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ABSTRACT

Population size has been proposed to promote cumulative culture in humans. Experimental evidence
from adult humans suggests that one explanatory mechanism might involve combining beneficial in-
formation from multiple models. However, it is possible that such combinatory social learning requires
cognitive capacities restricted to adult humans. In our task, children aged 5–10 were exposed to two
models who consecutively searched a 333 array for rewards. Models revealed different correct and
incorrect reward locations. This information could be used by the child to maximise their own score on
the same task. We were interested in children’s ability to select rewarded locations, and avoid unre-
warded ones, revealed by both models. We also manipulated the spatial and temporal displacement of
the information available. Results showed that the youngest children were unable to fully benefit from
the additional information provided by the two models under spatial and/or temporal displacement.
Such displacement likely applies in most real-world cases of cumulative culture therefore our result may
offer insight into the constraints on cumulative culture in nonhumans.
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INTRODUCTION

The human propensity to continuously improve our cultural products over generations of
learners has been proposed to be the result of increases in population size (Collard, Ruttle,
Buchanan, & O’Brien, 2013; Henrich, 2004; Kline & Boyd, 2010; Kobayashi & Aoki, 2012;
Powell, Shennan, & Thomas, 2009; Shennan, 2001). Yet examination of the cognitive ca-
pacities which may allow for this population-size effect has been somewhat neglected. It has
been suggested that individual learners may utilise the additional information from larger
populations through selecting the best of a larger number of individuals from whom to learn
(Henrich, 2004), and/or by combining information from multiple different individuals
(Kempe & Mesoudi, 2014; Muthukrishna, Shulman, Vasilescu, & Henrich, 2014). However,
although such mechanisms are highly plausible, we do not yet know which cognitive ca-
pacities underly them and argue that these are likely to be unique to adult humans. If this is
the case, then developments in human cognition may form an important part of the
explanation as to why increased population size appears linked to vast cultural expansion in
humans and not in nonhumans (Dean, Vale, Laland, Flynn, & Kendal, 2014).

Cumulative culture and demography

As humans, our ability to improve and build upon our prior achievements is unparalleled
and ubiquitous – evidenced in our languages, complex technologies, societal structures and
ability to exploit most environments on the planet. These are examples of what has been
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termed cumulative culture, a process whereby a directional
pattern of change results in “improvements” (Tennie, Call, &
Tomasello, 2009) or increasingly “preferred” traits (Cald-
well, 2018) as behaviours or cultural products are trans-
mitted over generations of social learners (Mesoudi &
Thornton, 2018). This notion of constant improvement has
led to cumulative culture also being referred to as the ratchet
effect (Tennie et al., 2009; Tomasello, 1990). We use these
terms interchangeably. Recent evidence suggests that cu-
mulative culture may exist in nonhumans (Claidière et al.,
2014; Jesmer et al., 2018; Sasaki & Biro, 2017; Schofield et
al., 2017). However, it is undeniable that this has not
constituted anything on the same scale as the phenomena
observed across human societies. There are many factors
proposed to have driven this cultural expansion in humans
(Dean et al., 2014); the factor we focus on here is demog-
raphy. The results of theoretical models (Henrich, 2004;
Kobayashi & Aoki, 2012; Powell et al., 2009; Shennan,
2001), supported by some ethnological studies (Collard et
al., 2013; Kline & Boyd, 2010), suggest that changes in
population size could have accounted for periods of rapid
cultural expansion (e.g. during the upper Palaeolithic 45,000
years ago, Powell et al., 2009; Shennan, 2001) or loss (as in
“The Tasmanian Case”, Henrich, 2004) in human groups.
Although cited widely, these conclusions have also been
fiercely debated (Collard, Vaesen, Cosgrove, & Roebroeks,
2016; Henrich et al., 2016; Vaesen, Collard, Cosgrove, &
Roebroeks, 2016) and it is not yet known how changes in
population size result in cultural expansion.

Mechanisms underlying the relationship between
population size and cumulative culture

Two main mechanisms have been proposed to enable the
exploitation of information from larger populations, leading
to greater cultural complexity. Firstly, success-biased
copying, whereby learners selectively copy the individual
with the best available (randomly derived) variant of a cul-
tural trait (see Wood, Kendal, & Flynn, 2013, for a review of
such biased social learning strategies). This mechanism has
been exemplified in theoretical models (e.g. Henrich, 2004;
Powell et al., 2009; Shennan, 2001) which have investigated
conditions under which larger numbers of interacting in-
dividuals (“effective” populations) can support behaviours or
products of increased cultural complexity/functionality. For
example, in Henrich’s (2004) model (extended by Kobayashi
& Aoki, 2012) learners engaged in such success-biased
copying but the copying was inaccurate which would, under
certain conditions, ultimately lead to a loss of skill within the
population. However, larger populations had an advantage:
they were able to negate this loss because they contained
more individuals with traits which were of higher than
average fitness, hence a learner was more likely to select one
of these more successful individuals from whom to learn.
This was found to counteract the negative effects of copying
(low transmission fidelity), leading to cumulative culture in
populations above a certain size threshold. Derex, Beugin,
Godelle, and Raymond (2013) performed experimental work

which supports the validity of success biased copying to
exploit information from larger populations, as proposed by
these models. The authors introduced a simple and a com-
plex artefact building task into groups containing two, four,
eight or 16 members (players in a computer game) and on
each of multiple rounds players could select to learn from
just one player from the previous generation. Overall per-
formance on both tasks increased with group size. Moreover,
only the larger two groups eventually scored more highly
than an initial demonstration in the simple task and avoided
deterioration from this benchmark in the complex task.

Secondly, based on further modelling work, some au-
thors have proposed that combining information from
multiple different models can lead to improved trait variants
(Lewis & Laland, 2012), as required for cumulative culture.
Moreover, innovation through combination has been pro-
posed to be an important mechanism underlying the evo-
lution of technology (see Winters, 2020, for examination of
the importance of this mechanism versus minimisation of
information loss through the use of social learning mecha-
nisms). Evidence consistent with this has been identified in
the form of phylogenetic analyses on the constituent ele-
ments of technologies; existing forms of devices, such as
radios (O’Brien & Lyman, 2000) or bikes (Lake & Venti,
2009), have been combined to produce the latest versions
(Muthukrishna & Henrich, 2016). Furthermore, there is now
experimental evidence (Kempe & Mesoudi, 2014; Muthuk-
rishna et al., 2014) that adult learners with access to mul-
tiple models integrate information across models to generate
better solutions than those with access to one model.

Muthukrishna et al. (2014) tasked participants in
transmission chains to recreate a complex image using im-
age editing software. The transmission chains were ten-
generations long and were structured such that participants
were exposed to information from either one or five models
from the previous generation. Each participant provided a
screenshot and written instructions to help those in the
subsequent generation. There was evidence of cumulative
culture in the five-model group only, and furthermore,
participants appeared to preferentially utilise information
from the top performing model, in addition to the next three
top performers. This provided evidence that participants
combined information from multiple models to generate
novel combinations possessed by none of their cultural
parents in addition to employing success biased copying.

Kempe and Mesoudi (2014) ran transmission chains
with either one or three models in each of four generations.
The task was to complete a 100-piece jigsaw puzzle and
participants had full access to the attempts of the partici-
pant(s) from the previous generation. As in Muthukrishna
et al. (2014), there was evidence of ratcheting in the group
with multiple models only (comprising five separate chains),
measured as an increase in the mean number of puzzle
pieces correctly connected to other pieces as generation
increased. It appears that this ratcheting was possible
because the presence of multiple models provided an
increased amount of information which could be integrated.
This was apparent from the number of unique puzzle pieces
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correctly connected by all three models within a single
generation for any given chain, i.e. the total package of in-
formation about the puzzle which was passed to the next
generation. Increasingly therefore, theorists have argued that
the production of improved variants (that is, trait variants
which represent an improvement or upgrade on those pre-
viously found in a population) through novel invention may
play a relatively insignificant role in advancing cumulative
culture (Lewis & Laland, 2012), and that the popular sup-
position of “genius” inventors should perhaps be reconsid-
ered (Muthukrishna & Henrich, 2016). Nevertheless,
combining information from multiple models inevitably
involves an element of individual learning. When we discuss
an individual combining (or integrating) information from
multiple models (or pre-existing technologies) we are
referring to a situation in which information from multiple
models is utilised, but not necessarily one which is absent of
input from the individual.

