem to agree on which faces look similar but show
less agreement on what makes a face look different
(Hancock et al, 2020). One noteworthy aspect of
that study was the necessity to use rank correlations,
because most of the DNNs appeared to have a
marked non-linearity towards the top end of the
scale. However, similarity scores of the commercial
systems used were not based on the raw similarity
between the representational vectors for each pair

Figure 3. Example of cropped images, differing in shape component 10. Left, for Pixel comparison, right for Gabor.
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Figure 5. Correlation between perceptual similarity and Pixel distance. The 6 SD transformations are indicated by a bold outline.

of images, but on a black-box verification method. It
appears these verification methods have the effect
of increasing the reported confidence of a match
between sufficiently similar images. We tried some
commercial DNNs on the data reported in Figure 6

and they produced a clear “hockey stick” shape (see
supplementary analyses). The commercial systems
overlook minor differences between face images, to
which human observers are sensitive. It therefore
seems that the linear relationship observed in the
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current study results from using the relatively raw
similarity between the representational vectors for
each pair of images. Thus, understanding the compu-
tation of the similarity scores of systems is important
when using DNN similarity scores to predict human
similarity scores, because the computation affects
the form of the relationship.

Similar to the findings of Meytlis (2011) on Euclidean
distance, our results show that all three image-based
distance values correlate significantly with perceptual
similarity. Although the results are straightforward, it
remains unclear if these linear relationships are also
present when multidimensional transformations are
used. In Experiment 2, multidimensional transform-
ations are explored by using transformations with a
varying number of principal components changed.

Experiment 2: the relationship between the
number of principal components

transformed, perceptual similarity and
familiarity

Background

This experiment is similar to Experiment 1, but with
multidimensional instead of single-dimensional trans-

formations. Specifically, we explore the effect of chan-
ging different numbers of PCs on perceptual, Gabor,

Pixel and DNN space. Based on the findings of Exper-
iment 1, we hypothesize that the relationship
between the number of PCs changed and any of
the four image spaces is linear. Since it is well
known within face identity research that people are
better at processing familiar than unfamiliar faces
(e.g., Johnston & Edmonds, 2009) and representations
of familiar faces are more robust (Burton et al., 2005),
we included familiarity to explore the effects of famili-
arity on perceptual similarity. Therefore, transform-
ations in this experiment were performed on
famous faces, as opposed to the unfamiliar, randomly
generated faces in Experiment 1. A familiarity check
was added in the beginning of the experiment.
Although there is an abundance of research on the
effect of familiarity, it remains unclear what underlies
this enhanced performance to recognize familiar over
unfamiliar faces. A common proposal is that the rep-
resentation and processing of familiar faces is
different from that of unfamiliar faces (Johnston &
Edmonds, 2009; Ramon & Gobbini, 2018). Recent
work from Ritchie and Burton (2017) shows that varia-
bility is important for learning a new face. Addition-
ally, the variability within images of a specific
identity appears to be idiosyncratic information that
is key for learning new faces (Burton et al., 2016).
That two images of a person look more similar
when familiar is almost the definition of familiarity.
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Someone familiar with the person can identify them
both as being the same individual, while someone
unfamiliar has to rely on what they can infer from
the appearance (Jenkins et al, 2011). Here, we are
applying fixed changes to faces, some of which will
be familiar to a given participant and others not. It
is plausible that in this situation, viewers familiar
with a face will be better able to identify a change:
e.g., “that’s X, but the nose is wrong”. They may be
able to use their existing memory of the face to ident-
ify the changes.

The results from Beale and Keil (1995) make a
more subtle prediction. They used morph sequences
between different individuals’ faces to test the effect
of familiarity on the decision boundary. They found
that familiar face pairs had a sharper decision bound-
ary. Moving along the morph continuum, the face
looked like the first identity until nearly halfway,
when it rapidly shifted to looking like the other iden-
tity. For unfamiliar face pairs, the shift was more
linear, with a gradual change from one identity to
the other. The prediction from this for our imposed
changes in appearance is that, for a familiar face,
the changed images should look like the original
up to some critical point, where it will rather sud-
denly no longer look like them. If unfamiliar with
the original face, then the changes should produce
a more linear change in similarity. Therefore, the pre-
diction is that changed faces will initially look more
similar when familiar than unfamiliar but that, if
the change becomes large enough, this will
reverse, with changed familiar faces looking more
different.

