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1.  INTRODUCTION 

The term ‘sea lice’ generally refers to a family of 
marine copepod crustaceans, Caligidae (Revie et al. 

2009). Sea lice are ecto-parasites that depend on suc-
cessful attachment to hosts for full maturation and 
reproduction in completion of their life cycle. There 
are many species of such parasitic copepods of fish 
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(Kabata 2003), but the sea lice that infest salmonids 
are of particular economic and environmental con-
cern. The most extensively studied species is Lep-
eophtheirus salmonis (Krøyer, 1837), often referred 
to as ‘salmon lice’, which are well documented to 
have a major impact on aquaculture sustainability 
(Krkošek et al. 2007, Costello 2009, Taranger et 
al.  2015, Abolofia et al. 2017, Forseth et al. 2017, 
Myksvoll et al. 2020, Johnsen et al. 2021, Bøhn et al. 
2022). An important aspect of aquaculture sustain-
ability, in the North Atlantic region, is moderating or 
minimising impact on wild fish stocks; thus it is 
important to understand the interactions between 
farmed Atlantic salmon Salmo salar L. and wild 
Atlantic salmon, sea trout Salmo trutta L. and Arctic 
char Salvelinus alpinus L. The success of wild salmon 
populations, in terms of numbers and sizes of fish 
returning from sea, depends on the magnitude and 
interactions of many pressures operating in both the 
freshwater and marine environments (Beaugrand & 
Reid 2012, Todd et al. 2012, Forseth et al. 2017, 
Olmos et al. 2020). Wild Atlantic salmon, which are in 
population decline (Chaput 2012), are subject to a 
wide range of pressures in the marine environment 
including sea lice (Dadswell et al. 2022, Utne et al. 
2021, 2022), the impact of which needs to be urgently 
assessed and managed to bolster wild stocks in many 
salmon-producing countries. 

Sea lice occur naturally in the marine environment 
and are commonly recorded on wild salmonids. 
However, the numbers of sea lice in coastal waters 
can be greatly inflated by the presence of salmon 
aquaculture (Dempster et al. 2021). Salmon smolts 
can tolerate sea lice as parasites with little conse-
quence up to threshold levels, above which serious 
physiological damage and direct mortality can occur 
(Grimnes & Jakobsen 1996, Finstad et al. 2000, Wag-
ner et al. 2003, Fjelldal et al. 2020). Wild salmon are 
particularly at risk from sea lice infection as they 
migrate towards the high seas due to the proximity of 
their migration paths to salmon farms, which are 
mostly located in the coastal zone (Bøhn et al. 2020, 
Johnsen et al. 2021, Vollset et al. 2023). By contrast, 
wild sea trout may be exposed to sea lice from aqua-
culture for months in coastal populations. Sea trout 
(those individual brown trout that migrate to sea) can 
return to freshwater (where salinities are below sea 
lice tolerance levels), where the parasite detaches 
from the host. However, this delousing behaviour 
may disrupt anadromy (the process of migrating from 
freshwater to sea and back) in sea trout over time 
(Bøhn et al. 2022); it may also reduce growth and 
compromise future fitness for individual fish (Serra-

Llinares et al. 2020). Impacts of sea lice in wild Artic 
char populations are less investigated; however, 
infestation in the short periods of marine migrations 
for feeding and storage of energy supplies can nega-
tively impact their osmoregulatory control, growth 
and survivorship (Fjelldal et al. 2019). 

Sea lice are difficult to control on farms due to their 
resistance to chemical treatments (Aaen et al. 2015) 
and their planktonic larval stages, which allow dis-
persal by currents over many kilometres (Asplin et al. 
2014, Rabe et al. 2020, Huserbråten & Johnsen 2022). 
This dispersion of larval stages facilitates connectiv-
ity in lice populations within and between different 
salmon farms, with high infestation potential of 
farmed and wild fish host populations (Adams et al. 
2015, Samsing et al. 2017, Cantrell et al. 2021, Huser-
bråten & Johnsen 2022, Harrington et al. 2023). Man-
aging and minimising sea lice connectivity between 
farmed fish and wild stocks requires an understand-
ing of the sea lice life cycle. The sea lice planktonic 
dispersal stages are particularly important for mod-
elling the processes by which they are transported 
towards new hosts (e.g. Myksvoll et al. 2018, Murray 
et al. 2022a). 

To understand sea lice populations and improve 
their management, dispersal models have been 
specifically developed in Norway, Scotland, Canada, 
Ireland and the Faroe Islands (Amundrud & Murray 
2009, Jackson et al. 2012, Johnsen et al. 2016, 
Cantrell et al. 2018, Kragesteen et al. 2018). Gener-
ally, modelling sea lice distributions requires de -
tailed hydrodynamic models with relevant regional 
meteorological forcing and highly resolved tidal, 
temperature, salinity and freshwater inflow forcing, 
and coupled to a regional model that provides realis-
tic values of currents, salinity and temperature along 
lateral boundaries. Such computational models are 
then coupled with biological models accounting for 
sea lice behaviour (e.g. survival, stage development 
and swimming), and finally forced using regional 
aquaculture site locations, farm stocking and man-
agement of on-fish sea lice counts. Further inference 
can be made by developing a population model to 
account for on-farm treatments and physical site 
conditions (Kragesteen et al. 2021). However, many 
parameter values within physical components of dis-
persal models and details of larval behaviour, ecol-
ogy and host−parasite interactions remain uncertain. 
Much of the empirical and modelling effort driving 
this field has taken place in Norway, with work also 
carried out in other areas, such as Scotland or Canada 
(Murray et al. 2022a). Questions remain open as to 
the most appropriate methods of validation and an a -
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lysis of model outputs and their integration with 
sparce data sources for specific applications (Murphy 
et al. 2024, this volume). Furthermore, work to assess 
the optimal approach to combining models repre-
senting different components of the life cycle is also 
relatively underdeveloped (Cantrell et al. 2020). 

Advances in modelling techniques have led to 
improvements in simulating aspects such as sea lice 
behaviour (e.g. McEwan et al. 2015, Johnsen et al. 
2016), which can be coupled with wave−wind−tide 
interactions in 3D flow fields (e.g. Lewis et al. 2019). 
Given the importance of inter- and intra-annual 
weather-driven variability in dispersal (e.g. Myksvoll 
et al. 2020, Demmer et al. 2022), growing interest in 
aquaculture (Bostock et al. 2010) and the increase in 
coastal engineering projects (e.g. offshore wind farm 
colocation; Gimpel et al. 2015), it is important to 
review how these advances can be best utilised along-
side other priority areas of research. Furthermore, 
dispersal modelling is becoming an increasingly im -
portant tool for Scotland’s aquaculture industry. Appli-
cations to reduce impact of potential interactions be -
tween sea lice originating on farms and wild smolts 
at a site level have been developed (Moriarty et al. 
2023a). This work is ongoing, drawing from best avail-
able research, as is the case in Norway (Sandvik et al. 
2020, 2021a). This means there is a need for clearly 
defined and empirically justified protocols for sea lice 
population and dispersal models as they relate to 
management and regulatory objectives. Additionally, 
to ensure best adaptive management practices, there 
is a need to critically assess the information available 
on an iterative basis. A review of the data collected to 
describe biological parameters important to effective 
modelling has previously been made (Brooker et al. 
2018). Thus, our purpose of reviewing information is 
to update and further investigate the nature of uncer-
tainties and sensitivity of important biological pro-
cesses and the parameter values chosen to represent 
sea lice larval biology. The ultimate aim is to improve 
distribution and abundance modelling (specifically, 
sea lice dispersal modelling and sea lice population 
and larval production assessment). 