Cognitive demands associated with utilising
information from multiple models

Understanding the above mechanisms can shed light on the
relationship between demography and cumulative culture.
Although the mechanisms themselves may be used by both
humans and nonhumans, as the amount of potentially useful
information increases possession of certain cognitive abili-
ties by adult humans (discussed further below) may be of
increasing benefit in order to deal with demands associated
with using the information. Our previous work (Wilks et al.,
2021) is relevant here. We examined whether the propensity
to show cumulative culture is dependent on both the context
in which the information is presented and cognitive ability,
and proposed that humans are likely to show cumulative
culture in a greater range of contexts than nonhumans due
to enhanced cognitive abilities. We investigated whether
children of different ages (3–6 years-old), and thus working
memory capacities, were able to improve on information
provided by one model under two different task contexts in
which the presentation of the information (reward locations
in a treasure-hunting game) was manipulated. One context
was more cognitively taxing on memory - sought-after
reward locations revealed by the model were masked and
needed to be held in memory prior to the child searching the
same space for rewards. In the other context the information
from the model’s search remained visible. We found support
for our hypothesis; in the less challenging condition children
of all ages were able to find more rewards than the model
and show the potential for cumulative culture, whereas in
the condition which taxed memory only the 6-year-olds
showed this potential. This study focussed on an ecologically
valid task context in which information was provided by one
model. However, the study also speaks to the use of infor-
mation from multiple models because we showed that the
way in which information is presented in a social learning
context can affect use of this information, the cognitive ca-
pacities required to use it, and thus the potential for cu-
mulative culture. Using information from multiple models

may present similar, and likely greater, inherent challenges
due to the way in which the information is presented and the
greater amount of information available for use. We discuss
these potential challenges below.

If cognitive abilities unique to humans, or used differ-
ently in humans, are implicated in overcoming the chal-
lenges associated with making use of information from
multiple models then this may contribute to the explanation
as to why increases in population size appear linked to the
expansion of cumulative culture in humans. Yet this theory
has received little academic attention. In the present study,
we therefore investigate children’s ability to utilise infor-
mation from multiple models under different cognitive
constraints. We included experimental constraints which
were designed to reflect inherent difficulties in utilising in-
formation presented by multiple models. Before discussing
these in detail, we briefly present some literature which
supports the idea that using information from multiple
models is inherently cognitively demanding, such that ben-
efits cannot be guaranteed under all circumstances, and may
even be reduced by the increased cognitive burden.

Caldwell and Millen (2010) and Fay, De Kleine, Walker,
and Caldwell (2019) investigated the relationship between
population size and cumulative culture using transmission
chains in which the participants’ goal was to build paper
aeroplanes which could fly as far as possible. Both studies
included conditions in which participants had access to in-
formation from different numbers of models (one, two or
three in Caldwell & Millen, 2010, and one, two or four in Fay
et al., 2019); the study by Fay et al. (2019) also included an
individual learning condition (repeated attempts replacing
generational turnover). Rather surprisingly, Caldwell and
Millen (2010) found cumulative improvements in plane
flight distance as generation number increased for the one
and two model conditions, but not the three model. Simi-
larly, in Fay et al. (2019) flight distance increased with
generation number for the individual learning and one model
conditions, but not the two and four model conditions. In
Fay et al. (2019) the previous generations’ planes (e.g. four in
the four-model condition) were only available to view
(individually) for a short period prior to a participant
attempting to build their own plane. In Caldwell and Millen
(2010), although some of the previously built planes were on
display during a participant’s building time (e.g. three in the
three-model condition), the time available to view each in-
dividual plane in the three-model condition was extremely
short, with each removed after only a brief exposure time.
Participants therefore did not have continuous access to all of
this potentially valuable information for the full building
period. In these studies, it therefore seems probable that
processing the different models’ designs, within a restricted
time period, and keeping them in working memory in order
to select the best design (or make use of the beneficial ele-
ments from previously observed designs) became more
challenging as the number of models increased. That is, once
the number of models increased beyond a certain point,
cognitive demands associated with integrating the informa-
tion constrained its usefulness. These studies therefore
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support the theory that using social information from mul-
tiple models may pose significant cognitive challenges due to
the increased information and the way in which it is pre-
sented; we now discuss this further.

Useful information from multiple models may be sepa-
rated in time and space from a potential social learner’s own
attempt, and we suggest that exploiting this information is
likely to involve increased cognitive load (Caldwell & Millen,
2010; Fay et al., 2019). For example, potentially beneficial
information from multiple models may be observed at
different time points and remembering and storing this in-
formation for later use would be cognitively demanding on
memory. Furthermore, information provided by multiple
models may contain a range of elements, some of which the
information user wishes to utilise and others they wish to
discount. Holding in mind these different elements, whilst
deciding how they are best utilised, may involve working
memory (defined as both the storage and manipulation of
information, Best & Miller, 2010; Cowan, 2008; Diamond,
2013; Garon, Bryson, & Smith, 2008). Consider a “real-life”
social learning scenario – integration across time might be
required for learning a foraging skill and could involve
combining information from observation of an individual
extracting the contents of a shelled plant, with information
obtained through a separate observation of the technique
required to break into this item.

Alternatively, it may be challenging for a learner to
recognise the value of information from other individuals
in relation to oneself (Blakey et al., 2020) and to bring
this information together for use. For example, other in-
dividuals could be interacting with an object equivalent
to one currently available in the learner’s own immediate
vicinity. Using this information will likely involve spatially
translating what they have observed to their own bodily
frame of reference. This probably requires skills in recog-
nition and mapping of correspondences (DeLoache, 1989,
1991, 2000), and mental translation and rotation (Frick,
Hansen, & Newcombe, 2013; Levine, Huttenlocher, Taylor,
& Langrock, 1999; Shepard & Metzler, 1971). To use the
same example as above, integration over space (but not
time) would be involved if the learner (with access to their
own fruit or nut, allowing simultaneous activity) could
observe two individuals concurrently, one of whom was
demonstrating the opening technique, and the other the
extraction.

Both temporal and spatial displacement of information
therefore generate increased cognitive load for a potential
information user, with demands on memory, spatial trans-
lation and evaluation of alternative information. Moreover,
we would expect this cognitive load to be further increased if
the information to be remembered, mapped or translated
comes from more than one source. It follows that a learner
with a more limited capacity for domain-general cognitive
processing would be less able to exploit information pre-
sented by multiple models in comparison to adult humans;
we expect this to include young children and nonhumans.
However, we expect children to become better at utilising
information from multiple models with increasing age as

capacities such as working memory and metacognition
develop. We investigated this experimentally, across a broad
developmental range, in conditions in which the informa-
tion from multiple models was presented differently in time
and/or space.

Children’s ability to integrate information from multiple
models

Research exploring children’s ability to integrate informa-
tion from multiple models is in its infancy, and not directly
comparable to the adult experimental work previously dis-
cussed. Nevertheless, we outline three studies which are a
relevant starting point, before introducing our study in
greater depth. Subiaul, Krajkowski, Price, and Etz (2015)
studied 3–5-year-olds’ ability to open a two-compartment
box when provided with adequate demonstrations from one
model (opening both compartments), two models (each
opening one compartment) or in an individual learning
condition with no demonstrations. They found that children
were more likely to successfully open both compartments in
the model conditions compared to the individual learning
condition, but that there was no difference in performance
between the one and two model conditions. This is not
surprising, because the actual information provided in the
one and two model conditions was the same – the demon-
stration from the two models as a whole was identical to that
provided by one model. This study therefore showed that the
presence of two models did not present a problem in terms
of using the available information. However, unlike in the
adult experimental work, in this study using the information
from two models does not require any of the realistic con-
straints which might operate when integrating information
from multiple models in the real world, such as separation of
the information in time (Fay et al., 2019) and/or space
(Kempe & Mesoudi, 2014; Muthukrishna et al., 2014).
Additionally, this study did not require children to be se-
lective regarding the information they used from each model
– each provided exactly half of that in the full, one model,
demonstration. Thus, simply summing the information
across the two models would result in perfect performance.
In real-world cases of cumulative culture, learners are more
likely to be exposed to multiple, imperfect demonstrations
which together may contain all the information needed, but
which also contain potentially distracting information about
other behaviours not linked to success. The selective
extraction of this relevant information, and selective inhi-
bition of any redundant or ineffective elements, probably
brings with it significant cognitive challenges (as discussed
above) that were not captured within the design of Subiaul
et al. (2015).