In these experiments, we are asking participants to
decide about probable identity, rather than about
similarity directly. So, while those familiar with the
face may be able to say, “the nose is wrong”, we
expect participants to say “same identity” with more
confidence if they are familiar with the face.
Whether we see the reversal predicted by the
results of Beal and Keil will depend on whether the
changes are sufficiently large.

Methods

Participants

We tested 61 participants (43 females, 16 males, 1
other, 1 missing value, mean age =29.9 years, SD =
9, age range=20-68 years). Testing was done

through an online platform, Testable. Participants
were naive to the purpose of the experiment. All par-
ticipants agreed to an informed consent form after a
written explanation of the procedure. Participation
was on a completely voluntary basis without any
monetary compensation. The experiment was
approved by the local General University Ethics
Panel of the University of Stirling.

Apparatus and stimuli

The experiment was programmed through the online
platform Testable and participation was only allowed
via a PC or laptop. A calibration to control stimulus
size was performed by matching the size of an on-
screen bar to a credit card, to ensure proper visualisa-
tion throughout the experiment. Stimuli preparation
and creation were done using Matlab (2019), using
the same PCA space as described in Experiment
1. Eight of the 72 average images that went into the
PCA were chosen for use in this experiment. The
stimuli consisted of these 8 average images, regener-
ated exactly from the model by using all the com-
ponents, and variations that had either 2, 3, 5 or 7
colour components (components 10 and 11; 10-12;
10-14; 10-16, respectively) in the PCA space
changed. The size of the change was 4 SD. To avoid
any directional effects from the PCA transformation,
for half the trials the negative transformation and
the other half the positive transformation was used.
As shown in Experiment 1, any of the three spaces
can be used for insight into the size of the perceptual
change. We applied this principle in this experiment
to ensure that the effect of the transformation was
similar for all identities. Note that we would expect
some differences between identities. Suppose a com-
ponent affects the darkness of the eyebrows. At the
image level, a face with thin eyebrows will change
less than one with thick eyebrows. Figure 7 shows
the Gabor distance between each original image
and its four variations. It can be seen that the
pattern of differences is very similar for each of the
identities, suggesting that we should not expect any
marked differences between items in our set. An
example of the transformation can be found in
Figure 8.

Procedure
The experiment consisted of a familiarity check and a
face matching task. In the first 8 trials, participants
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original. The number above the images indicate how many components are changed. In the experiment the original was paired with

transformations of either the positive or the negative end.

were asked “Would you recognise this person on the
street? yes(y)/ no(n)” for each identity (presented in a
random order) to establish prior familiarity. After-
wards, participants were presented with the face
matching task instructions and had 2 initial practice
trial with an identity not included in the actual exper-
iment. This was followed by 32 trials in a random

order. In each trial, the original was shown, followed
by a mask, the altered image and another mask.
Finally, the participants were presented with the
question “Could these be two pictures of the same
person? 1 — certain no; 2 - think no; 3 - guess no; 4
- guess yes; 5 — think yes; 6 — certain yes”. An overview
of a trial is shown in Figure 9.
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Figure 9. Overview of a trial.

Data analysis

To explore the effects of familiarity, we constructed a
linear mixed effects model with the similarity rating as
dependent variable. The model included Familiarity
and Transformation level as categorical factors (Fam-
iliarity: familiar and unfamiliar rescaled to —0.5 and
0.5, respectively, to allow for the analysis of the inter-
action; Transformation Level: 2, 3, 5, or 7), and the
intercept, slope and interaction of familiarity and
Transformation level in the performance per partici-
pant as random effects. Due to convergence issues,
the main effects were excluded from the random
effects. We report the parameter estimate (b), stan-
dard error (SE), t value and p value. The linear mixed
effect analysis was performed in R (R Core Team,
2019) with ImerTest (Kuznetsova et al., 2017). The
threshold for significance was set at a = 0.05. Normal-
ity of the residuals on the model were inspected visu-
ally and showed no violation.