2.  METHOD FOR LITERATURE REVIEW 

The review is framed around the key stages in 
the infection process as categorised in Moriarty et 
al.  (2023a). This process can be split into 5 stages 
(Fig. 1): (A) production of sea lice nauplii on farmed 
fish; (B) transport of the sea lice copepodids in the 
marine environment; (C) exposure and infestation of 
new host fish; (D) development and survival of the 
attached lice stages; and (E) impact on those host 
populations. 

Therefore, we have carried out an evaluation of the 
literature by systematically reviewing the steps in 
Fig. 1 to assess where key knowledge gaps exist, in 
terms of both availability of data to reduce parameter 
variation and the importance of this variation for 
effective assessment and management of impacts of 
sea lice on wild salmonids (see Murphy et al. 2024 for 
details of stakeholder opinions). The conceptual 
framework presented in Fig. 1 simplifies the infection 
process into 5 main steps to guide our review; this is 
not intended as an all-encompassing diagram. Vari-
ous models will span multiple stages outlined above, 
while others, such as interactions with wild fish, will 
not be well represented by Fig. 1, but are discussed 
in Section 3. Therefore each stage (A to E) is ex -
panded graphically, while models, their characteris-
tics and applications within the sea lice infection pro-
cess are summarised in Table 1. These schematics 
and table are presented to aid understanding and 
simulate the discussion of key uncertainties and data 
gaps within the text. 

3.  REVIEW OF CURRENT STATE OF  
KNOWLEDGE 

Research into sea lice dispersal modelling and sea 
lice population assessment is framed around the key 
stages in the infestation process (Fig. 1). Sea lice dis-
persal and population models are operational and 
effective in some national management plans (e.g. 
Norway) and are currently being integrated into 

Fig. 1. Conceptual framework of infection processes from nauplii release to infestation (and beyond), adapted after Moriarty 
et al. (2023a) to include a specific step describing the attached lice development and mortality stage (Murray et al. 2022b), and  

highlighting the link from Stages E to A through reproduction (specifically fertility and fecundity)
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Model type                                 Model classification                               Applications 
 
Difference equations                Deterministic                                           Effects of sea lice infection and predation on salmon productivity 
                                                    Discrete-time dynamics                         Population growth models (e.g. Ricker 1954, Rogers et al. 2013) 
                                                    Spatially homogeneous                          
                                                    Can include delays                                  
                                                    Often used within other models 
Matrix models                            Deterministic                                           Age-structured population growth models used to describe  
                                                    Balanced linear system of difference    dynamics of connected sea lice population network (e.g. Toorians 
                                                     equations                                                & Adams 2020) 
                                                    Can include stochastic effects               Analysis of temperature-dependent sea lice demography (e.g. 
                                                                                                                       Groner et al. 2014) 
Numerical ocean-circulation   Deterministic                                           Model for current, temperature and salinity patterns in marine 
 model                                        Numerically solved complex                 environment (e.g. Asplin et al. 2020) 
                                                     dynamical system                                 Applied connectivity modelling using finite volume coastal ocean 
                                                    Includes hydrodynamic equations        model (FVCOM) simulation of the spread of sea lice from salmon 
                                                    3-dimensional transport and                 farms in Scotland (e.g. Rabe et al. 2020) 
                                                     diffusion equations                               See the National Partnership for Ocean Prediction (NPOP) for a  
                                                    Realistic model for oceanic motion        growing list of coastal models and their applications (https:// 
                                                                                                                       coastal.miraheze.org/) 
Partial differential                     Deterministic                                           Timing and probability of arrival for sea lice dispersing between  
 equations                                 Continuous                                               farms (e.g. Harrington et al. 2023) 
                                                    Time dynamics                                       Stage structure global sea lice dynamics using partial differential 
                                                    Advection-diffusion models                   and delay differential equations (e.g. Tian et al. 2018) 
                                                    Spatially heterogeneous                         
Stochastic processes                 Discrete-time or continuous-time        Exploring epidemiological factors affecting sea lice abundance on 
                                                     dynamics                                                salmon farms (e.g. Jeong et al. 2021) 
                                                    Stochastic                                                 
                                                    Can include additional hierarchy          
                                                    Can be adapted for full system              
                                                     dynamic modelling 
Regression models                    Descriptive/correlational                       Estimating sea lice dispersal among and within aquaculture sites 
                                                    Statistical (GLM, GLMM, random        (e.g. Parent et al. 2021) 
                                                     effects, logistic regression, mixed      Identifying epidemiological factors effecting sea lice abundance on 
                                                     effects linear regression)                      salmon farms (e.g. Revie et al. 2003) 
                                                    Can include spatial effects                    Associations between aquaculture and sea louse infections on sea  
                                                                                                                       trout (e.g. Middlemas et al. 2013) 
Ordinary differential                Deterministic                                           Host−parasite models for sea lice−salmon dynamics, e.g.  
 equations                                  Continuous-time dynamics                    Anderson−May model (Anderson & May 1978) 
                                                    Spatially homogeneous                         Sea lice model incorporating seasonal dynamics (e.g. Rittenhouse 
                                                    Can include delays                                  et al. 2016) 
                                                                                                                      Host−parasite models for sea lice−salmonid dynamics (e.g. Stien et  
                                                                                                                       al. 2005) and farm treatment effects on sea lice populations (e.g.  
                                                                                                                       Revie et al. 2005b) 
                                                                                                                      Parasite-mediated changes to predation (e.g. Peacock et al. 2014) 
Individual-based                       Can be deterministic and/or                 Lagrangian Advection and Diffusion Model (LADIM; https://github. 
(or agent-based) model             stochastic                                                com/bjornaa/ladim)  
                                                    Particle tracking computer model        Described in Myksvoll et al. (2018) and Sandvik et al. (2020) 
                                                    Simulates actions and interactions      FISCM described in Ounsley et al. (2020) https://github.com/Geoff 
                                                     of individuals within a system             Cowles/fiscm/tree/ounsley_et_al_2019) 
                                                    Includes physical advection and          BioTracker described in Adams et al. (2016) 
                                                     diffusion of particles                             UnPTRACK described in Gillibrand & Willis (2007) (https://github. 
                                                    Multiple stages of development            com/gillibrandpa/unptrack) 
                                                                                                                      Predicting role of wild refugia in sea lice resistance (McEwan et al.  
                                                                                                                       2015) 
Survival functions and             Statistical                                                 Survival analysis 
 hazard functions                      Descriptive                                              Impacts of sea lice on salmon survival in the NE Atlantic (Krkošek et 
                                                    Correlational                                            al. 2013) 
                                                                                                                      Effects of salinity on sea lice survival on juvenile salmon (Connors et  
                                                                                                                       al. 2008) 
                                                                                                                      Timing and probability of arrival for sea lice dispersing between  
                                                                                                                       farms (e.g. Harrington et al. 2023) 
Dose response analysis             Statistical                                                 Sea lice loads associated with reduced welfare (Ives et al. 2023) 
                                                    Descriptive                                              Emergence of chemotherapeutic resistance (e.g. Whyte et al. 2014) 
                                                    Correlational                                            

Table 1. Types of models used in various stages of sea lice modelling, their classification and examples of their applications  
(updated after Groner et al. 2016a)
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 others (e.g. Scotland). However, data 
for parameterisation of models is in -
evitably incomplete, with varying de -
grees of uncertainty in different com-
ponents or processes that make up the 
model. This incompleteness leads to 
uncertainties in the as sessment of in -
festation and impact on host fish, and 
thus in effective management. Table 1 
summarises the characteristics and 
ap plications of the various models 
used to de scribe the information pre-
sented in Sections 3.1 to 3.5. 

