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2006). Due to their short generation times and considerable 
phenotypic plasticity, Lepidoptera can respond quickly to 
climate change, which means we are able to see trends over 
relatively short time scales (Välimäki et al. 2013; Hill et al. 
2021). Further, being charismatic insects, extensive long-
term citizen-science data exist in some countries that can 
be utilised to examine the large-scale impacts of climate 
change on phenology (O’Neill et al. 2012).

Much research has been done on the phenology of Lepi-
doptera. Key findings include advanced first emergences 
(Roy and Sparks 2000; Bonoan et al. 2021; Hällfors et al. 
2021), changes in mean flight date (Randle et al. 2019) and 
flight period length (Altermatt 2010a; Valtonen et al. 2011; 
O’Neill et al. 2012), and increasing multivoltinism (Alter-
matt 2010a; Välimäki et al. 2013; Teder 2020), as well as 
cases of altered body size and fecundity (Honěk 1993; Gar-
cía-Barros 2000; Davidowitz and Nijhout 2004), likely due 
to temperature altering growth rates. Furthermore, changes 
in phenology can have implications for population change. 
Both Macgregor et al. (2019)d llfors et al. (2021) found 
that species that shift their phenology may benefit from the 
ability to alter their distribution faster than species with a 
smaller phenological shift. These diverse responses, from 

Introduction

Climate change is impacting many species, especially in 
relation to their phenology, or timing of their life cycles 
(Visser and Holleman 2001; Van Asch et al. 2007; Scheffers 
et al. 2016; Cohen et al. 2018). Lepidoptera are ideal sub-
jects for studying climate change impacts on a large scale, 
due to their wide distribution and well-understood life-his-
tory and taxonomy (Heikkinen et al. 2010; Hill et al. 2021). 
As poikilothermic insects, Lepidoptera are responsive to 
temperature (O’Neill et al. 2012), and being such a species-
rich group, they contain both economically significant pests 
and those with a high conservation status (Sparks et al. 
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Abstract
Climate change has led to changes in the phenology of Lepidoptera species. While phenological shifts have been previ-
ously measured for moth species in England and Wales, the drivers of these shifts are not well known. Here, we use data 
from the National Moth Recording Scheme and the Garden Moth Scheme to investigate the drivers of phenology in 149 
moth species over a 50 year period from 1970 to 2019. We investigate whether there have been phenological shifts in 
adult emergence using three phenology metrics: First Emergence (FE), Peak Emergence (PE), and Emergence Standard 
Deviation (ESD) in relation to life history traits and temperature. Overwintering stage had a significant impact on moth 
phenology, so we analysed species that spend the winter as eggs, larvae or pupae separately. Overall phenological changes 
were different depending on overwintering stage category and phenological measure, with the rate of phenological shifts 
increasing with later overwintering life stages in response to both temperature and year. The overwintering stage larva 
was the only one impacted by diet, with those that feed on woody hostplants emerging ~ 17 days later than species with 
herbaceous hostplants. These results indicate that species that either overwinter in earlier life stages or have woody host-
plants may be less adaptable to climate change, and thus should be the targets of conservation efforts.
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small-scale changes such as body size up to large-scale 
population impacts, make predicting the impacts of climate 
change on Lepidoptera difficult.