However, a more recent study by Subiaul and Stanton
(2020) presents a closer representation of such real-world
challenges. The authors demonstrated that children and
adults were able to combine distinct information (two sec-
tions of a tower, each made of two plastic pieces) presented
by two models to produce a new, optimal solution (the
tallest tower possible from four plastic pieces). The tower
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formations produced by the models were dismantled
following presentation, introducing a temporal separation
between demonstration and potential use of the information.
This required children, in what the authors termed “sum-
mative learning groups”, to remember these distinct tower
formations in order to spontaneously reproduce and
combine them. Although this introduced an additional, and
ecologically valid, cognitive challenge it did not involve se-
lective extraction of the most useful information because
simply combining the two demonstrations resulted in the
most optimal tower. An experiment by Buchsbaum, Gopnik,
Griffiths, and Shafto (2011) demonstrated that 3–5-year-olds
do have the ability to use information selectively, although
this study did not look specifically at learning from multiple
models. Children were shown five different action sequences
(which caused a toy to play music) and were able to integrate
this information to eliminate actions which were causally
irrelevant. However, this study did not require children to
integrate successful elements across different demonstra-
tions. Nevertheless, it does demonstrate that children have
the ability to integrate information selectively across multi-
ple demonstrations.

The developmental literature outlined above demon-
strates that children can use information from multiple
models in principle, and that they can integrate simple in-
formation selectively. However, there is currently no evi-
dence that they can selectively integrate successful elements
from multiple models to the extent that an improved solu-
tion (improved trait variant) is introduced into an experi-
mental population. Consequently, further work is required
before we can draw conclusions as to children’s ability to use
information from multiple models to generate examples of
cumulative culture.

The present experiment

Building on the results of Subiaul et al. (2015) and Subiaul
and Stanton (2020), in addition to the aforementioned adult
studies (Kempe & Mesoudi, 2014; Muthukrishna et al.,
2014), we explored children’s ability to extract relevant in-
formation, and eliminate that which was ineffective, to
perform more highly than the highest performing single
model in a two-model population (thus creating an
improved trait variant). Furthermore, we investigated how
this ability changed during development (across ages 5–10)
and as the information provided by the two models differed
in its temporal and/or spatial displacement. This would
enable us to examine whether human-unique cognitive
processes (such as those outlined below), or the way in
which humans make use of these, may be necessary for this
kind of information use. We did not test children below age
5 because our previous work using a similar task, which
included a condition taxing working memory, had shown
that until age 6 children found using information from even
just one model extremely difficult (Wilks et al., 2021). We
thus predicted that children below age 5 would find certain
conditions in our current task even more challenging, but
that testing children from age 5 to 10 should provide

sufficient scope to document age-related effects on task
performance.

The information from the two models was presented to
children in the form of a searching task (adapted from our
previously successful paradigm; Wilks et al., 2021) presented
on a touchscreen computer, in which both models individ-
ually searched a space for hidden treasure. In the current
study, the rewards (“treasure” – gold coins) were always
hidden in three of nine chests presented as 3x3 arrays on
each of 24 trials. Each model made three selections from
each nine-chest array, so the maximum number of reward
locations which could theoretically be revealed, both by each
model and collectively across the two models on each array,
was three. We placed constraints on the selections made by
both models; these conformed to six different demonstration
types (Table 1), each of which was presented once within
each of four conditions (described below). These demon-
stration types varied in relation to the highest score achieved
by a single model in the pair (equivalent to the number of
rewards found by this model – 1 or 2), the mean score across
the two models, and the total number of rewards found (out
of 3) by both models combined (see Table 1).

We expected the least challenging of our four conditions
to be our “Increased Information” condition in which the
information provided by the models was not displaced either
temporally or spatially. That is, both models sequentially
searched the array which the participant themselves would
later search. In addition, both models’ selections remained
visible in the search space whilst the participant made their
own selections. This condition acted as our control because
the information provided was effectively the same (at least in
terms of the cognitive challenges involved) as if it had been
provided by a single model. However, the condition also
controlled for any distraction or facilitation caused by the
presence of two models. In contrast, our “Temporal”
displacement condition presented a greater cognitive chal-
lenge. Although the models once again made their selections
from the same array, the locations selected by each model
were concealed again, immediately after the model’s third
selection. Therefore, in order to fully integrate the infor-
mation, the locations and reward value (rewarded/unre-
warded) needed to be held in memory. We also included a
“Spatial” displacement condition in which the first model
made their selections from an array on the top left of the
screen, the second model from an identical array on the top
right, and the child from another such identical array on the
bottom middle of the screen. The rewards were hidden in
the same positions across the three arrays, but we were
interested in whether children could integrate useful infor-
mation from the top left and right arrays. As in the
Increased Information condition, the reward locations
selected by the models remained visible throughout the
child’s selections. Our “Temporal-Spatial” displacement
condition was expected to be the most cognitively chal-
lenging because it combined the temporal and spatial ele-
ments from the Temporal and Spatial conditions
respectively. That is, the models made their selections on
two arrays, as in the Spatial condition, but the revealed
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Table 1. Summary of the Six Demonstration Types Denoting the Models’ Selections (Each Presented Once Within the Increased Information, Temporal, Spatial and Temporal-Spatial
Conditions)

Highest
single
model
score

Demo
type

Number
rewarded (R)
& unrewarded
(U) selections
–model 1

Number
rewarded (R)
& unrewarded
(U) selections
–model 2

Mean score
across the
two models

Expected
chance
score

Total number
of rewarded
locations
revealed

Total number
of unrewarded

locations
revealed

Number of
rewarded
locations
selected by
both models
(repeated)

Number of
unrewarded
locations
selected by
both models
(repeated)

Number of
rewarded
locations
selected by

one model only

Number of
unrewarded
locations
selected by

one model only

Number of
locations with
unknown
contents
following
models’
selections

1 3 R UU R UU 1.00 1.00 2 3 0 1 2 2 4 (1R, 3U)

1 5 R UU UUU 0.50 1.00 1 3 0 2 1 1 5 (2R, 3U)

1 6 R UU R UU 1.00 1.00 1 3 1 1 0 2 5 (2R, 3U)

1 Mean
3,5,6

0.83 1.00

2 1 RR U R UU 1.50 1.00 3 2 0 1 3 1 4 (4U)

2 2 RR U RR U 2.00 1.00 3 2 1 0 2 2 4 (4U)

2 4 RR U R UU 1.50 1.00 2 2 1 1 1 1 5 (1R, 4U)

2 Mean
1,2,4

1.67 1.00
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locations were concealed again immediately after each
model made their third selection, as in the Temporal con-
dition. To utilise the information fully therefore required
both an ability to integrate information from two spatially
distinct locations and the capacity to hold this in one’s
working memory.

Our expectation was that children would utilise the in-
formation from the two models across a wider range of
conditions as their ability to overcome additional cognitive
demands increased with age. Moreover, we expected that
children’s score, and ability to repeat the revealed rewarded
information (and not repeat the unrewarded), would in-
crease with age in the Spatial, Temporal and Temporal-
Spatial conditions, which presented constraints on working
memory and spatial integration; we did not expect these to
increase with age when such constraints were absent in the
Increased Information condition. Our experimental design
does not allow us to accurately pinpoint the exact, devel-
oping cognitive capacities which may be involved in utilising
information from multiple models, and providing a definite
answer to this question is beyond the scope of this paper.
However, investigating whether there are performance im-
provements in contexts in which the information is sepa-
rated over time/space has the potential to be an informative
first step.

Predictions

For example, if (as predicted) performance improves with
age in the Temporal and Temporal-Spatial conditions in
particular (whilst remaining static in the control condition)
this could implicate that working memory, and/or
enhancing working memory through metacognitive pro-
cesses, aids use of information from multiple models.
Working memory continues to increase in a gradual, linear
fashion from pre-school age through to the teenage years
(Best & Miller, 2010). However the picture is complicated by
the use of tasks which vary in difficulty. Less complex tasks
require the holding of information in the mind for a short
time without manipulation (for example the forward digit
span – Woods et al., 2011), whereas in the more complex
tasks maintenance and manipulation of the information is
required to achieve success (an example task being the
backwards digit span - Best & Miller, 2010; Garon et al.,
2008). The constraints involved in our task are more remi-
niscent of those presented by complex tasks, for which
performance continues to improve up until age 5, with some
authors showing improvement continuing until age 7
(Garon et al., 2008) or even into adolescence (Best & Miller,
2010). Therefore, we might expect to find continued
improvement in our task between ages 7 and 10 in the
conditions involving temporal displacement.