3.1.  Stage A: production of  
sea lice larvae 

Host-density dependence is an im -
portant factor in sea lice transmission 
dynamics (Fig. 2A; Krkošek 2010, Jan -
sen et al. 2012, Kristoffersen et al. 2018, 
van Walraven et al. 2021) which re-
flects a tendency for more interactions 
when farms are closer together. When 
developing models of sea lice popula-
tion dynamics, using basic stage-struc-
tured modes (Fig. 2B, Table 1), there is 
a need for experimental investigation 
of possible density-dependent effects 
on sea lice fecundity and survival (Stien 
et al. 2005). Increases in host density 
may trigger a transition from chronic 
to  acute sea lice outbreak dynamics 
(Krko šek 2010, Jansen et al.  2012, 
Groner et al. 2016a). Thus, in an effort 
to provide information to manage this, 
sea louse abundance on farms (i.e. 
number of sea lice per fish, Fig. 2C) is 
routinely re ported by companies and is 
highly variable among individual fish 
and among cages (Heuch et al. 2011). 
Sea lice sampling and reporting on 
salmon farms has improved over the 
past 2 decades to resolve issues around 
farm-level estimates that can be af-
fected by pen-level clustering (Trea-
surer & Pope 2000, Revie et al. 2005a, 
2007, Heuch et al. 2011). For example, 
in Scotland the counting regime is car-
ried out by farm operators, and is 
based on at least 25 fish from a farm, 
taken from at least 5 pens (Scottish 

5

Fig. 2. Understanding nauplii production on farms requires knowledge of the 
sea lice life cycle. Here we highlight the key drivers impacting the pelagic lar-
val stages as discussed in Section 3.1. (A) Summary of the parasite factors 
determining disease development. (B) Simplified sea lice life cycle focusing on 
the pelagic larval stages (black text). (C) Key drivers of nauplii production  

from farms 
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Salmon Producers’ Organisation 2015). Adult females 
are reported to Scottish Government Fish Health In -
spectors who also carry out audits. In Norway, the au-
thorities require salmon farmers to re port on key pro-
duction statistics; this includes counting and reporting 
sea louse infestations weekly when water tempera-
tures are above 4°C (Guarracino et al. 2018). Either 10 
or 20 fish are required from every pen on a farm, in 
the winter/spring and summer periods, respectively 
(van Walraven et al. 2021). In the Faroe Islands, sea 
lice are counted on 20 fish in each net pen every 2 wk, 
by a third party (Fiskaaling), and data are reported to 
the authorities (Faroese Food and Veterinary Author-
ity). For Norway and the Faroe Islands, sea lice stages 
are registered as adult females, large mobile stages, 
and small mobile stages, and adult Caligus elongatus 
are also reported. In most jurisdictions, counts are 
regularly audited by official inspectors, and while dif-
ferences have been ob served between self-reporting 
and auditor-based estimates, counts of adult females 
tend to be most accurate (Elmoslemany et al. 2013, 
Godwin et al. 2021), particularly for higher sea lice 
abundances. Sea lice tend to follow a negative bino-
mial distribution at low sea lice prevalence on both 
farms (Jeong & Revie 2020) and in wild salmon popu-
lations (Murray & Simpson 2006), but tend towards bi-
nomial distribution at higher prevalence levels on farms 
(Heuch et al. 2011). Abundance of sea lice also varies 
considerably over time (McKenzie et al. 2004, Johnsen 
et al. 2021, Sandvik et al. 2021a), with a tendency to 
in crease through production cycles (Revie et al. 2003, 
Lees et al. 2008), but with considerable short-term vari-
ation, particularly and as expected following treatment 
interventions (Gautam et al. 2017). 

This leads to a key question, ‘What is the precision 
of on-farm sea lice enumeration?’ In this context, the 
fuller reporting of overall sea lice demographics (e.g. 
reporting of all sea lice numbers not only adult fe -
males) on salmon farms is more likely to aid in an 
accurate estimate of population-level infestation pres-
sure. While the situation in Scotland has im proved 
with weekly counts reported (as opposed to monthly 
mean abundances, prior to 2021), these are only for 
adult female lice attached to salmon. The rationale 
behind this approach appears sound in that this stage 
leads to larval populations that re-infest. Indeed, in 
some regions (e.g. Ireland), the requirement is to 
report only gravid female lice, i.e. those that have 
egg strings attached. However, one problem with 
this approach is that the more narrowly defined a 
metric becomes, particularly one that is also a target 
(as is the case in many regions where treatment 
‘thresholds’ exist), the less useful it be comes from a 

data science perspective — an effect commonly re -
ferred to as ‘Goodhart’s Law’, which appears to apply 
to sea lice reporting (Jeong et al. 2023). Reporting 
only the female adult stages, does not allow re -
searchers to quantify the mortality and population 
dynamics in the chalimus, pre- adult and adult stages. 
This leaves gaps in our understanding of the full sea 
lice life cycle, with a paucity of data between the lar-
val and adult stages including infectivity from pelagic 
larval concentrations, likely underestimates of the 
small and more easily hidden copepodid and chal-
imus stages, reproductive mate-guarding effective-
ness in pre-adult stages and inter-stage mortality. 
However, quantification of the stages other than the 
adult female is demanding and requires a higher level 
of expertise, time and possibly additional equipment 
(e.g. microscope for counts on copepodids in gills). 
As underwater imaging of attached sea lice on fish 
and image processing using machine learning be -
come increasingly adopted on farms, infestation esti-
mates should improve, but it is unlikely that data on 
all attached life stages will be provided. 

Further uncertainties arise in the precision of on-
farm sea lice enumeration as the total number of lice 
on salmon farms depends on the number of fish on 
the farm (Fig. 2C). By legislation, all active farms 
in  Norway must report the number of fish stocked 
monthly. Although the numbers are confidential and 
not published, they can be used for both research and 
advisory purposes. In Scotland, the numbers are also 
published, although fish weights and biomass have 
been reported historically, thus allowing numbers to 
be estimated (Salama et al. 2016). Two proxies for 
estimating fish numbers are farm-consented bio -
mass (i.e. the maximum biomass al lowed) and actual 
biomass on the farm, which are often publicly avail-
able data. In some ways, consented bio mass is more 
useful as it is known for all farms prior to stocking, 
while actual biomass is only available retrospec-
tively. An estimate of the number of fish can be made 
based on consented biomass, but it may be higher 
than the actual number stocked and will include 
farms that were not stocked or in operation during a 
study window. Moriarty et al. (2023a) apply the 
equation F = sB/Wh, where s is a multiplier used to 
account for overstocking for fish (F) that are har-
vested early or die during production, B is consented 
biomass (kg) and Wh  is the average weight of the 
fish (kg) throughout the production cycle. In reality, 
the relationship between numbers of fish and bio -
mass changes throughout the cycle as fish grow from 
a few hundred grams to 5 kg or more. This causes 
substantial uncertainties in the estimate of the num-
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ber of  fish, which a fixed estimate based on con-
sented biomass reduces. However, for increased 
accuracy, modelling over shorter periods of time (2 to 
3 mo) when the number of fish is relatively constant 
and estimating the average fish weight based on the 
stage of the production cycle may be preferable. 