The timing of environmental cues can influence the tim-
ing of Lepidopteran phenology, as well as that of their lar-
val hostplants. Higher temperatures can cause plants to leaf 
out earlier (Sherry et al. 2007; Steltzer and Post 2009), and 
for Lepidoptera to end overwinter diapause earlier (Parme-
san 2007; Lindestad et al. 2020). For Lepidoptera species 
that are dietary specialists, they may lose synchrony with 
their host plants, leading to mismatched phenology with fit-
ness consequences for the larvae, and impacts on popula-
tion viability (Visser and Holleman 2001; Van Asch et al. 
2007; Pelini et al. 2009; Navarro-Cano et al. 2015). Simi-
larly, species that utilise other environmental cues, such as 
photoperiod, for diapause induction and termination face a 
further risk of mismatching if their hostplants are respond-
ing to temperature (Sims 2007; Lindestad et al. 2020). A 
longer favourable season means that Lepidoptera species 
that have the capacity for multiple generations may build 
larger populations and/or have more generations due to ear-
lier emergence (Macgregor et al. 2019; Keret et al. 2020; 
Michielini et al. 2021). Multivoltine species generally have 
more facultative diapause, for example by lowering the pho-
toperiodic response threshold, but risk being caught out in 
a developmental trap if they are not ready to enter diapause 
when winter begins (Tauber et al. 1986; Musolin and Sau-
lich 2012; Van Dyck et al. 2015; Teder 2020). The life stage 
at which species overwinter appears important for their abil-
ity to respond to climatic changes; later life stages are able 
to reach adulthood faster after winter once the conditions 
are favourable, providing flexibility in their phenological 
response to climatic changes (O’Neill et al. 2012; Végvári 
et al. 2015). Further, the life stage of diapause can influ-
ence the way they respond to climate change. Hällfors et 
al. (2021) found that while overwintering adults were more 
likely to advance their phenology, species that overwintered 
as pupa were more likely to undergo range shifts. While it 
is evident that life history traits play an important part in 
species’ response to climate change, the relative importance 
of different traits in determining species’ responses is still 
unclear. Many studies have sought to find traits that can pre-
dict species response to climate change, but this may not be 
possible due to the variety of both species and the anthropo-
genic forces that may impact them (Fox 2013; Wagner et al. 
2021; Tordoff et al. 2022). Nevertheless, trait-based studies 
such as Tordoff et al. (2022) have linked various life history 
traits to distribution and abundance trends of British moths. 
Predicting the response of data-deficient species based on 
their traits is difficult, but it is clear that traits do play a part 
in species’ responses to environmental change. While we 
have knowledge of which traits impact species’ distribution, 

the relationship between life history traits and phenological 
shifts is less clear.

There are many ways to measure changes in species 
phenology, and species may respond differently to environ-
mental changes at different parts of the season. As well as 
this, the type of data has to be considered when calculating 
phenological metrics, and scarcity of standardised, systemic 
monitoring data has led to an increase in the use of citizen 
science data for phenological studies (Dickinson et al. 2010; 
O’Neill et al. 2012; Bishop et al. 2013). Amateur natural-
ists have been recording the natural world for hundreds of 
years, with more than 80 recording schemes and societies in 
the UK alone (Roy et al. 2014). Recorder bias is a signifi-
cant problem, as there is undoubtedly a period of training 
as amateur naturalists learn to identify organisms, as well 
as preference for particular locations and times of record-
ing, a bias which is liable to change over time and between 
regions (Dickinson et al. 2010; O’Neill et al. 2012). Still, the 
development of recording schemes to collect datasets with 
enough information to show long-term spatial and temporal 
changes is a difficult challenge that requires a large amount 
of effort on behalf of the volunteer recorders and organisers 
(Bishop et al. 2013). Such problems are an important con-
sideration in studies that use citizen science data as these 
can impact results, although methods exist to standardise 
data to improve reliability of conclusions drawn (Van Strien 
et al. 2008).

In this article, we utilise long-term citizen science data 
from 1970 to 2019 on spatial distributions of 149 moth 
species in England and Wales to investigate drivers of the 
phenological response of these species to climate change. 
First, we compare the phenology and phenological shifts 
across species with different overwintering life stages. We 
postulate that the way in which species respond to envi-
ronmental cues, and thus how their phenology responds to 
global climatic changes, is influenced by their life history 
traits. We therefore assess the extent to which patterns in 
species phenological responses of each of three overwinter-
ing stage categories (Egg, Larva and Pupa) are dependent 
on their recorded life history traits and cumulative mean 
temperature. To achieve these objectives, we used Linear 
Mixed Effects (LME) modelling to investigate how species 
differ in their response in space through the random effects 
of species and Watsonian Vice County.