In terms of metacognition, we would expect involvement
to result in increased task success (across all three
displacement conditions) from age 6 as children develop
their skills in a range of metacognitive processes. For
example, there are significant advancements in children’s
metacognitive understanding of how perceptual access leads

to knowledge at around age 6. Studies have shown that prior
to this age children have difficulty understanding that partial
perceptual information leads to incomplete knowledge and
children therefore frequently overestimate their own knowl-
edge (Kloo, Rohwer, & Perner, 2017; Rohwer, Kloo, &
Perner, 2012; Sodian & Wimmer, 1987) and that of others
(Chandler & Helm, 1984; Taylor, 1988). Accurately assessing
one’s own and others’ knowledge may be important in order
to take advantage of the most useful information from
multiple models. Furthermore, children aged 6 plus, with
more experience in formal schooling (Bryce & Whitebread,
2012), are likely better equipped to utilise metacognitive
storage processes such as mnemonic devices (Jurowski et al.,
2015) or inner speech (Carruthers, 2013; Cowan, 2008) to
lessen cognitive load, and in particular memory load. Such
strategies have been described as “cognitive offloading” and
children’s tendency to use (Armitage, Bulley, & Redshaw,
2020) and devise (Bulley, McCarthy, Gilbert, Suddendorf, &
Redshaw, 2020) these increases with age. Children may also
show increased metacognitive monitoring (e.g. judging task
difficulty, self-questioning) and control (e.g. planning,
changing strategy) with age (Bryce & Whitebread, 2012).

Measuring the potential for cumulative culture

In order to investigate children’s ability to produce an
improved trait variant, and hence potential for cumulative
culture, we grouped according to chronological age, using
one-year bandings, and split the data further depending on
condition (Increased Information, Temporal, Spatial or
Temporal-Spatial) and whether the highest single model
score in a given trial was 1 (henceforth model-score-1 trials)
or 2 (model-score-2 trials). We also calculated the mean
child score for each age group, condition, and model-score
groups (1 or 2). For the model-score-2 trials only, we
planned to analyse whether these mean scores were signifi-
cantly greater than the highest single model score of 2.
Outperforming the highest observed single model score was
analogous to outperformance of the best available infor-
mation within a population, an improved variant. Addi-
tionally, again for the model-score-2 trials only, we were
interested in whether the mean child scores were signifi-
cantly greater than the mean score across the two models.
Outperforming the mean score of the two models could be
used as a proxy for outperformance of a randomly selected
single model. Linking back again to our interest in cumu-
lative culture, this measure would give an indication of
whether children could outperform the previous genera-
tion’s “typical” score. This is important because it would
show whether, on average, later generations would accu-
mulate benefits relative to their predecessors. We also
measured whether children were scoring significantly above
chance level (i.e. the score expected to arise from naive
exploration in the absence of any information) for both the
model-score-1 and 2 trials. A chance level score was 1
because each child selected three out of nine chests on each
array and there was a total of three rewarded chests within
each array. This comparison with chance would serve to test
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whether the children were indeed using some of the infor-
mation available to them in the demonstration (even if not
optimally). This is because scores not significantly different
from chance could not be distinguished from a pattern of
random selections, uninfluenced by the demonstration in-
formation. In the model-score-1 trials this chance-level of 1
was equivalent to the highest single model score. Therefore,
for the model-score-1 trials, scoring significantly higher than
the highest single model score was effectively captured by
this same comparison. Furthermore, in the model-score-1
trials, the mean score across the two models (0.83) was lower
than the chance-level therefore outperformance of the mean
did not provide us with meaningful information, over and
above the comparison to chance, for the same reason. The
benchmarks of outperforming the highest single model score
and mean score, as used for the model-score-2 trials, were
therefore not meaningful for the model-score-1 trials.

MATERIALS AND METHODS

Participants

169 children were recruited from a primary school in
Stirling, Glasgow Science Centre, and a science festival
attended by members of the public at the University of
Stirling. Five children (all male) were excluded due to:
missing date of birth from the consent form meaning age
could not be confirmed and age in days could not be
calculated (age 8), failure to fully comply with task in-
structions (age 10), a recognised developmental delay (n 5
2, ages 6 & 7) or because they were found to have partic-
ipated previously (age 6). The final sample consisted of 164
children aged 5 to 10 (M 5 7 years, 10 months; range 5 5
years, 0 months–10 years, 11 months; SD 5 1 year, 8
months; 79 female); there were between 20 and 31 children
in each age group.

Experiment

The task was presented to children on either a touchscreen
laptop or tablet running Windows 10 and was written and

run in PsychoPy, version 1.84.2 (Peirce et al., 2019). Task
responses were automatically written into a csv file and any
verbal comments children made were recorded on paper by
a research assistant.

The goal of the task was to find as many pieces of
treasure (gold coins) as possible following watching two
social models attempt the same task. Each of 24 experi-
mental trials (plus four practice trials) contained either one
(Increased Information and Temporal displacement condi-
tions, Fig. 1, left) or three (Spatial displacement and Tem-
poral-Spatial displacement conditions, Fig. 1, right) 3x3
array(s) of nine treasure chests, three chests of which were
rewarded and six unrewarded. Rewarded chests revealed a
gold coin, accompanied by the sound of money, if selected,
and unrewarded chests a red cross and a beep. The experi-
ment used a within-subjects design. Participants took part in
four experimental conditions, which varied in terms of
whether the information provided by the two models was
separated from their own attempt, either in time or space
(Increased Information, Temporal displacement, Spatial
displacement and Temporal-Spatial displacement, see
introduction). Note, the two conditions involving separation
in space (Spatial and Temporal-Spatial displacement) also
differed from the other conditions (Increased Information
and Temporal displacement) in that the models made their
selections from two different search spaces as opposed to
one, introducing an additional element of spatial separation.
As stated in our introduction, we placed constraints on the
selections made by both models which conformed to six
different demonstration types (further details in Table 1).

To determine the order of the conditions, we randomly
selected from the 24 different permutations of the four
conditions (Increased Information, Temporal, Spatial and
Temporal-Spatial) for each participant. The two social
models were a cartoon parrot “Pirate Parrot” and octopus
“Pirate Octopus”. Between participants, we counterbalanced
which model made their selections first. Therefore, the
model choosing first remained consistent for a participant
throughout the task. The order of the six demonstration
types was randomised for each participant within each
condition. Within a demonstration type, we also randomised

Fig. 1. Example task display containing one (left image) or three (right image) arrays as in the Increased Information/Temporal and
Spatial/Temporal-Spatial conditions respectively
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whether the parrot or the octopus performed the selections
designated for model 1 or model 2 and the actual locations
selected within the array.

Demonstration types. Across the six demonstration types
(1–6, Table 1), the highest single model score over the two
models on any given trial was either 1 or 2 (three of each
type); the mean score across the two models varied between
0.5 and 2.0; the total number of rewards revealed across the
two models combined was either one, two or three (two of
each type); and the number of rewarded selections repeated
by each model within an array was either 1 or 0 (three of
each type). We did not include a demonstration with zero
rewards because we wanted to ensure that children were
receiving some information that would be of benefit to copy
on each trial. We did not include demonstration types in
which any one model found all three rewards because we
were interested in children’s ability to use information from
the two models to find more rewards than the highest per-
forming model. We were also interested in how well children
made use of social information about locations of rewards
(arising from correct choices) and locations to be avoided
(arising from incorrect choices).

Procedure

In the school, testing took place in a quiet area adjacent to
the classroom. At Glasgow Science Centre and a science
festival held at the University of Stirling, testing was con-
ducted in a public space, separated from the main museum/
festival space by a desk or room partition. At the science
centre and festival only, less confident children were
accompanied in the testing area by a parent or guardian who
was instructed not to provide the child with any assistance
relevant to the task. In each location the laptop or tablet
running the task was positioned on a table-top, which the
child sat in front of at a comfortable distance; the experi-
menter sat next to the child. A verbal script was used by the
experimenter (see SI) and total testing duration was 15–20
min per child.

Introduction to task. Children were asked if they would like
to play a game in which the goal was to search for treasure.
They were first shown a series of on-screen images (Fig. 2),
supported by verbal instruction and explanation from the
experimenter. The gold coins, arrays of treasure chests,
notion of rewarded/unrewarded chests and the models were
all introduced. Children were informed that the models
would also be looking for treasure and that they should
watch them carefully before taking their turn. The goal of
the experiment, and the fact that they should try to find all
three pieces of treasure in each array, were reinforced several
times throughout the introduction.