Precision in on-farm sea lice enumeration is impor-
tant, as it leads to inferences being made within the 
sea lice population dynamics and dispersion in the 
larval stages. Sea lice larvae hatch directly into the 
water from egg strings attached to the gravid adult 
female on a fish host (Fig. 2B). Egg string lengths are 
correlated with the number of embryos contained 
within a string and vary according to many factors, 
including age of the louse, origin (wild or farmed 
host), farm treatment regimes and temperature 
(Brooker et al. 2018). However, the female louse can 
release egg strings if stressed due to crowding or 
delousing events and eggs will continue to develop 
normally after becoming detached (Eisenhauer et al. 
2020), thus changing the dispersal dynamics. Occa-
sional non-viable egg strings are produced, but these 
appear to be rare (Gravil 1996, Heuch et al. 2000). 
Longer egg strings but slower hatching rates are 
associated with lower temperatures (Samsing et al. 
2016) and viability of eggs and embryos is affected 
by very low temperatures. In experimental work, lar-
vae developing from hatched eggs were obtained for 
100% at 20 and 15°C, 87 ± 3% (±SD) at 10°C, 90 ± 
4% at 7°C, 85 ± 4% at 5°C, and 28 ± 4% at 3°C. All 
larvae successfully developed to the copepodid 
stage, with the exception of those eggs incubated at 
3°C, where none developed to copepodids (Samsing 
et al. 2016). Egg viability is adversely affected by 
seawater with a salinity below 25 PSU. Larval hatch-
ing success has been reviewed by Brooker et al. 
(2018) and, in seawater with a salinity of 25 PSU and 
above, this can approach 100%. The production of 
eggs per ovi gerous female louse is more variable 
compared with egg or embryo viability (Johnson & 
Albright 1991, Brooker et al. 2018). For modelling 
applications, rates of between 28 and 30 viable eggs 
per day are used, as a multiplication factor (for each 
adult female) and are applied as a default (e.g. 
Adams et al. 2021, Murray & Moriarty 2021) or may 
be specified as a function of temperature (e.g. Sand-
vik et al. 2020). However, this is an area where more 
detailed empirical data, following the approach by á 
Norði et al. (2016) or similar, and subsequent mod-
elling could be useful, particularly if freshwater intru-
sions from nearby rivers occur in the modelled area. 
The freshwater influence will vary from system to 
system and region to region; in western Scotland and 

Ireland most rivers are relatively small and spring 
snow melt is less significant than in some other coun-
tries (Norway, Canada) where more snow accumu-
lates through the winter. 

3.2.  Stage B: transport and survival of sea lice 
larvae in the marine environment 

Planktonic larval sea lice dispersal depends on large-
scale hydrodynamic processes (a to d in Fig. 3A,B), 
which can transport larval stages over many kilo -
metres (Cantrell et al. 2019, Asplin et al. 2020, Rabe et 
al. 2020), and small-scale directed swimming of the 
sea lice larvae (e to h in Fig. 3A,B; Heuch et al. 1995, 
Heuch & Karlsen 1997, Crosbie et al. 2019, Szetey et al. 
2021). Numerical ocean-circulation models are a key 
tool for synthesising the complex physical and biolog-
ical drivers required for simulating the spread of sea 
lice from farms (Section 3.2.1, Table 1). Another impor-
tant consideration in understanding dispersion is sur-
vival during the planktonic larval stages (Section 3.2.2). 

3.2.1.  Transport of planktonic larvae stages 

The physical processes that affect sea lice dispersal 
vary over the coastal zone. In inshore waters, where 
the freshwater influence of hydrodynamics is signifi-
cant, baroclinic (water density-driven) dynamics are 
important, together with the effects of wind stress, 
waves and tides (a to d in Fig. 3A,B). Further offshore, 
where freshwater influence is weaker, wind, wave, 
tidal energy and larger-scale ocean currents alone 
will be the predominant drivers of transport of larvae. 
In both nearshore and offshore environments, be-
havioural traits of sea lice, controlling their vertical 
position within a flow field (i.e. bio-physical processes), 
are an important contributor to dispersal, since the 
baroclinic circulation and wind-, wave- and tidally 
driven currents all have vertical profiles (e.g. Lewis et 
al. 2017). 

Turbulence (i.e. instantaneous deviations to the 
mean flow) should be considered to impact dispersal 
through eddy viscosity, rather than viewed as a 
fine-scale transport feature (e.g. Rodriguez et al. 
1995, Nickols et al. 2012). The bio-physical transport 
processes in shelf waters are described in e to h in 
Fig. 3A,B, which, alongside physical process inter -
actions (e.g. wave−wind−tide interaction; a to d 
in  Fig. 3A,B), can significantly affect transport and 
therefore dispersal. For example, larvae remaining 
close to the sea surface during the day will experi-
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ence asym metric transport from the phase-locked 
semilunar spring−neap tidal cycle (tidal currents that 
occur around a similar time of day; Macdonald et 
al. 2014, Roberts et al. 2014, Neill et al. 2016). Near-
surface meteorologically driven currents, from wind 
and waves, will significantly differ from tide-only 
transport pathways (e.g. Lundquist et al. 2009, Dem-
mer et al. 2022), whilst surface convergence features 
such as Langmuir cells (which form foam lines paral-
lel to the wind), arise from variability in wind cur-
rents or 3D baroclinic current structures (e.g. Thorpe 
2009, Robins et al. 2012, Röhrs et al. 2023), and can 
trap buoyant material such as phototactic (responsive 
to light) sea lice larvae. Therefore, resolving the vari-
ability of the current field (both spatio-temporal scales 
and physical processes) is a crucial step when map-
ping particle transport pathways along the coast. 
Previous work has established that the drift current 
at the ocean surface is generally estimated at ~3% of 
the 10 m wind speed (e.g. van der Mheen et al. 2020). 
Wu (1983) showed that Stokes drift makes up two-
thirds (~2% of the wind speed) of the surface drift 
current. In contrast, more recent studies estimate 
lower values for surface Stokes drift, i.e. ~1% of the 
wind speed (e.g. Clarke & van Gorder 2018). 