Methods

Data sources

To analyse changes in moth phenology in Great Britain, 
data were sourced from two schemes: the National Moth 
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Recording Scheme (NMRS) (Butterfly Conservation 2022) 
and the Garden Moth Scheme (GMS) (GMS 2023). The 
NMRS data comprise presence records of species occur-
rence from across Britain collected in a non-standardised 
way by citizen scientists and verified by experienced Lepi-
dopterists (Fox et al. 2011). Spatial and temporal coverage 
of NMRS records is extensive and has increased dramati-
cally over time (Fox et al. 2011; Randle et al. 2019). We 
used NMRS data from 1970 to 2019. The GMS data are 
more standardised than those from the NMRS. As part of 
the GMS, citizen scientists use light traps in their residen-
tial gardens to count widespread moth species once a week 
from March to November (Bates et al. 2013). However, the 
trap type, sampling night and weather conditions are not 
standardised across sites. The scheme started in the West 
Midlands region of England in 2003 but was expanded 
across the UK from 2007, with 347 gardens participating 
in 2019 (Passey 2020). By obtaining data from both NMRS 
and GMS we aimed to increase the number of records of 
each species and increase the accuracy of the phenologi-
cal measures. The final list of 149 species used after stan-
dardisation and filtering, their data sources and number of 
records can be found in Supplementary Table 1. While we 
recognise the limitations of citizen science data, which can 
be noisy and error-prone, we propose the advantages far 
outweigh these negatives (Van Strien et al. 2008; Dickinson 
et al. 2010). Citizen science provides a large amount of data 
that allows us to address questions that would otherwise be 
challenging to answer, and with a larger number of records 
it is possible to detect patterns at finer scales (Van Strien 
et al. 2008). Here, we use 3,687,320 records for 149 spe-
cies from the combined NMRS and GMS data to generate 
phenological metrics that enable detection of temporal and 
spatial changes. However, it is worth noting that these are 
all records of adult moths and thus the data is not temporally 
structured in terms of life cycle development, hence the need 
to include life history traits. Life history trait data for each 
moth species were obtained from Cook et al. (2022), which 
is an up-to-date source of trait information for macro-moths 
in Britain and Ireland. Temperature data were obtained from 
the Met Office (Met Office et al. 2018), and a Cumulative 
Mean Temperature (CMT) variable was calculated for every 
365 day period over the 50 year study period. Thus, for each 
day of the year, there was an associated CMT value that 
represented the temperature for the previous year (e.g. a 
CMT value for 23rd March 2016 to 23rd March 2017, then 
for the 24th March 2016–2017 and so on). This CMT value 
was calculated for each 10 km x 10 km grid square (coarse 
easting and northing) where data was available, and then 
averaged for each Watsonian Vice County (VC) in England 
and Wales. The result was a single mean CMT value for 
each VC for each day of the whole of the study period. The 

process of cleaning these data for analysis is illustrated in 
Supplementary Information Fig. 1.

Phenological metrics, life history traits, and 
environmental variables

The rate of phenological change for moths may vary 
throughout the season, depending on the measure used, and 
spatially, as environmental variables can vary depending 
on location. We calculated each phenological metric within 
each Watsonian Vice County (VC) for each year, where 
there was enough data to do so. The VC system was first 
developed for plant species distributions and has been used 
since its conception at the end of the 19th century (Watson 
1883). It provides an unchanging set of geographical bound-
aries within Great Britain. Moreover, by modelling at the 
VC level we remove zeros due to species absences, instead 
concentrating only on VCs within the range of each species. 
Thus, each species was filtered separately in each VC using 
the methods of Hällfors et al. (2021), whereby we we only 
included species with trait data from Cook et al. (2022) that 
had at least 30 records a year for at least 10 years in each 
VC, resulting in 149 species included in the analyses. As a 
result of calculating at the VC level we had to remove all 
data from Scotland as there were too few records to meet the 
criteria of Hällfors et al. (2021), and thus the analysis only 
included England and Wales. Accordingly, three phenologi-
cal metrics were derived for each species from the recorded 
data:

• First Emergence (FE) – the day of the year on which 
the first 25% of records had been observed for each species 
each year in each VC (sensu Van Strien et al. 2008). Thus, 
each VC had a separate FE calculated for each year based on 
the records only in that VC.

• Peak Emergence (PE) – the day with the highest num-
ber of records for each species each year in each VC. Where 
there were several days with the highest number of records, 
an average day of year was taken for the peak of emergence.

• Emergence Standard Deviation (ESD) – the standard 
deviation of the average peak emergence. As the standard 
deviation is the spread of records around the peak emer-
gence it provides an indicator of the duration of the flight 
period for each species each year in each VC.