Practice trials (x1 per condition). Following the introduc-
tion, a practice trial corresponding to the first assigned
condition was conducted prior to the six experimental trials
for that condition. The six experimental trials covered each
of the six demonstration types (Table 1). The remaining

three conditions were run in the same way, with a practice
trial followed by the six experimental trials.

A practice trial began with the presentation of a single
array set back slightly from the forefront, in the middle of
the screen. This array then moved forward for the single
array conditions (Increased Information and Temporal) or
gave the illusion that it was splitting into three for the three
array conditions (Temporal-Spatial and Spatial). In the latter
case the top half of the screen contained one array on the left
and one on the right, and the bottom half one array in the
middle (Fig. 1, right image). However, the rewards were in
the same location in each of the three arrays. The first of the

Fig. 2. Images displayed to children during the task introduction
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two models then selected three chests (see Fig. 3A for an
example for the Spatial condition) and upon each selection a
chest opened to reveal either a coin (rewarded) or a red cross
(unrewarded) and accompanying sounds. Immediately
following the third selection chests either closed completely,
hiding their content, or partially, meaning that their content
remained visible. In the conditions with three arrays this first
model’s selection was made on the top, left array (Fig. 3A).
The second model then proceeded to select three chests in
the same manner as the first. In the single-array conditions
this was on the same array as the first model and in the three
array conditions the top, right array (Fig. 3B). All selected
chests then either closed completely, or partially (Fig. 3C).
Next, the child was prompted to search for all three pieces of
treasure. It was made clear that they could select a chest even
if one, or both, of the models had already selected it, as we
wanted to ensure (in the Increased Information and Spatial
conditions especially) that children understood that a model
selecting a correct chest did not mean that the chest had
been emptied. Children made their selections by touching
three of the nine chests in turn on either the same array as
the two models (one array conditions), or the array in the
bottom, middle of the screen (three array conditions),
Fig. 3D. As occurred for the models’ selections, the chests
initially opened to reveal their contents as they were chosen,
but after the third selection the three chests remained open
and the remaining six, unselected chests, also opened so that
the contents of all nine chests were visible (Fig. 3E). The
experimenter then stated “Look – that’s where the treasure
was” and pointed to the rewarded chests in turn in order to
reinforce that exactly three of the nine chests were rewarded
on every trial. The child was asked: “How many pieces of
treasure were there?” This question assessed understanding
and if a child answered correctly or incorrectly their
response was reinforced or corrected respectively.

Experimental trials (x 6 per condition). The six experi-
mental trials (spanning the six different demonstration types
– Table 1) followed the practice trial for that condition and
were almost identical except that there was less intervention
from the experimenter. The participant was not reminded
that they were searching for three pieces of treasure and was
not asked how many pieces of treasure were revealed
following their selections, although the experimenter still
pointed to each of the three pieces of treasure when all
chests opened at the end of the trial. The only other dif-
ference was that the single or three arrays (Fig. 3) appeared
immediately at the start of the trial and did not need to be
moved forward (single array condition) or give the illusion
of splitting into three (three array condition).

Ending of experiment. Following completion of all four
conditions (each consisting of a practice trial followed by six
experimental trials) a black screen was presented. A large,
gold coin superimposed onto a chest appeared in the middle
of the screen and a number above the chest continued to
increase incrementally until it represented the total number
of rewards found by the participant – a maximum of 72

(3 per array 3 24 trials, the rewards from practice trials
were not included).

Ethics. This research was approved by the University of Stir-
ling, General University Ethics Panel (reference: GUEP599).
Written, informed consent was obtained from the parent or

Fig. 3. Diagram of testing procedure: Model 1 selects three
chests (A), Model 2 selects three chests (B), screen display
following all models’ selections (C), child selects three chests (D)
and all the chests open to reveal the contents (E)
Note. This diagram depicts the Spatial condition as an example.
The exact images displayed on screen varied depending on the
condition e.g. for the Temporal and Temporal-Spatial conditions
all chests in image C would be closed.
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guardian of all children prior to their participation. Children
were asked if they would like to participate, were continuously
monitored for assent and were rewarded with a sticker
regardless of task completion.

RESULTS

Firstly, we were interested in how overall use of the infor-
mation provided by the two models (rewarded and unre-
warded) differed with age according to the constraints
presented by our four conditions (see our analysis of score
and repeating). Secondly, we were interested in whether
children aged 5–10 were able to make use of the information
available from the two models across our four conditions to
the extent that they outperformed the highest scoring single
model (see “Potential for Cumulative Culture”). This ques-
tion was of particular interest as a result of our motivation to
understand the potential for cumulative culture. In this
context, outperforming the highest scoring model could be
likened to producing an improved trait variant, which goes
beyond the achievements of the previous “generation”.

P-values < 0.05 were taken as statistically significant
across all analyses. All generalised linear mixed effects
models (GLMM) were carried out with the log link (count
data, family 5 poisson) and the lme4 package (Bates,
Mächler, Bolker, & Walker, 2015), glmer function, using R
(R Core Team, 2018) version 4.1.0. Our default choice for
the random effects structure for each model included by-
participant random slopes for variables which varied within
participant, following Barr, Levy, Scheepers, and Tily (2013),
to keep random effects structures “maximal” where possible.
Where the maximal model resulted in non-convergent or
singular fit models, random slopes were removed followed
by random intercepts where necessary until a convergent,
non-singular model was obtained.

Score

We measured overall information use across our four con-
ditions and according to child score (out of 3) per array and
age (thousands of days, centred). Children were given a
point for each piece of treasure found on an experimental
trial, therefore the total score on each array was 0, 1, 2 or 3.
This measure was useful in order to provide an overview of
any effects of age and condition on overall child perfor-
mance. However, it was a rather crude measure because it
did not capture how children responded to demonstrations
of different reward value, and to rewarded and unrewarded
model selections. These were captured in our other analyses.

Score – effects of age and condition. We performed a
GLMM with score (out of 3) as the dependent variable; and
age and condition, and the interaction of these variables, as
fixed effects. Condition was dummy coded, with each con-
dition compared to the reference, Increased Information,
condition. We also included a random intercept for the total
number of rewards revealed in a trial (1, 2 or 3 across the

two models). There was a main effect of condition: lower
scores (out of 3) in the Spatial (b5 �0.077, SE5 0.031, Z5
�2.505, P < 0.050) and the Temporal-Spatial (b 5 �0.164,
SE 5 0.032, Z 5 �5.200, P < 0.001) conditions compared to
the reference, Increased Information, condition (Fig. 4). In
the Temporal condition, the score was not significantly
different from that in the reference condition (b 5 �0.032,
SE 5 0.030, Z 5 �1.047, P 5 0.295). There was no main
effect of age (b 5 0.043, SE 5 0.035, Z 5 1.233, P 5 0.218)
but there was a significant interaction effect of age on the
Temporal-Spatial (b 5 0.154, SE 5 0.052, Z 5 2.983, P <
0.010) condition, showing that age had a larger affect on
score in this condition, compared to the reference condition.
There was no such interaction effect for the Temporal
condition (b5 0.036, SE 5 0.050, Z 5 0.726, P5 0.468) but
this was approaching significance for the Spatial condition
(b 5 0.098, SE 5 0.050, Z 5 1.942, P 5 0.052). Post hoc
comparisons between all four conditions were carried out
using the EMMEANS package in R (Lenth, 2021). These
revealed that score was significantly different for the Tem-
poral-Spatial condition compared to the Temporal (SE 5
0.036, P < 0.001) and Spatial (SE 5 0.035, P < 0.010) con-
ditions in addition to the Increased Information condition,
as reported above. There was also a significant difference
between the Spatial and Increased Information condition,
again as reported above. There were no other significant
differences between the conditions (all P > 0.100).

Score – effects of age by condition. We ran four exploratory
GLMMs (one for each condition), with a view to further
investigating the differing effects of age on score in each of
the four conditions (i.e. the interaction between age and
condition). We split the data by condition and removed this
from the original model. The current models were therefore
identical to the first model except that they had a fixed effect
of age only. We found a main effect of age in the Temporal
(b 5 0.079, SE 5 0.036, Z 5 2.233, P 5 0.026), Spatial (b 5
0.141, SE 5 0.036, Z 5 3.882, P < 0.001) and Temporal-
Spatial (b 5 0.197, SE 5 0.038, Z 5 5.193, P < 0.001)

Fig. 4. Mean child Score/3 by condition and age (whole years)
Note. The conditions are abbreviated as follows: I 5 Increased In-
formation, T 5 Temporal, S 5 Spatial and TS 5 Temporal-Spatial.
Error bars are 95% confidence intervals. N 5 28 (age 5), 31 (age
6), 26 (age 7), 28 (age 8), 31 (age 9) and 20 (age 10).
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conditions but not in the Increased Information condition
(b 5 0.043, SE5 0.035, Z5 1.233, P5 0.218). This showed
that score increased with increasing age in all conditions
except the Increased Information (Fig. 4).