In Norwegian waters, baroclinic current compo-
nents in the upper 20 m are important for transport-
ing plankton. This is due to the stratified Norwegian 
Coastal Current. Episodes of coastal wind will trigger 
mean unidirectional flow in the fjords lasting for sev-
eral days, and such episodes occur at least monthly 
(Asplin et al. 1999, 2014, 2020). Similarly, in Scotland, 
the baroclinic (water density-driven) circulation aris-
ing from freshwater discharges along the coast will 
strongly influence larval transport and dispersal. In 
most Scottish lochs (not including lochs with a pro-
nounced sill, e.g. Loch Etive; Edwards & Edelsten 
1977), surface salinities are typically greater than 
30  PSU, except during occasional transient fresh -
water discharge events, and sea lice larvae are ex -
pected to be found near the surface, at least during 
daylight hours. In stratified flow, vertical positioning 
in the water column becomes critical to transport and 
dispersal (Gillibrand & Willis 2007, Johnsen et al. 
2014, 2016). The complex interactions between phys-
ical and biological processes imply a need for wave−
wind−ocean-coupled 3D hydrodynamic modelling 
approaches (e.g. Lewis et al. 2014, 2019) to simulate 
sea lice dispersal at sea (Table 1). To date, modelling 
has focussed largely on inshore waters, where wave 
effects are perhaps less significant than the baro-
clinic and wind-driven circulation, and wave models 
have not generally been utilised. 

Sea lice larval behaviour and movement allows 
them to control their mean position in a given cur-
rent hydrodynamic field (Gravil 1996, Heuch & 
Karlsen 1997). Evidence for the ability of sea lice lar-
vae to swim has been studied experimentally since 
the 1990s, and relevant literature (summarised in 
Table 2) comes from 2 sources: experimental tests in 
the laboratory and observations of sea lice larvae dis-
tribution in the natural environment. Nauplii and 
copepodids have different be haviours in response to 
environmental variables and cues of light exposure, 
salinity gradients, or the presence of a potential host. 
The nauplii strategy is to widely disperse in order to 
reach favourable habitats and conditions while cope-
podids specifically locate a suitable host (Crosbie et 
al. 2019). Few experimental studies have looked at 
copepodid swimming abilities and fewer have con-
sidered nauplii (Table 2). Heuch & Karlsen (1997) 
measured copepodid swimming velocities of 1.55 ± 
0.17 mm s−1 (±SD) in an undisturbed system, while 
in response to mechanical stimulus an average burst 
swimming speed of about 13 mm s–1 for 1 to 3 s was 
re corded. However, Gravil (1996) found a mean 
swimming speed of 21.4 ± 2.4 mm s−1, a burst swim-
ming speed of 64.8 ± 25.6 mm s−1 and a maximum 
swimming speed of 102.3 mm s−1. This range of cope-
podid swimming velocities is also re flected in the dif-
ferent sea lice numerical models. Gillibrand & Willis 
(2007) implement Heuch & Karlsen’s (1997) value of 
1.55 mm s−1 for copepodid vertical movements, while 
Johnsen et al. (2014) and Sandvik et al. (2020) use a 
lower swimming speed of 0.5 mm s−1, based on the 
premise that this is a reasonable sustained swimming 
speed (Kiørboe et al. (2010). 

Burst swim speed is important for infective cope -
podids to approach and attach to hosts (Murray & 
Moriarty 2021), but it is the ability to swim persis-
tently that allows sea lice nauplii and copepodids to 
migrate vertically. Vertical position of sea lice in the 
water column is an important variable which affects 
their coastal dispersion by selecting horizontal cur-
rents to transport them (Gillibrand & Willis 2007, 
Johnsen et al. 2014, 2016, Sandvik et al. 2020), result-
ing in concentrations forming in areas with down-
welling currents. Sea lice larvae have been found in 
high concentrations at considerable distances from 
their source, with copepodids found in higher con-
centrations compared to nauplii with distance from 
source (McKibben & Hay 2004, Penston et al. 2004, 
2008). However, in other studies, the concentration 
of  lice (mostly nauplii) declined with distance from 
source, as in Ardmore Bay, Ireland (Costelloe et al. 
1996). In Killary Harbour, Ireland, sporadic concen-
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trations were found at the river mouth (Costelloe et 
al. 1998). Penston et al. (2008) sampled 2 depths and 
found more nauplii at 5 m and more copepodids at 
0 m, although depth structure varied between sam-
pling stations. Similar inference was found in the 
Faroe Islands, where copepodid spatial distribution 
was influenced by wind direction, suggesting they 
are near surface (á Norði et al. 2015). 

Vertical position of sea lice is influenced by 4 main 
environmental stimuli: light, salinity, temperature 
and pressure. Heuch (1995) observed diel vertical 
migration of copepodids in a 1 m Perspex column, 
where they gathered at the surface after 1 h of light 
exposure and migrated down over 4 h of darkness. 
Sampling in large enclosures also revealed photo -
positive behaviour of copepodids with difference in 
day and night distribution (Heuch et al. 1995). Sound 
has been suggested to impede sea lice movement, 
and in its absence, sea lice moved at 1 mm s−1 over 
10 min towards a light source (Solvang & Hagemann 
2018). Even very low light intensity (1.5 μmol m−2 s−1) 
at tracts copepodids, especially blue and white light 
(Nordtug et al. 2021). With salmon staying in deep 

water during the day and gathering at the surface 
during the night, it has been suggested that the ver-
tical migration of copepodids enables them to inter-
cept potential hosts (Heuch et al. 1995). However, 
nauplii moved relatively little with light cues (Heuch 
et al. 1995, Novales Flamarique et al. 2000). 

Conversely, more recent experimental work found 
that copepodids remained near the surface in light 
and dark, while nauplii showed diurnal migration to 
the surface with increasing light intensity (Szetey et 
al. 2021) supporting previous field studies (Nelson et 
al. 2018, Salama et al. 2018). Conflicting results on the 
swimming behaviour of the sea lice stages may be ex-
plained by an evolutionary shift due to their new 
habitat on farms which encourage daytime surface 
water feeding in the salmon (Szetey et al. 2021). A ro-
bust piece of evidence to support copepodid presence 
in near-surface waters is that salmon kept in relatively 
shallow waters (0 to 4 m depth) are more infested than 
fish kept deeper, with artificial light around fish farm 
cages further enhancing this difference (Hevrøy et al. 
2003). The effectiveness of sea lice barrier (e.g. ‘skirt-
ing’ and ‘snorkel barriers’) management practices on 

10

Parameter                                 Reference                                                              Copepodid                                      Nauplius 
 
Active swimming                     Heuch & Karlsen (1997)                               1.55 mm s−1 (±0.17)                                     nd 
                                                   Gravil (1996)                                                   Swim with ‘hop’ of                       Swim with ‘hop’ of 
                                                                                                                            21.4 mm s−1 (±2.4)                        12.5 mm s−1 (±1.6) 
Sinking velocity                       Bricknell et al. (2006)                                         1−1.4 mm s−1                                          nd 
                                                   Gravil (1996)                                                   Swim with ‘hop’ of                       Swim with ‘hop’ of  
                                                                                                                             1.0 mm s−1 (±0.3)                          0.9 mm s−1 (±0.1) 
Mechanical stimulus               Heuch & Karlsen (1997)                          17−90 mm s−1 burst speed                               na 
Semiochemical                         Bailey et al. (2006)                                      Active approach hosts                                  na 
Surface light                             Heuch et al. (2009)                                     To surface/sink in dark                                 nd 
Light                                          Novales Flamarique et al. (2000)            Actively moved towards               Did not swim towards  
                                                                                                                                     the light                                            light 
Salinity                                      Heuch (1995)                                                     Avoid <20 PSU                                        nd 
Salinity                                      Crosbie et al. (2020)                                          Avoid <20 PSU                             Avoid <30 PSU 
Thermocline                             Crosbie et al. (2020)                                               No effect                                        10−12°C 
Large enclosure                       Heuch (1995)                                                Migrate to surface in                 Less diurnal movement 
                                                                                                                              light/fall in dark                                           
Light/dark experimental         Szetey et al. (2021)                                     Remain at surface light                  Migrate to surface in 
 column                                                                                                                      and dark                                  light/fall in dark 
Light                                          Solvang & Hagemann (2018)                                1 mm s−1                                              nd 
Light                                          Nordtug et al. (2021)                            Attracted by even weak light                            nd 
Field Shieldaig/Scotland        Penston et al. (2008)                                            More at 0 m                                  More at 5 m 
 0 or 5 m                                    
Field Shetland/Scotland         Salama et al. (2018)                                72% surface night and day              65.6% surface night,  
                                                                                                                                                                                            34% day 
Field Bay of Fundy/                 Nelson et al. (2018)                                                                                                     1−6 m night, 
 Canada                                                                                                                                                                         10−17 m day 