We included traits from Cook et al. (2022) that we hypoth-
esised would be phenologically relevant, as they determined 
the ways in which a species interacts with its environment, 
and therefore the environmental cues that fine-tune phenol-
ogy (Table 1). The environmental variables included were:

• Year: a continuous variable we took to both represent 
change through time, as well as unmeasured environmental 
variables that have changed linearly, such as precipitation.
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found that the species in different overwintering stage cat-
egories were significantly different, and as such could not be 
analysed together (see Table 2). We therefore conducted the 
analyses on three overwintering stage categories that had at 
least 20 species in each: Egg, Larva, and Pupa. The distribu-
tion of species in each trait category and subfamily for the 
three overwintering stages can be seen in Figs. 2 and 3 in 
the Supplementary Information. We carried out a series of 
LME models with the overwintering stage categories, year 
and space (VC) for each phenological metric. To determine 
which of the trait and environmental variables explained the 
most variation, and therefore were the most important, we 
developed a series of LME models with environmental vari-
ables (see Sect. 2.2) and species’ traits, listed in Table 1, as 
fixed effects. We included VC, Year, Species and Cumula-
tive Mean Temperature as random effects. We then imple-
mented a model selection process whereby the simplest 
model that explained the most variation was obtained by 
using stepwise reduction. For each overwintering stage and 
each phenological metric combination we included all fixed 
effects hypothesised to be important in determining pheno-
logical shifts and then removed non-significant variables 
stepwise until we obtained the “best” model. We compared 
each model iteration using AIC and marginal R2. Once we 
had the “best” model in terms of fixed effects, we tested 
the model with combinations of random effects in terms of 
AIC and conditional R2, until we obtained the final “best” 
model for each overwintering stage/phenological metrics 
combination. We used AIC to test for the “best” model as 
this penalizes overly complex models. All modelling was 
undertaken in R with R version 4.2.2 (2022-10-31 ucrt) (R 
Core Team 2022) and the following packages for analyses: 
tidyverse, nlme, lavaan (Wickham et al. 2019; Pinheiro et 
al. 2023).

Data structure and model selection

Cumulative mean temperatures for a location were aver-
aged across a VC for each day in each year where data was 
available. Average cumulative mean temperatures for a VC 
(hereafter CMT) were matched to the day of year of FE and 
PE for each VC each year. Thus, for every VC each moth 
species would have two CMT values associated each year, 
one matched to FE and one to PE. As ESD is the spread of 
days around PE there are no CMT values associated with it. 
Hostplant Categories were simplified into whether the moth 
species fed on “Woody” or “Herbaceous” plants, or neither. 
We considered the importance of Pupa Location to be based 
on whether a species was exposed to the environment dur-
ing the pupal stage. Accordingly, we also simplified Pupa 
Location to whether a species pupates in “Exposed” or 
“Covered” locations, or both. The number of species in each 

• Cumulative Mean Temperature - a temperature value 
that represents the temperature over a 365 day period, aver-
aged for a VC. This was calculated for every rolling 365-
day period from 1970 to 2019.

Modelling strategy

We investigated the effects of life history traits and environ-
mental variables hypothesised as being important in deter-
mining moth species phenology, utilising three phenological 
metrics to measure phenological shifts at different points in 
the flight period of each species (see Sect. 2.2). Due to our 
concern that voltinism may be changing (Teder 2020), and 
the complications this would add for peak emergence, we 
only analysed univoltine moth species. Multivoltine species 
generally have one smaller and one larger peak, accurate 
identification of which on a large scale for hundreds of spe-
cies would have been difficult. Further, due to their ability to 
have multiple population peaks each year, multivoltine spe-
cies may respond in different ways to environmental cues, 
so aggregating univoltine and multivoltine species into one 
analysis would not be appropriate. Phenological measures 
can be biased due to recording effort and population changes, 
and this has to be considered when developing phenologi-
cal measures from occurrence data (Van Strien et al. 2008; 
Bonoan et al. 2021). Prior to conducting the analyses, we 
tested for significant differences in the phenology of species 
in different categories for each trait, as this would violate 
the assumptions of Linear Mixed Effects (LME) models. We 

Table 1  Seven life history traits used for the included in the analyses, 
with description from Cook et al. (2022). We hypothesised that these 
traits would be phenologically relevent and thus have an influence on 
the way moth species respond to changes in their environment due to 
global climatic change
Life History 
Traits

Description

Communal Larvae that feed or bask communally or inhabit a 
communal nest.

Daily Activity 
Period

Listed as either Diurnal, Nocturnal or Both if at 
least one sex of the species is described as being 
active during that period.

Hostplant 
Category

Each species has single or multiple broad host-
plant categories assigned depending on hostplants 
listed in Henwood, Sterling & Lewington (2020).

Number of 
Hostplants

The number of main and occasional hostplants 
the species is known to feed on as a larva, accord-
ing to Henwood, Sterling and Lewington (2020).