Score – effects of condition by age. We also ran six more
exploratory GLMMs (one for each age group), with a view to
further investigating the differing effects of condition on
score by age. We split the data by age and removed age from
the original model therefore the current models were iden-
tical to the first model except that they had a fixed effect of
condition only. We found main effects of conditions Tem-
poral-Spatial (b 5 �0.355, SE 5 0.083, Z 5 �4.277, P <
0.001) and Spatial (b 5 �0.262, SE 5 0.081, Z 5 �3.243,
P 5 0.001) in our model for children aged 5: lower score in
these conditions compared to the Increased Information
condition (Fig. 4). For children aged 6 (b 5 �0.217, SE 5
0.074, Z 5 �2.936, P 5 0.003) and 7 (b 5 �0.160, SE 5
0.079, Z 5 �2.020, P 5 0.043) there was a main effect of the
Temporal-Spatial condition only: lower score in this con-
dition compared to the Increased Information. There were
no main effects for the remaining conditions in children
aged 5, 6 and 7; for 8–10-year-olds there were no main ef-
fects for any condition (all P > 0.100): score did not
significantly differ from that in the Increased Information
condition.

Repeating

Repeating the models’ rewarded selections, and not
repeating the models’ unrewarded selections, are both cor-
rect strategies but pose quite different demands. While the
former requires one to remember a rewarded selection and
repeat it, the latter requires one to remember an unrewarded
selection and avoid repeating it. If the social information
from the two models was being integrated effectively, we
would expect high and low levels of repeating following
rewarded and unrewarded model selections respectively. We
therefore analysed the total number of rewarded and unre-
warded selections repeated (“rewarded repeats” and “unre-
warded repeats”) on a trial by trial basis, for each participant,
and how this differed according to age (thousands of days,
centred) and condition (Increased Information, Temporal,
Spatial, and Temporal-Spatial) in the below GLMMs.

Rewarded repeats – effects of age and condition. We per-
formed a GLMM with the number of repeats of rewarded
selections as the dependent variable; and age and condition,
and the interaction of these variables, as fixed effects. Con-
dition was dummy coded, with each condition compared to
the reference, Increased Information, condition. We also
included a random intercept for the total number of rewards
revealed in a trial (1, 2 or 3 across the two models). There
was a main effect of condition (b5 �0.154, SE5 0.034, Z5
�4.498, P < 0.001): fewer repeats of rewarded selections in
the Temporal-Spatial condition compared to the reference,
Increased Information, condition (Fig. 5A, Table 2). The
Spatial and Temporal conditions were not significantly
different from the reference condition (all P > 0.100). There

was no main effect of age (b 5 0.065, SE 5 0.038, Z 5 1.718,
P 5 0.086) but there was a significant interaction effect of age
on the Temporal-Spatial (b 5 0.166, SE 5 0.056, Z 5 2.965,
P < 0.001) and Spatial (b5 0.108, SE5 0.054, Z5 1.983, P5
0.047) conditions, showing that age had a larger effect on the
number of repeats in these conditions, compared to the
reference condition. There was no such interaction effect for
the Temporal condition (b 5 0.034, SE 5 0.054, Z 5 0.622,
P 5 0.534). These interaction effects mirrored those of age on
condition in the analysis of score (except that here the inter-
action between age and the difference between the Spatial and
reference conditions reached significance). Therefore, to avoid
repetition, we do not report further models to investigate these
interaction effects here (as we did for score), but instead in the
SI. Post hoc comparisons between all four conditions were
carried out using the EMMEANS package in R (Lenth, 2021).
These revealed that the number of rewarded repeats was
significantly different for the Temporal-Spatial condition
compared to the Temporal (SE5 0.031, P < 0.001) and Spatial
(SE5 0.031, P5 0.001) conditions in addition to the Increased
Information condition, as reported above. There were no other
significant differences between the conditions (all P > 0.100).

Unrewarded repeats – effects of age and condition. We
performed a GLMM which was identical to the model in
section “rewarded repeats – effects of age and condition”

Fig. 5. Mean percentage of rewarded (Panel A) and unrewarded
(Panel B) model responses which were repeated by condition and
age (whole years)
Note. The conditions are abbreviated as follows: I 5 Increased In-
formation, T 5 Temporal, S 5 Spatial and TS 5 Temporal-Spatial.
Error bars are 95% confidence intervals.
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except that we used the number of unrewarded repeats as
the dependent variable. There was a main effect of condi-
tion: more unrewarded repeats in the Temporal (b 5 3.397,
SE 5 0.396, Z 5 8.575, P < 0.001), Spatial (b 5 3.809, SE 5
0.394, Z 5 9.665, P < 0.001) and Temporal-Spatial (b 5
4.170, SE 5 0.393, Z 5 10.618, P < 0.001) conditions
compared to the reference, Increased Information, condition
(Fig. 5B, Table 2). There was no main effect of age (b 5
0.414, SE 5 0.628, Z 5 0.659, P 5 0.510) and no interaction
effects between age and the Temporal, Spatial or Temporal-
Spatial conditions (all P > 0.100). Post hoc comparisons
between all four conditions were carried out using the
EMMEANS package in R (Lenth, 2021). These revealed that
the number of unrewarded repeats was significantly greater
for each of the conditions compared to the Increased In-
formation condition, as reported above. Each condition also
differed significantly from each of the other conditions: there
were more unrewarded repeats in the Spatial condition than
the Temporal (SE 5 0.061, P < 0.001) and in the Temporal-

Spatial condition compared to both the Spatial (SE 5 0.053,
P < 0.001) and Temporal conditions (SE5 0.040, P < 0.001).

Potential for cumulative culture

In order to measure children’s potential for cumulative
culture, based on the different patterns of performance
outlined in our introduction, we measured whether the
mean child score (out of 3) on the model-score-2 trials (for
each age group and condition) adhered to the criteria out-
lined in four levels. Mean score needed to be as follows to
achieve each level: Level 0: at or below the chance-level of 1;
Level 1: significantly greater than chance-level; Level 2:
significantly greater than both chance-level and the mean
score across the two models; Level 3: significantly greater
than the highest single model score.

For the model-score-2 trials (Figs 6 and 7; Table S1)
children performed most proficiently in the Increased In-
formation (control) condition in which all age groups scored

Table 2. Mean Percentage of Rewarded and Unrewarded Model Selections Repeated (and Standard Deviation) for Ages 5–10 (Whole
Years) in the Increased Information (I), Temporal (T), Spatial (S) and Temporal-Spatial (TS) Conditions

Age (whole
years) Condition

Mean percentage rewarded
repeats

SD (rewarded
repeats)

Mean percentage unrewarded
repeats

SD (unrewarded
repeats)

5 I 83.730 35.646 0.595 5.439

6 I 93.100 22.698 0.000 0.000

7 I 93.910 22.085 0.214 2.669

8 I 97.123 15.900 0.000 0.000

9 I 97.222 14.798 0.448 4.395

10 I 96.667 18.026 0.556 6.086

5 T 75.893 36.147 11.310 19.671

6 T 90.233 24.906 10.215 20.582

7 T 95.727 17.948 6.410 14.475

8 T 95.437 17.656 6.944 15.414

9 T 96.595 15.608 5.824 14.410

10 T 94.444 19.842 6.389 16.481

5 S 66.567 39.436 22.222 23.758

6 S 89.427 24.481 12.903 21.029

7 S 95.085 17.982 9.829 17.747

8 S 99.405 4.428 11.111 19.785

9 S 97.491 13.071 9.677 18.063

10 S 99.444 4.285 5.694 14.085

5 TS 58.929 38.986 27.480 27.306

6 TS 76.254 32.638 18.907 24.188

7 TS 84.295 26.790 18.483 23.915

8 TS 94.444 17.933 14.980 21.783

9 TS 90.681 21.289 13.620 20.931

10 TS 94.167 19.404 9.583 18.418
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significantly higher than the highest single model score of 2,
hence achieved Level 3 (ages 6–10, P < 0.001; age 5, P 5
0.011; Table S1). However, in the Temporal condition the
level achieved differed with age. Ages 6-10 achieved Level 3
(all P values < 0.001; Table S1). Children aged 5 did not
outperform the highest single model score (P 5 0.145; Ta-
ble S1) but achieved a Level 2 because they performed
significantly above chance level (P < 0.001) and significantly
above the mean score across both models (P < 0.001). This
showed that they were performing better than naïve explo-
ration and gaining some performance benefit from the
presence of two models. In the Spatial condition ages 6–10
again achieved a Level 3 (all P values < 0.001; Table S1).
Children aged 5 did not outperform the highest single model
score (P 5 0.941; Table S1) and although they performed
significantly above chance (P < 0.001) they did not signifi-
cantly outperform the mean score across the models (P 5
0.190) and were therefore given a Level 1. In the Temporal-
Spatial condition 5-year-olds again scored a Level 1 i.e. they
did not outperform the highest single model score (P 5
0.941; Table S1) or the mean score across the models (P 5
0.547) but they did outperform chance (P < 0.001).