Table 2. Summary of movements of sea lice in literature, as discussed in Section 3.2.1. Values are presented as mean (± SD) when  
reported by author; nd: no data reported; na: not applicable to the experiment
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farms in minimising sea lice levels on hosts is further 
evidence that sea lice accumulate in surface waters 
(e.g. Geitung et al. 2019); these methods have conse-
quently been widely developed and deployed around 
salmon cages with the effect of reducing the number 
of sea lice entering farms (Stien et al. 2016, Oppedal 
et al. 2017). However, sea lice may evolve and alter 
their depth selection behaviour in response to 
widespread use of such methods, and more studies 
are needed to see if swimming depth is a heritable 
trait (Coates et al. 2020). 

Where salinity gradients exist in stratified water 
bodies, copepodids have been shown to aggregate at 
or just below the halocline, actively resisting further 
travel towards the surface (Heuch 1995, Crosbie et 
al. 2019). This has been corroborated further by 
Crosbie et al. (2019), with additional evidence show-
ing that nauplii avoid salinity less than 30 PSU. At 
lower salinities, e.g. around river mouths, copepo-
dids sink passively or swim downward to find higher 
salinities at which their infective ability is not re -
duced (Bricknell et al. 2006). Temperature changes 
also influence the movement of nauplii, which were 
found to move to warmer waters when exposed to 
<10°C and cooler waters at >12°C, while copepodid 
behaviour was not affected by temperature (Crosbie 
et al. 2020). Field data are sparse, but in the Faroe 
Islands, samples of nauplii indicated that nauplii pre-
ferred warmer waters: they were more present in the 
warmer deeper water during winter, while during 
summer, they stayed in the surface waters, which are 
the warmest (á Norði et al. 2015). This temperature 
preference is now implemented in a few sea lice 
models (Samsing et al. 2016, Crosbie et al. 2020). 
Additionally, pressure stimuli of a near-field acceler-
ation (as produced by a fish swimming nearby) have 
been shown to produce a swimming burst behaviour 
in copepodids (Heuch & Karlsen 1997), allowing in -
fective sea lice to locate and approach a host. Expos-
ing copepodids to increased pressure at lower depth 
triggers an upward swimming response to reach sur-
face waters (Coates et al. 2020). 

Sea lice modelling can be a powerful tool to under-
stand the importance of each swimming behaviour in 
describing pelagic sea lice distribution. To achieve 
this purpose, models need to provide a close repre-
sentation of the observations while being as simple 
as possible to give a clear vision of the underlying 
processes at play and their interactions. Over the last 
few years, sea lice modelling has gradually increased 
the complexity of the biological behaviour they im -
plement. Earlier models chose to keep sea lice within 
the surface layer (Murray & Gillibrand 2006, Amund -

rud & Murray 2009, Adams et al. 2012, Sa lama et al. 
2018), motivated by observations showing that fish 
infections by sea lice occur mostly at depths of 0 to 
4 m (Hevrøy et al. 2003), and the assumption that sea 
lice dispersal is mainly achieved by circulation of sur-
face water since their swimming capacity is slow 
compared to the horizontal advection of currents 
(Murray & Gillibrand 2006, Amundrud & Murray 
2009). However, studies implementing sea lice be -
haviour of diel vertical migration and low salinity 
(<30 PSU) avoidance (Crosbie et al. 2019) gave new 
insights into how they can heavily impact dispersion 
patterns. In Hardangerfjord, Norway, simulations 
showed a shorter dispersion distance for sea  lice 
fixed at the surface compared to those that applied 
diel vertical migration (Johnsen et al. 2014). Vertical 
migration of sea lice can also influence their reten-
tion in a coastal inlet via selective tidal stream trans-
port (Tully & Nolan 2002) and therefore increase the 
predicted surface density (Gillibrand & Willis 2007). 
However, Stucchi et al. (2011) observed no major dif-
ference in the spatial pattern of dispersion between 
simulations with sea lice fixed at 0 to 4 m depth and 
those without diel vertical migration, only a lower 
concentration for passively transported sea lice com-
pared to a scenario including diel vertical migration. 
Similarly, Amundrud & Murray (2009) found that as 
long as sea lice experience surface circulation, intro-
ducing a diel vertical migration be haviour produced 
a horizontal dispersion pattern that did not differ 
much to the one resulting from particles transported 
by surface motion. However, since fjordic systems in 
Norway and Scotland often experience stratified 
water and wind-driven circulation with strong cur-
rent shear of surface water (Murray & Gillibrand 
2006, Inall & Gillibrand 2010, Asplin et al. 2014, Dal-
søren et al. 2020), vertical migration behaviour still 
should be considered for horizontal dispersion of sea 
lice. Finally, sea lice larval transport pathways are 
sensitive to other parameters such as vertical swim-
ming velocity (Johnsen et al. 2016), vertical turbu-
lence (Johnsen et al. 2016) and new mechanisms of 
salinity avoidance (Sandvik et al. 2020), and their 
implementation in sea lice modelling is currently 
being explored. 

In summary, there is good evidence that larval sea 
lice avoid low salinity water, particularly nauplii, al -
though copepodids may migrate into slightly lower 
salinity water during host searching behaviour. 
Whilst temperature gradients do not affect depth 
selection by copepodids, nauplii do prefer water be -
tween 10 and 12°C. There is robust evidence that sea 
lice larvae are found predominantly in the surface 
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layers, and physical barrier management measures 
can be highly effective at sites without a brackish 
layer or strong vertical mixing (Barrett et al. 2020). 
Selection of near-surface waters means sea lice are 
exposed to wind-driven currents that aid their trans-
port, whereas sea lice remaining below a halocline to 
avoid low salinity water may move in the reverse 
direction to that predicted from surface currents, 
owing to counter currents in nearshore shallow envi-
ronments. Therefore, it is important to understand 
the specific swimming behaviour in space and time 
of the larval stages in order to better para meterise 
models. 