Overwinter 
Stage

The life stage each species adopts as their over-
wintering strategy.

Pupa location The location in which species form a pupa (e.g. 
below ground, externally on the hostplant, in 
dead wood).

Specificity The phylognenetic variation in hostplants for 
each species (e.g. Oligophagous (Family), Oli-
gophagous (Genus))
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the three overwintering stages were significantly different, 
and Pupa and Egg overwintering stages were significantly 
different for Emergence SD (Table 2).

Additionally, we tested whether the cumulative mean 
temperature for each vice county (CMTVC) variable var-
ied with year, as we were including both as fixed effects 
in the following Linear mixed effects (LME) models that 
follow. We ran a series of LME models assessing whether 
the average temperature for each Day Of Year (DOY) in 
each vice county varied with the fixed effects harmonic vari-
ables for seasonality (cos(2 x pi x DOY/365) and sin(2 x pi 
x DOY/365)) and Year, and the random effects Year and VC. 
While temperature and year were related in the best model, 
temperature was also influenced by seasonality and space 
(Supplementary Information Table 2). The random effects 
in the best model were Year per VC, which indicates that 
there is a spatial impact that varies per year independent of 
temperature. As such, neither the “Year” or “CMTVC” vari-
ables could represent the other in a model, as they account 
for different aspects of the environment a moth encounters, 
and both could be included without the impact of collinear-
ity. Thus, there was a significant contribution of tempera-
ture that varied with VC in addition to the contribution of 
year. Further, the CMTVC variable, being cumulative, also 

classification was quite varied as for some traits one or a few 
categories dominated (Supplementary Information Fig. 2). 
Subfamily was also very variable in the number of species 
in each category (Supplementary Information Fig. 3). The 
“Year” covariable was altered to be a scale of 1–50 as larger 
numbers can influence model output (Pinheiro and Bates 
2000). The overall distribution of each of the phenological 
metrics and the distribution of overwintering stages can be 
seen in (Fig. 1).

Results

We determined that we could not analyse all the species 
at once, as their phenology was highly influenced by their 
overwintering stage (Fig. 1). Thus, we chose to limit the data 
to the species that overwinter as either an egg (40 species), 
larva (65 species) or pupa (44 species) as their main strat-
egy. To confirm we could not include these three overwinter 
stages in the same model, we ran lme models for each phe-
nological metric, with each overwintering stage category 
and year as fixed effects, and year and VC as random effects, 
to see whether the groups were significantly different in 
their response. For First Emergence and Peak Emergence 

Fig. 1  The number of First Emergence and Peak Emergence records on each day of year, and the number of Emergence SD records of number of 
days spread, for all 149 species and for each overwintering stage category
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large difference in the slope for Year for each phenological 
metric, with FE advancing much quicker than PE and ESD 
(Table 4).

Pupa overwintering species

The best LME models for species that overwinter as pupa 
were the same as for egg overwintering species, with Year 
and CMTVC included for FE and PE and Year for ESD. In 
comparison with the other overwintering stages, pupa had 
a much stronger response to temperature overall, but par-
ticularly for FE (Table 5). Further, the year response was 
also the strongest for all phenological metrics for pupa over-
wintering species, but particularly for FE as the slope was 
almost double the equivalent slope for egg and larva over-
wintering species (Tables 3, 4 and 5).

Discussion

Our results confirmed previous findings that the flight period 
phenology of univoltine moth species in England and Wales 
has changed significantly over the last 50 years. Moth flight 
periods are starting earlier in the year and overall duration 

represents the metabolic impacts of temperature over the 
development period.

Egg overwintering species

The best LME models for the 40 species that overwinter 
as an egg included Year and CMTVC for both FE and PE 
and Year for ESD, no traits were significant. The slope of 
change for Year was the largest for FE at -0.172, compared 
to -0.040 for PE and 0.016 for ESD (Table  3). However, 
temperature affected PE the most as this had the larger slope 
of -3.438 compared to -3.132 for FE (Table 3).