Results and discussion

In the current study, we explored the effect of multi-
dimensional transformations on the three image-
based spaces and perceptual similarity. Additionally,
we investigated the effect of familiarity on similarity
ratings.

We found a significant correlation between the
human similarity ratings and the Gabor distances (r
=-0.77, p<0.001), the Pixel distances (r=-0.76, p
=<.001), and DNN distances (r=.79, p=<.001), see
Figure 10. As expected, the changes at each level
affected the different identities to different extents.
However, the overall effect of increasing the
number of changes is consistent.

The effect of size of change and familiarity on
perceptual similarity

The descriptive statistics of Experiment 2 are shown in
Figure 10. Table 1 in the supplementary materials
shows the distribution of familiarity of the 8 identities.

The results show that increasing the number of com-
ponents transformed decreased the similarity rating
for all levels compared to the base change (2 com-
ponents changed, all p-values are p<0.001, see
Tables 2-4 in supplementary materials). Interestingly,
the similarity rating between 5 and 7 components did
not significantly differ (estimate = —0.14, SE=0.09, t =
—1.62, p=0.106). Secondly, we found that partici-
pants rated familiar faces as more similar overall (esti-
mate =0.34, SE=0.13, t=2.59, p=0.010; see Figure
10). Lastly, there was no interaction found between
familiarity and level of change (see Tables 2-4 in sup-
plementary materials).

The lack of a significant difference in similarity
rating between 5 and 7 components (see Figure 10)
is surprising because the difference in Gabor space
between 5 and 7 components changed is the
biggest in the whole stimuli set (see Figure 7). There-
fore, one might expect the difference in perceptual
distance would be similarly large, but this was not
found. As one could see, the relationship is linear
until 5 components. This could indicate that Gabor
space and perceptual space do not relate linearly for
bigger transformations. Thus, the lack of a significant
difference could be an indication that more multidi-
mensional transformations are perceived differently.
Alternatively, it could be simply an effect of encoding
rate and limited presentation duration: the presen-
tation of all faces was 1500 ms so participants might
not have had enough time to perceive all the
changes.

As described above, the work of Beale and Keil
(1995) predicts that changed faces will initially look
more similar when familiar than unfamiliar but that,
if the change becomes large enough, this will
reverse, with changed familiar faces looking more
different than when the same transformation is
applied to an unfamiliar face. If this prediction
became true, there would be a main effect of famili-
arity and an interaction effect with transformation
level. As expected, we observed greater perceptual
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similarity for familiar over unfamiliar faces. However,
the expected interaction with the transformation
level was not found. Based on the current experiment
alone, it is impossible to say if the prediction with
regard to the increase in dissimilarity for familiar
faces was wrong because the change could have
simply been not great enough to change the identity
to the extent needed to increase dissimilarity, i.e.,
cross and go beyond the border of a category. The
current paradigm is an important first step to
gaining more insight in how familiarity influences per-
ceptual similarity and it offers a clear-cut way of com-
paring other transformations that will be used in
future research.

General discussion

In this paper, we used transformations based on PCA
to assess the relationship between perceptual simi-
larity and Gabor, Pixel and DNN distance values.
Experiment 1 explored the effects of shape and
colour changes on the size of the perceptual change
and the three image-based spaces. The results

showed that the PCA transformations used in this
study result in a linear relationship between the
three spaces and human similarity ratings. In addition
to assessing the relationship between perceptual
similarity and Gabor, Pixel and DNN distance values,
Experiment 2 explored the effect of altering
different numbers of principal components on the
size of the perceptual change, and the effect of fam-
iliarity. Similar to Experiment 1, the relationship
between each of the spaces and perceptual similarity
was linear. Additionally, our findings show that there
is a significant relationship between the number of
components changed and both the perceptual simi-
larity and the three image-based spaces and that par-
ticipants rated familiar faces as more similar overall.
These findings combined indicate that there is a
clear relationship between perceptual and our
image-based spaces.