3.2.2.  Survival of the planktonic stages 

Transmission of larval sea lice depends not only on 
transport to suitable habitats, but also on survival for 
long enough periods to actively infect fish hosts. Both 
depend on predation, starvation, mortality and 
senescence between the 2 nauplii stages and the 
infective copepodid stage. Sea lice larvae are likely 
to be consumed by planktonic grazers, such as larger 
zooplankton, jellyfish, benthic organisms (scallops/
mussels) or some species of fish (Molloy et al. 2011, 
Webb et al. 2013, Brooker et al. 2018). Seasonal and 
environmental variability in high-latitude spring bloom 
systems leads to a difference in survival of plankton 
(Eiane & Ohman 2004). Variations in regional distri-
butions and seasonality in the populations of such 
grazers, due to events such as spring blooms, is likely 
to have a significant impact on sea lice larval preda-
tion rates. Sea lice larvae do not feed until they 
attach to a host. The larval survival period and infec-
tivity depend on lipid energy reserves (Dalvin et al. 
2011, Skern-Mauritzen et al. 2020, Taccardi et al. 
2021). In addition, metabolic rate is dependent on 
ambient temperature, which will affect how rapidly 
these reserves are exhausted (Hamre et al. 2013, 
Samsing et al. 2016, Hamre et al. 2019, Taccardi et al. 
2021). Since sea lice numbers and viability decline 
over time, generally specified as a 1% mortality per 
hour or 17% per day (Murray et al. 2022a), relatively 
few larval sea lice reach the starvation limit. Thus 
infection pressure is not particularly sensitive to star-
vation time (Murray & Moriarty 2021, Sandvik et al. 
2021b). Starvation is qualitatively different to mortal-
ity, since the latter represents an exponential decay 
that can continue indefinitely, while starvation oc -
curs at some point after lipid reserves are exhausted. 
Starvation results in a finite limit on transmission 
time and hence transmission distance. Mortality rate 

and senescence can be combined into a single decay 
process, and many models use 1% h−1 (Amundrud & 
Murray 2009, Salama et al. 2018) or 17% d−1 for all 
free-living stages in Norwegian sea lice dispersion 
modelling (Sandvik et al. 2016, Myksvoll et al. 2018, 
Sandvik et al. 2021b). These values are widely used 
in sea lice dispersal models with validation of pre-
dicted distributions against field observations (Table 1; 
Salama et al. 2018, Sandvik et al. 2020). However, 
this simple parameter, while functional, can be bro-
ken down into different processes. In particular, mor-
tality rate becomes much higher as salinity drops 
below 29 PSU, or where temperature drops below 
3°C or rises above 24°C (Johnson & Albright 1991, 
Bricknell et al. 2006, Brooker et al. 2018, Dalvin et 
al.  2020). Consequently, there is potential for more 
sophisticated modelling of the mortality parameters, 
i.e. increased mortality in low salinity with low salin-
ity avoidance behaviours (Crosbie et al. 2019, Sand-
vik et al. 2020), and incorporation of the effects of 
temperature (Jeong et al. 2021). Although there is 
considerable scope to make the modelling of sea lice 
survival, senescence and predation pressure more 
realistic, and possibly determine seasonality, the 
em pirically derived values already being used in 
Scotland (1% h−1, ~21% d−1) and Norway (17% d−1) 
currently provide good fits to observations under a 
variety of circumstances. Sea lice are highly adapt-
able; for example, experimental work assessing sea 
lice tolerance of projected future ocean acidification 
scenarios indicate that they have mechanisms to com-
pensate for increased concentration of pCO2 (Thomp-
son et al. 2019). This indicates that more experi-
mental work and modelling are required to unpick 
fundamental ecological relationships as the climate 
changes (Coates 2023). 

3.3.  Stage C: exposure and infection of new hosts 

Thus far we have focused on the interaction of 
pelagic sea lice stages with the environment. How-
ever, development of parasitic infection depends on 
finding and attaching to a suitable host salmonid 
(Fig. 4). Under experimental conditions, copepodids 
display a variety of behaviours that may aid in 
positioning them within the marine environment at 
a location where the probability of encountering a 
fish host is increased (Heuch 1995, Heuch et al. 
1995). From a management perspective, under-
standing the rate of sea lice infection on wild 
smolts is important. However, laboratory-based ex -
periments do not give a rate of infection in the en -
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viron ment. Infection rates can be derived by com-
paring modelled larval concentrations in the vicinity 
of sentinel cages to numbers of sea lice on sentinel 
caged fish (Sandvik et al. 2020), and from first prin-
ciples of interaction of copepodids and smolt 
movements in wild fish pop ulations (Murray & 
Moriarty 2021). Modelling from sentinel cage data 
from Norway estimates that critical threshold con-
centrations of around 2 copepodids m−2 (Sandvik 
et al. 2020) could result in damaging levels of 
infection (equating to 10 lice per fish) within the 
ex posure time to copepodids of sentinel caged 
fish. While this threshold concentration is consis-
tent with contact deduced from first principles 
(Murray & Moriarty 2021), it is very sensitive to 
sea lice swimming behaviour, velocity and duration 
(Fig. 4B), and the link with modelled pelagic sea 
lice density will also be dependent on the specific 
model implementation. 

Attachment is a critical component of infection 
which is sensitive to salinity (Bricknell et al. 2006) 
and temperature (Dalvin et al. 2020), as there is a 
reduced sea lice infestation success and post-attach-
ment survival rate at lower temperatures (Ugelvik et 
al. 2022). Furthermore, both contact rates and expo-
sure times are sensitive to salmon swimming be -

haviour. This has been investigated in the vertical 
distribution and swimming speed of smolts and 
shown to impact the encounter rate with sea lice, ulti-
mately affecting infection success (Samsing et al. 
2015). Faster swimming smolts are exposed for less 
time to the elevated larval numbers in fjords and 
coastal waters (Kristoffersen et al. 2018, Johnsen et 
al. 2021). Smolt movements can be assessed using 
modelling and field tracking data (Ounsley et al. 
2020). A full review of salmon swimming behaviour 
is outside the scope of this paper. However, it is 
important to consider migration paths and timing in 
the arrival of wild salmonids as these affect sea lice 
infection rates. There is currently considerable un -
certainty and more data are required to constrain 
models. Data may come from various sources: chal-
lenge trials to directly measure rates of attachment; 
more detailed understanding of salmonid smolt 
swimming behaviour (Jensen et al. 2022); and link-
ing of simulated sea lice concentrations to infestation 
rates measured in sentinel cages or on wild-caught 
salmonids (Johnsen et al. 2021). 

The migration of post-smolts has been linked to 
environmental cues, from simulating migration routes 
based on behaviour and hydrodynamic data (e.g. 
Mork et al. 2012, Ounsley et al. 2020, Vollset et al. 
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2021) and documented regional differences in mi -
gratory behaviour in relation to environmental cues 
(Jensen et al. 2022), while others suggest a preferred 
migration route (Newton et al. 2021). Advancements 
in acoustic telemetry have led to clearer interpreta-
tions of salmonid migration patterns in Norway (e.g. 
Thor stad et al. 2012, 2015, Halttunen et al. 2018) and 
Scotland (e.g. Middlemas et al. 2017). Acoustic 
telemetry studies on salmon smolts in Norway indi-
cate that fairly direct routes are taken through fjords 
towards the ocean, but fjords vary in length and 
smolts will spend between a few days to weeks in the 
fjords before leaving the coast (Thorstad et al. 2012, 
Halttunen et al. 2018, Bjerck et al. 2021, Jensen et al. 
2022). Salmon post-smolts have been found to migrate 
in both nearshore and pelagic habitats (Thorstad et 
al. 2007, Davidsen et al. 2009), primarily swimming 
in the upper 3 m of the water column (Davidsen et al. 
2009, Plantalech Manel-la et al. 2009). 