Larva overwintering species

The best LME model for each phenological metric was 
not as consistent for larva overwintering stage as it was 
for egg. For both FE and PE the best model included Year, 
CMTVC, and the Hostplant Category trait. There were no 
traits significant for ESD so only Year was included. The 
woody hostplant category was significant and had the larg-
est slope for both FE and PE, but the herbaceous hostplant 
category was not (Table 4). Temperature had a larger slope 
for FE at -3.276, compared to -3.033 for PE. There was a 

Table 2  The results from the best LME model for each of the three phenological metrics when testing for significant difference between each of 
the overwintering stage categories
Phenological 
Metric

Best Model Variables Value Std.Error DF t-value p-value

First 
Emergence

FE ~ Overwintering Stage + Year, ran-
dom effect = Year per Watsonian Vice 
County nested in Species

(Intercept) 231.004 4.342 28,447 53.205 < 0.001***
Larva -38.742 5.427 146 -7.138 < 0.001***
Pupa -85.361 5.938 146 -14.375 < 0.001***
Year -0.213 0.017 28,447 -12.630 < 0.001***

Peak 
Emergence

PE ~ Overwintering Stage + Year, ran-
dom effect = Year per Watsonian Vice 
County nested in Species

(Intercept) 243.922 4.335 28,447 56.273 < 0.001***
Larva -41.920 5.417 146 -7.738 < 0.001***
Pupa -88.860 5.927 146 -14.993 < 0.001***
Year -0.035 0.017 28,447 -2.089 0.037*

Emergence 
SD

ESD ~ Overwintering Stage + Year, ran-
dom effect = Year per Watsonian Vice 
County nested in Species

(Intercept) 14.389 0.464 28,447 31.037 < 0.001***
Larva -0.410 0.577 146 -0.711 0.478 NS
Pupa 2.382 0.631 146 3.772 < 0.001***
Year 0.018 0.005 28,447 3.663 < 0.001***

Table 3  The results from the best LME model for egg overwintering species for each of the three phenological metrics
Phenological 
Metric

Best Model Variables Value Std.Error DF t-value p-value

First 
Emergence

FE ~ Year + Cumulative Mean Tem-
perature, random effect = Watsonian 
Vice County nested in Species

(Intercept) 275.795 5.839 5,319 47.230 < 0.001***
Year -0.172 0.009 5,319 -18.484 < 0.001***
Cumulative Mean Temperature -3.132 0.144 5,319 -21.788 < 0.001***

Peak 
Emergence

PE ~ Year + Cumulative Mean Tem-
perature, random effect = Watsonian 
Vice County nested in Species

(Intercept) 291.391 5.691 5,319 51.205 < 0.001***
Year -0.040 0.008 5,319 -5.159 < 0.001***
Cumulative Mean Temperature -3.438 0.125 5,319 -27.435 < 0.001***

Emergence SD ESD ~ Year, random effect = Watsonian 
Vice County nested in Species

(Intercept) 14.351 0.475 5,320 30.238 < 0.001***
Year 0.016 0.004 5,320 4.368 < 0.001***
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we have confirmed and expanded on previous studies on the 
impact of species’ traits on phenology (Altermatt 2010a; 
Teder 2020; Hällfors et al. 2021).

All of the overwintering stages followed predominantly 
the same trend of traits not being included in the best model, 
with the exception of Hostplant Category for the larva over-
wintering stage. This is likely due to the inclusion of species 
in the random effects of each model. In essence, a species 
traits are the parts that make up the sum that is the species 
itself, so by including both the traits as fixed effects and 
species as the random effects we were including the “spe-
cies” explanatory variable twice. However, the models with 
species included as a random effect were a better fit to the 
data than the models including the traits as fixed effects. 
Individual life history traits are not good predictors of phe-
nological change in moths because of interspecific varia-
tion. In other words, the individualistic responses of moth 
species outweigh the predictive value of particular traits. 
As such, the only variables that were consistently signifi-
cant across all the models were the environmental variables 
Year and Cumulative Mean Temperature. Furthermore, the 
best model for all phenological metrics and overwintering 
stages included Vice County as a random effect. This dem-
onstrates that averaging phenology to large areas, such as 
England for example, may be problematic as the variation in 

is increasing. We extended previous studies by showing 
that these phenological shifts are different depending on the 
overwintering stage of the species. Species overwintering 
as pupa have the earliest First Emergence and Peak Emer-
gence, followed by larva overwintering species and finally 
egg overwintering species, with approximately 40 days 
difference between each of these categories. Further, pupa 
overwintering species had a much longer flight period than 
egg and larva overwintering species, which further confirms 
the results in O’Neill et al. (2012), Végvári et al. (2015)
d llfors et al. (2021). However, this variation in response 
depending on overwintering stage makes investigating the 
drivers of species’ phenology challenging. The interspecific 
variation between each of the overwintering stages could 
not be captured in one model with the proposed error distri-
bution, which would result in inaccurate measures of pheno-
logical shifts and their drivers. Thus, by running the model 
separately for each overwintering stage we could more 
accurately determine the drivers of emergence phenological 
shifts. Overall, there is a strong indication from the LME 
models that temperature is an important driver of phenol-
ogy, and that phenological shifts vary in space. As well as 
this, the type of hostplant utilised by species can influence 
phenology, but the strength of this driver varies depending 
on the phenological measure and overwintering stage. Here, 