Our findings support those of Yue et al. (2012) that
Gabor-based image measures correlate highly with
human performance in a discrimination task with
complex figures and Meytlis (2011) that there is a
relationship between distinctiveness ratings and
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pixel-wise Euclidean distance. These studies and ours
all had different tasks. In Yue et al. (2012), participants
performed a match-to-sample task and in Meytlis
(2011) participants were asked to rate single faces
on distinctiveness and face pairs on perceptual dis-
tance (rating how different they looked). In both
experiments the stimuli were simultaneously on-
screen. Since it is known that availability of stimuli
reduces the use of visual working memory and pro-
motes the use of eye movements to gather visual
input when needed (Somai et al., 2019), one could
argue the observed relationship between perceptual
and image-based spaces is due to the ongoing pres-
ence of the stimuli that serves as an external represen-
tation. Since the external representation is an image
and the spaces are image-based, this could mean
the findings do not reflect face space but simply the
use of visual input. However, in this paper, Experiment
2 includes a memory component because there is a
delay between the two faces rated and the findings
are similar. This indicates that the internal represen-
tation of faces does indeed relate to image-based
spaces.

We do not want to imply that the 3 chosen image-
based spaces are superior to any others. This is simply
unknown at the time of this paper, and these spaces
were chosen based on personal experience with
them, and the - albeit limited — existing literature
(De Valois & De Valois, 1990; Hancock et al., 2020;
Jones & Palmer, 1987; Meytlis, 2011; Ringach, 2002;
Yue et al., 2012). Additionally, the Gabor and Pixel dis-
tance values are easily obtained and understood. The
DNN used in this particular instance is not openly
available, and other systems with different architec-
ture and training might produce different results
(see supplementary material; although the 6 DNNs
tested in Hancock et al. (2020) showed similar, signifi-
cant correlations). In the context of creating a human-
like neural network, it will be interesting to compare
the differences in DNN spaces and how they relate
to perceptual measures.

The primary aim of this paper was to test the utility
of PCA-induced changes in face images to probe
human face perception. Our findings show that the
graded changes produced by PCA translate to a
graded change in perceptual space. In other words,
a large PCA change indeed produced a bigger per-
ceptual difference than a smaller one. Additionally,
the bigger the number of principal components that

were altered, the bigger the perceptual change (up
until 5 components). Another argument for the use
of PCA-induced changes is the potential insights
that can be gained from understanding why it
describes perceptual similarity quite accurately in
some cases and not in others. For example, in Exper-
iment 2, 5 out of 8 faces with 5 principal components
changed were rated by participants as dissimilar and
3 as similar. One could wonder why this variation
exists: what makes some faces appear different with
5 principal components changed while other faces
are still perceived the same? Did the specific com-
ponents changed have a different effect on the
different faces? For example, if someone has
especially distinctive eyes, then a change to the eye
region may have more perceptual effect than on a
face with more typical eyes. In the current study,
the faces had all the same components changed
and no specific selection was made in identities.

To our knowledge, very little research has been
done on the role of familiarity in the relationship
between (systematic) changes to a face and percep-
tual similarity. Our secondary aim was to use the para-
digm proposed in this paper to explore this and we
found a main effect of familiarity but no interaction
effect. Although this work is just the first step in
exploring the factors that mediate a change in per-
ceived identity, future work can be easily related to
these findings because of the relationship between
the image-based spaces. Regardless of the transform-
ations, datasets and images used, it can be quantified
and compared.

In conclusion, our study shows the predictive
nature of Gabor, Pixel and DNN distances in the esti-
mation of perceptual changes in faces. This relation-
ship can be used in the exploration of the
dimensionality of face space and facilitate in stimulus
creation. For example, in research related to variability
and learning, the experimenter is often limited in
creating a high and low variability set based on obser-
vation. Any of the three image spaces can be used to
quantify variability and study the effects on a more
gradual scale. Lastly, Experiment 2 presents a frame-
work on how to use controlled multidimensional
face transformations to explore differences in the per-
ception of familiar and unfamiliar faces. The ability to
quantify, and thus control, these transformations is a
powerful tool in exploring the factors that mediate a
change in perceived identity.
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