However, 6-year-olds performed more poorly than in all
other conditions, achieving a Level 2 because they did not
outperform the highest single model score (P 5 0.411;
Table S1) but outperformed both the mean score (P <
0.001) and chance (P < 0.001). Outperformance of the
highest single model score, Level 3, was therefore found only
in ages 7–10 (ages 8–10, P < 0.001; age 7, P 5 0.010;
Table S1).

As stated above, for the model-score-1 trials it was only
useful to determine if children scored more highly than
chance (1.0) and therefore whether they were gaining some
benefit from the information provided by the models
(equivalent to Level 1). As in the model-score-2 trials, each
age group, in each condition, performed significantly above
chance-level; ages 6–10, P < 0.001; age 5, P 5 0.004 (Fig. 6,
Table S2).

Across the six demonstration types (outlined in section
“demonstration types”), three were model-score-1 trials (3, 5
and 6, Table 1), and three model-score-2 trials (1, 2 and 4,
Table 1). The three demonstration types present within
these model-score-1/model-score-2 groups were obviously
identical in terms of highest single model score but differed

Fig. 6. Mean child Score/3 by age (whole years) and the highest single model score in a trial for the Increased Information, Temporal,
Spatial and Temporal-Spatial conditions
Note. The solid line at 1 depicts chance performance: the score expected if children were selecting chests at random and not using the
social information. The dashed lines at 0.83 (model-score-1 trials) and 1.67 (model-score-2 trials) depict the mean scores across the
two models in the respective trials. The solid line at 2 allows visualisation of whether children scored above 2 when the highest single
model score in a trial was 2. An asterisk indicates that the mean child score/3 is significantly above 1 or 2 for the model-score-1 and
model-score-2 trials respectively.
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in factors such as the total number of rewarded locations
revealed and the number of rewarded/unrewarded selections
repeated etc. (see Table 1 for specific differences). In addi-
tion to the above analysis for the model-score-1 and model-
score-2 groups, we therefore plotted how mean score
differed according to the six different demonstration types
(Figure S1), and according to the total number of rewarded
model selections in a trial – 1, 2 or 3 (Figure S2). Breaking
down the results in these additional ways did not reveal any
patterns within the data which were not already captured in
our other analyses. As in the analyses already reported, ef-
fects of age were apparent in the Temporal, Spatial and
Temporal-Spatial conditions, particularly for higher scoring
demonstrations.

DISCUSSION

Capitalising on increases in population size by utilising in-
formation from multiple models may be an important
mechanism by which improved traits are introduced into
human populations. We reasoned that exploiting this in-
crease in information may require human-unique cognitive
capacities (e.g. enhanced use of working memory, meta-
cognition or mental translation) because a larger cognitive
load is likely generated when information from more than
one source is separated in time and/or space. We thus
presented children with Temporal, Spatial and Temporal-
Spatial displacement conditions which emulated real-life
constraints on information use and undoubtedly increased
the cognitive load associated with obtaining maximum
benefit from information provided by multiple models. Our

novel method allowed investigation of the ability to utilise
this displaced information from two models, and moreover,
children’s potential to outperform the best available infor-
mation within this multiple-model population. We predicted
that this would be possible across a wider range of condi-
tions as age, and thus cognitive capacity, increased. Such a
result would suggest that enhanced cognitive abilities (such
as those outlined above) may better enable humans to
exploit information provided by multiple models, despite the
associated challenges, to generate new trait variants and
drive cumulative culture.

Our results were broadly consistent with the above pre-
dictions. Firstly, in our least cognitively challenging control
(Increased Information) condition, children utilised rewar-
ded and unrewarded information at high levels right across
our age range (5–10 years) and score did not differ ac-
cording to age. Moreover, all ages evidenced outperformance
of the highest single scoring model (i.e. the best available
information in the population) and achieved a Level 3 on
our continuum of potential for cumulative culture. Children
therefore displayed the ability to utilise information from the
two models to the extent that they were able to generate an
improved trait variant (a higher score) when the information
was not displaced in time or space (i.e. when the information
from both models remained present for use within the same
search space, presumably creating only minimal cognitive
load). In line with results by Subiaul et al. (2015), this
demonstrated that even the youngest children did not find
using information from two models difficult per se – rather,
any difficulty in making the most advantageous use of in-
formation from multiple models may lie in the extra
cognitive resources required to store, retrieve, and spatially

Ages 7, 8 , 9 & 10

Age 6

Age 5

Age 6

Age 5

Age 6

Age 5

Age 6

Age 5

Ages 7, 8 , 9 & 10

Ages 7, 8 , 9 & 10

Ages 7, 8 , 9 & 10

Meets
Criterion for
Level

Significantly
Exceeds
Criterion for
Level

0 1 2 3
Level

Fig. 7. Potential for cumulative culture performance classification level by condition and age group
Note. Situations in which a mean child score/3 was significantly higher (yellow bars) and higher but not significantly higher (orange
bars) than the benchmark outlined in a particular level criterion are described using the terms “Significantly Exceeds Criterion for Level”
and “Meets Criterion for Level” respectively.
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translate information. In real-life social learning scenarios,
we would expect the information from multiple models to be
displaced in time and/or space therefore, although this result
confirms that children can use information from two models
in theory, it probably reveals little regarding children’s
propensity to do so in real-life.

Secondly, also in line with our predictions, we found that
score and repeating of rewarded selections increased with
age in the conditions which presented a greater cognitive
load (Spatial, Temporal and Temporal-Spatial). The youn-
gest children’s performance was particularly weak in the
Spatial and Temporal-Spatial conditions: 5-year-olds were
the only age group with a lower score in both of these
conditions compared to the control condition, and 6- and 7-
year-olds scored more poorly in the Temporal-Spatial con-
dition. However, older children’s (8–10 years) score did not
differ from the control in any condition. Additionally, older
children (7–10 years) outperformed the highest scoring
model and thus showed evidence of cumulative improve-
ment across a wider range of conditions than younger
children – in the Temporal, Spatial and Temporal-Spatial
conditions (Level 3 on our continuum of potential for
cumulative culture). Although 6-year-olds outperformed
5-year-olds, their performance did not match that of 7-10-
year-olds in the Temporal-Spatial condition – they repeated
significantly fewer rewarded selections in comparison to the
Increased Information condition and achieved Level 2.
6-year-olds therefore showed evidence consistent with the
potential for cumulative culture in the Increased Informa-
tion, Temporal and Spatial conditions only. However,
5-year-olds performed the most poorly – they appeared to
gain little benefit from the presence of multiple models
(achieving only Level 1) in either the Spatial or Temporal-
Spatial conditions. They performed better in the Temporal
condition (achieving Level 2) but still not to the extent that
an improved trait variant was created.

As far as we are aware, our study is the first to demon-
strate that children’s ability to utilise information from mul-
tiple models may be affected by the types of cognitive
constraints which exist in real-life social learning scenarios.
Moreover, we are the first to show that children’s ability to
outperform the highest scoring single model in a multiple-
model population, showing the potential for cumulative cul-
ture, changes with development (age 5–10) and the level of
cognitive load (task constraints) presented. This is consistent
with our previous work (Wilks et al., 2021) in which we found
that children’s capacity to use the social information provided
by one model depended both on age and memory constraints
(which differed across two task conditions). We thus postu-
late that, in any given experimental task or real-life scenario,
the constraints on accessing information (e.g. temporal or
spatial separation), and cognitive ability, will determine
whether these constraints can be overcome, allowing the in-
formation to be used and cumulative improvements to occur.
We would expect that the ability to overcome particular
constraints will differ depending on the cognitive abilities of
the population, e.g. adults, children at different stages of
development, or nonhumans. In the case of accessing

information from multiple models, this hypothesis is also
supported by the adult experimental literature. Kempe and
Mesoudi (2014) found that adults could integrate spatially
separated information, leading to cumulative culture. Yet
studies by Caldwell and Millen (2010) and Fay et al. (2019)
highlighted that there may be constraints on adults’ ability to
integrate information if they do not have sufficient time in
which to process it or the memory load is too great.