Table 4  The results from the best LME model for larva overwintering species
Phenologi-
cal Metric

Best Model Variables Value Std.Error DF t-value p-value

First 
Emergence

FE ~ Year + Cumulative Mean Tem-
perature + Woody + Herbaceous, 
random effect = Watsonian Vice 
County nested in Species

(Intercept) 236.219 8.679 12,452 27.218 < 0.001***
Year -0.179 0.006 12,452 -28.137 < 0.001***
Cumulative Mean Temperature -3.276 0.084 12,452 -38.896 < 0.001***
Hostplant Category: Woody 17.165 7.394 62 2.321 0.024*
Hostplant Category: Herbaceous -6.230 8.988 62 -0.693 0.491 NS

Peak 
Emergence

PE ~ Year + Cumulative Mean Tem-
perature + Woody + Herbaceous, 
random effect = Watsonian Vice 
County nested in Species

(Intercept) 241.971 8.727 12,452 27.728 < 0.001***
Year 0.020 0.005 12,452 3.804 < 0.001***
Cumulative Mean Temperature -3.033 0.075 12,452 -40.325 < 0.001***
Hostplant Category: Woody 17.628 7.447 62 2.367 0.021*
Hostplant Category: Herbaceous -6.234 9.053 62 -0.689 0.494 NS

Emergence 
SD

ESD ~ Year, random effect = Watso-
nian Vice County nested in Species

(Intercept) 13.508 0.415 12,453 32.538 < 0.001***
Year 0.035 0.003 12,453 13.833 < 0.001***

Table 5  The results from the best LME model for pupa overwintering species
Phenological 
Metric

Best Model Variables Value Std.Error DF t-value p-value

First 
Emergence

FE ~ Year + Cumulative Mean Tem-
perature, random effect = Watsonian 
Vice County nested in Species

(Intercept) 210.645 5.374 10,671 39.198 < 0.001***
Year -0.308 0.009 10,671 -35.572 < 0.001***
Cumulative Mean Temperature -4.613 0.110 10,671 -42.008 < 0.001***

Peak 
Emergence

PE ~ Year + Cumulative Mean Tem-
perature, random effect = Watsonian 
Vice County nested in Species

(Intercept) 213.509 5.330 10,671 40.060 < 0.001***
Year -0.049 0.007 10,671 -7.051 < 0.001***
Cumulative Mean Temperature -4.126 0.093 10,671 -44.466 < 0.001***

Emergence SD ESD ~ Year, random effect = Wat-
sonian Vice County nested in Species

(Intercept) 15.291 0.489 10,672 31.285 < 0.001***
Year 0.053 0.003 10,672 15.254 < 0.001***
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for species that overwinter as larva, with these species gen-
erally emerging later than those that feed on herbaceous 
plants, contrary to the finding of Altermatt (2010a) that spe-
cies that feed on woody plants emerge earlier. This would be 
intuitive for egg overwintering species, as there is expected 
to be strong selection pressure on the phenology of moth 
caterpillars to coincide with the narrow window in which 
the freshly emerged leaves of woody plants are edible, and 
indeed such phenological flexibility and significant tempo-
ral trends has previously been demonstrated (Visser et al. 
2006; Altermatt 2010a; Burgess et al. 2018). However, for 
larva overwintering species that feed before overwintering, 
this may instead reflect the conditions of the previous year, 
such as the extension of the end of the growing season. It is 
possible that, as Végvári et al. (2015) postulate, the pressure 
is instead for species to synchronise more closely with her-
baceous hostplants which, being shorter-lived than woody 
hostplants, have a much smaller window within which they 
can synchronise. In the case of larva overwintering spe-
cies, those that feed on herbaceous plants may be tracking 
changes in herbaceous plant phenology, while species that 
feed on woody plants shift their phenology more slowly, 
and thus emerge later.

Compared to First Emergence, there was a much more 
varied response in Peak Emergence phenology across the 
three overwintering stages. The slope for year for Peak 
Emergence was positive, indicating delayed phenology, for 
larva overwintering species. However, for egg and pupa 
overwintering species the slope was negative, with the 
strongest response again for pupa overwintering species as 
with First Emergence, in agreement with previous studies 
such as Bonoan et al. (2021) and Prior et al. (2009). This 
disparity may be due to Hostplant Category “woody” being 
significant for larva overwintering species’ Peak Emergence 
phenology, with a larger slope than for First Emergence, 
along with a smaller slope for temperature. However, it is 
possible that due to only 4 of the 65 larva overwintering 
species specialising in woody hostplants and 15 of the 65 
having both woody and herbaceous, this result of woody 
being important for larva overwintering species’ phenology 
is unreliable, and instead represents the different pheno-
logical strategies between species that feed on woody and 
herbaceous plants. This could explain why there was no sig-
nificance for Hostplant Category for the egg and pupa over-
wintering species, as the majority have woody hostplants. 
Evidently, the three overwintering stage categories respond 
to the same variables differently at different parts of the sea-
son. There is an overall larger change across years for Peak 
Emergence than for First Emergence. However, temperature 
is more important for early season phenology for both the 
larva and pupa overwintering species, but not for the egg 
overwintering species. This may be due to the reliance of 

environmental cues over such a large area leads to variation 
in phenology. Thus, by calculating the phenological metrics 
and Cumulative Mean Temperature at the Vice County level 
we included this spatial variation in our models.

It has been shown that phenological measures at the 
beginning of the season can be highly variable, dependent 
on recording effort and population changes (Miller-Rushing 
et al. 2008; Van Strien et al. 2008). Here, we attempted to 
mitigate this using the First Emergence measure utilised 
by Van Strien et al. (2008). However, this does not take 
into account changes in species distribution that may have 
occurred over the study period. Many moth species have 
altered their distribution in Britain over the last 50 years 
(Randle et al. 2019), which could be due to species track-
ing their ideal climate in response to temperature changes 
(Lenoir et al. 2020). Furthermore, a change in the timing 
of phenology for species with an altered distribution could 
be due to more records where the species previously was 
not present, but could also represent species responding to 
environmental variables such as lower temperatures com-
pared climatic conditions in the core part of their distribu-
tion. Population changes could also impact measures, as a 
large increase in abundance could lead to the appearance 
of earlier emergence due to there being more individuals to 
record, but could also be a real change in phenology. Similar 
problems can be seen with increased recording effort. While 
this study has shown the utility of citizen science data for 
addressing questions that would be extremely difficult to 
achieve with a standardized study design over such a long 
period and spatial area, the are limitations of data quality 
and recording effort that do need to be acknowledged. We 
endeavored to reduce some of these problems in the cal-
culation of the phenological metrics. Firstly, by calculating 
First Emergence as the 25th percentile day of year, we less-
ened the possibility of erroneous records early in the season 
impacting the First Emergence metric. Further, by follow-
ing the methods of Van Strien et al. (2008) we focussed on 
well-sampled more easily identifiable macro-lepidoptera, 
along with aggregating to Vice County and thereby integrat-
ing over several populations, we attempted to minimise the 
bias of both recording effort and changes in distribution and 
abundance.

First Emergence changed the most for pupa overwinter-
ing species, which had the largest slope for both year and 
Cumulative Mean Temperature, followed by species that 
overwinter as larva, and then egg. This larger slope indicates 
a faster response of pupa overwintering species, with faster 
phenological shifts over time and with higher temperatures. 
For all overwintering stage categories the slopes were nega-
tive, indicating an overall phenological shift towards earlier 
emergence for the species in each category. Additionally, we 
found that the hostplant category “woody” was significant 
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studies have noted the impact on survivability of egg over-
wintering species, such as Operophtera brumata, if they 
lose synchrony with their hostplants due to not being able to 
adapt as quickly (Visser and Holleman 2001). Furthermore, 
there may be areas where species are at a higher risk, due to 
the variation in phenological response in space. Thus, these 
analyses build on previous studies highlighting the con-
servation concern for species that overwinter in earlier life 
stages, where there is a risk that they will be unable to adapt 
fast enough to counteract the impact of climate change on 
both the species’ and its hostplants phenology.
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supplementary material available at https://doi.org/10.1007/s10841-
024-00578-z.
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