So why was the performance of 5-year-olds in our
displacement conditions (and 6-year-olds, in the Temporal-
Spatial condition only) poor in comparison to that of the
other age groups? We postulate that the increased cognitive
load presented by the temporal, spatial and (to a greater
extent) temporal-spatial separation of the models’ selections
was difficult to overcome at this stage in a child’s cognitive
development. In our Temporal displacement conditions, age-
related improvements to working memory (Best & Miller,
2010; Diamond, 2013; Garon et al., 2008) may have better
enabled older children to hold the information provided by
both models in mind whilst deciding how best to utilise it.
Furthermore, the continued development of a range of met-
acognitive processes and strategies (e.g. mnemonic devices
(Jurowski et al., 2015), or inner speech (Carruthers, 2013;
Cowan, 2008), see introduction) may have effectively reduced
the cognitive load through “cognitive offloading” (Armitage
et al., 2020; Bulley et al., 2020). Increased task success from
age 6 (although note that 6-year-olds did struggle to make full
use of the available information in the Temporal-Spatial
condition with the highest cognitive load) may have resulted
from metacognitive developments in understanding that ac-
cess to partial perceptual information does not lead to com-
plete knowledge (Chandler & Helm, 1984; Kloo et al., 2017;
Rohwer et al., 2012; Sodian & Wimmer, 1987; Taylor, 1988).
When utilising information from two models, this insight
could have encouraged children to be more selective in their
use of information from each model.

We would expect the performance of nonhumans to be
similar to, or poorer than, that of 5-year-olds due to limi-
tations in accessing and using the displaced information.
Firstly, with respect to working memory, it is difficult to
directly compare humans and nonhumans due to the small
amount of comparative research available for analysis.
However, it appears that, although some nonhuman mam-
mals may have similar storage capacities, humans can
represent concepts within memory differently (e.g. through
the use of mnemonic devices, Jurowski et al., 2015, or inner
speech, Carruthers, 2013; Cowan, 2008) and have a better
ability to deploy attention and resist interference (for a
systematic analysis of evidence to date see Carruthers, 2013).
It is therefore likely that when presented with temporally
displaced information nonhuman primates would perform
similarly to young children, who are still developing such
capacities, and would not be expected to produce an
improved variant under temporal displacement.

Secondly, regarding metacognition, there is growing evi-
dence from naturalistic information-seeking (Call & Car-
penter, 2001) and uncertainty monitoring (Smith, Shields,
Schull, & Washburn, 1997) paradigms, that some
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nonhumans (e.g. chimpanzees, orangutans, Bohn, Allritz,
Call, & Völter, 2017; Call & Carpenter, 2001, gorillas,
bonobos, Call, 2010, and rhesus monkeys, Beran, Smith,
Redford, & Washburn, 2006; Couchman, Coutinho, Beran, &
Smith, 2010; Hampton, Zivin, & Murray, 2004) may have the
ability to accurately monitor their own uncertainty and make
simple responses according to this (Beran, Decker, Schwartz,
& Smith, 2012). However, these tasks require more limited
information processing than that we have presented – the
rewards are not split across multiple locations and the
required responses are simpler. The ability to make such
information-seeking and uncertainty monitoring responses is
unlikely to allow for devising and using metacognitive stra-
tegies as may increase information use in this task, e.g. the
aforementioned memory aids such as mnemonic devices or
inner speech. Furthermore, the representational nature of
this uncertainty is unknown (Beran et al., 2012; Carruthers,
2008, 2009) and (considering findings regarding animal
mindreading, Call & Tomasello, 2008; Heyes, 2015) it seems
unlikely that nonhumans explicitly represent “I know” (or a
non-linguistic equivalent of such a belief) as humans do. This
would be expected to limit their ability to make appropriately
selective responses in more subtle situations (e.g. that pre-
sented in this study) in which partial information is available
from multiple sources. Nevertheless, we might expect some
nonhumans to be able to utilise information from multiple
models under more limited circumstances, such as when the
information is not displaced (e.g. in our Increased Infor-
mation condition or that presented in Subiaul et al., 2015).
This demands further research.

As noted in our introduction, making maximal use of
multiple pieces of information separated in space likely re-
quires one to translate the observed information to one’s
own bodily frame of reference. This would be expected to
increase the associated cognitive load due to requirements
such as mental translation (Frick et al., 2013; Levine et al.,
1999; Shepard & Metzler, 1971) and the ability to under-
stand dual representation (DeLoache, 1989, 1991, 2000). In
our Spatial and Temporal-Spatial conditions these skills are
likely to be required for understanding that the models’
selections relate to each other and to comparative locations
in one’s own search space. Moreover, we expect these will be
needed for accurately translating relevant information
(rewarded selections) from a model’s search space to one’s
own. Research has shown that mentally moving visual in-
formation is cognitively taxing – e.g. there is a positive,
linear relationship between the time taken to mentally rotate
a shape and the angle through which it must be rotated
(Shepard & Metzler, 1971). Such ability is considered to be
present from age 5 (Frick et al., 2013; Iachini, Ruggiero,
Bartolo, Rapuano, & Ruotolo, 2019; Marmor, 1975; evidence
in younger children is inconsistent, Estes, 1998; Frick,
Daum, Walser, & Mast, 2009, 2013) and to continue to
develop throughout childhood and into adolescence (Kail,
Pellegrino, & Carter, 1980). This developmental trajectory
thus supports our finding that utilising the spatially sepa-
rated information was challenging for the youngest children,
especially when combined with the added constraint of

temporal separation. We would therefore expect nonhuman
primates to perform similarly due to the increased cognitive
load required to translate information from multiple loca-
tions separated in space. However, further research would be
needed to ascertain this as there is some evidence that
nonhumans can engage in mental rotation (Köhler, Hoff-
mann, Dehnhardt, & Mauck, 2005; Stich, Dehnhardt, &
Mauck, 2003; Vauclair, Fagot, & Hopkins, 1993), although
currently no evidence that this is homologous to the process
in humans (Carruthers, 2013).

We have shown that children aged 6–10-years-old can
utilise information from multiple models to generate
improved variants under ecologically valid constraints.
However, it is unlikely that all new cultural traits are derived
by combining information across different models, and
some traits may not lend themselves to such combinatory
mechanisms. To reiterate, we do not argue that the kind of
combinatory social learning investigated in this study is the
only method by which improved variants may arise within
populations, but rather, that human cognition may enable
our species to exploit information from multiple models and
thus engage in this method.

We used identifiably different demonstrators (a cartoon
parrot and octopus) for the two demonstrations on each trial
of our task because wanted the multiple models feature to be
as transparent and concrete as possible. Yet, it remains
possible that we would obtain a different result were the in-
formation presented to children in the absence of demon-
strators; that is, the demonstrations occurred without a social
element. Future work could test this using our paradigm.
However, we would not necessarily predict a different result
provided the children were still motivated to use the infor-
mation in the demonstrations, and the information itself
remained the same. In this sense, the demonstrators could be
considered to act primarily to set the information in context
and to reinforce the task goal and the desirability of the
reward. In support of this prediction, previous work from our
group (Atkinson et al., 2020; Renner, Kean, Atkinson, &
Caldwell, 2021) found that children’s use of information in a
logically similar task was unaffected by its source.

Theories which posit that population size underlies hu-
man cumulative culture (Henrich, 2004; Powell et al., 2009;
Shennan, 2001) do not directly consider the underlying
cognitive abilities needed to exploit information from multi-
ple social models. However, we have shown that deriving full
benefit from the increased information provided by multiple
models may be dependent on the ability to store, manipulate
and retrieve this information. It therefore follows that the
effects of population size on cumulative culture may be
inherently dependent on the cognitive abilities of the learners.

Ethics statement: This research was approved by the Uni-
versity of Stirling, General University Ethics Panel (refer-
ence: GUEP599). Written, informed consent was obtained
from the parent or guardian of all children prior to their
participation. Children were asked if they would like to
participate, were continuously monitored for assent and
were rewarded with a sticker regardless of task completion.
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