Acoustic tracking of sea trout in Loch Torridon, 
Scotland (Middlemas et al. 2013), showed that be -
haviour and space use at sea varied substantially 
among fish from different rivers and within popula-
tions from each river. Similar observations have been 
made in sub-Arctic Norway (Strøm et al. 2021). In 
addition, sea lice infections affect the behaviour of 
sea trout, as they remain closer to fresh or brackish 
waters in seasons with high infection pressure (Halt-
tunen et al. 2018) and when infected (Serra-Llinares 
et al. 2020). These studies emphasise the need for 
good locally relevant data, particularly in the case of 
sea trout. It is not yet clear whether more generic 
movement models will suffice for salmon migrations, 
many of which are believed to move rapidly through 
the inner coastal zone. However, the variation in 
movement rates among individuals in both salmon 
and sea trout populations is very important for mod-
elling risks to sea lice infestation and implications for 
population-level impacts. 

More salmon and sea trout movement data are 
required in Scotland at a range of spatial scales to 
better inform accurate modelling efforts for sea lice 
management. Very localised fish behaviour deter-
mine likelihood of infestation at any given density of 
sea lice (Murray & Moriarty 2021), since this depends 
on swimming speed. Movements at the larger scale 
of traversing a sea loch or fjord, for example, deter-
mine the total time that salmon remain in high sea 
lice-risk areas. Migrations across bigger distances, 
for example moving through the Minch on the west 
coast of Scotland, will influence the time fish spend 
within the zone where sea lice are likely to be con-
centrated due to salmon farms. 

3.4.  Stage D: development and survival of  
attached lice stages 

Reducing the abundance of sea lice in the marine 
environment in areas of aquaculture production 
requires effective sea lice control, and integrated sea 
lice management is a strategy adopted by many 
salmon companies (Treasurer & Bravo 2022). Effec-
tive sea lice control on farms through medicinal and 
non-medicinal treatments, biological controls and 
preventative methods limits the opportunities for 
infestations on wild fish (Treasurer & Bravo 2022). 
The efficacy of subjecting wild salmon smolts to par-
asite treatment in terms of the marine survival of 
returning adults has reduced over time (Vollset et al. 
2023), due to sea lice resistance to medicinal control 
methods (Aaen et al. 2015). Understanding the sea 
lice life cycle (Fig. 5B) is an important component of 
control, as interrupting it before eggs hatch and are 
released into the environment is preferable for wild 
fish populations (Jeong et al. 2021). The settled or 
attached stages of sea lice refer to the chalimus, pre-
adults, adult males and females, and gravid (egg-
bearing) females (Fig. 5B; Revie et al. 2005b, Hamre 
et al. 2013, 2019, Adams et al. 2015, Rittenhouse et al. 
2016, Toorians & Adams 2020). Development, matu-
ration and survival for these sea lice stages have 
been described by both Hamre et al. (2019) and Stien 
et al. (2005). The infection pressure and attachment 
rate of copepodids and their development and sur-
vival to attached chalimus are key biological pro-
cesses that are still data-deficient (Pike & Wadsworth 
1999, Brooks 2005, Genna et al. 2005). 

Sea lice population models describe the abun-
dance and population structure of attached stages 
over time (Fig. 5B; Buffoni & Pasquali 2007). The 
approaches to building a useful population model 
depend on the physical and biological parameters 
that drive the growth and decline of the sea lice pop-
ulation (Fig. 5C). For sea lice, population dynamics 
are generally stage structured (see Table 1, Aldrin et 
al. 2019), leading modellers to use either matrix ordi-
nary differential equations (Frazer et al. 2012, Groner 
et al. 2014, 2016b, Toorians & Adams 2020) or delay-
differential-based equations (Revie et al. 2005b, Get-
tinby et al. 2011, Adams et al. 2015, Rittenhouse et al. 
2016, Tian et al. 2018, Kragesteen et al. 2019). 

3.5.  Stage E: impact on host populations 

Sea lice inherently cause damage to the fish they 
infest by feeding off the mucus, compromising the 
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fishes first line of defence against infection, and 
introducing secondary infections, and at severe lev-
els causing skin and blood loss (Fig. 6). The damage 
can range from superficial, such as that seen from 
small numbers of lice, which is generally limited to 
localised surface wounds (e.g Long et al. 2019), to 
lethal, where large numbers of sea lice can lead to 
mortality of the host (Fig. 6; e.g. Grimnes & Jakobsen 
1996). Host response to infection is due to a combina-
tion of many factors, including the life stage of both 
the host fish and sea lice, and the environmental con-
ditions, particularly temperature and salinity (Fast & 
Braden 2022 and references herein). Understanding 
specific thresholds of impact on hosts is a critical 

component of management and modelling frame-
works (e.g. Murray & Moriarty 2021). Risk of mortal-
ity at the individual level translates to proportional 
mortality at the population level. For instance, the 
Norwegian traffic light system uses thresholds based 
on levels of expected mortality where 20%, 50%, 
and 100% levels of mortality are proposed to occur 
at  sea lice concentrations of 0.1−0.2, 0.2−0.3 and 
>0.3 g−1 wet weight of host, respectively (Taranger et 
al. 2012, 2015). Researchers are now suggesting the 
use of a ‘welfare threshold’ in place of a purely mor-
tality-based system (Ives et al. 2023). This threshold, 
set at 0.08−0.1 g−1, is based on experiments measur-
ing physiological and performance-related responses 

15

Fig. 5. (A) Summary of the parasite and host factors 
determining disease development. (B) Simplified sea lice 
life cycle focusing on the attached stages (black text). (C) 
Key drivers of attached lice development and mortality 
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of salmon, decreases in cardiac output and haemat-
ocrit (the proportion of red cells in blood), and a 22% 
reduction in swimming performance (Wagner et al. 
2004, 2008). These reductions in performance are 
likely to lead to further risk of sea lice infestation due 
to longer periods spent in infested areas and greater 
risk of successful attachment by copepodids (Mori-
arty et al. 2023a). As sea lice concentrations rise 
beyond this level, further physiological impacts are 
measured with a specific population mortality occur-
rence probability of 50% calculated at 0.24 g−1 (Ives 
et al. 2023). The lice g−1 values from Ives et al. (2023) 
broadly support the lower 2 thresholds used in the 
Norwegian traffic light system, albeit for different 
biological reasons (Eliasen et al. 2021). 

Pre-adult and adult lice are most likely to impact 
host welfare (Ives et al. 2023). The average value for 
survival to these stages (pre-adult and adult stages) 
was found to be 65% by Tucker et al. (2002), mean-
ing that 35% die before they have a significant 
impact on their host, although variability of sea lice 
survival is high in both laboratory and field work. 
While Tucker et al. (2002) have considerable data on 
mortality of the different stages, the experiment at 
the time considered 4 chalimi stages, rather than the 
now described 2 chalimi stages (Hamre et al. 2013). 
The effect of having a greater number of stages is 
resolved by compounding total mortality over the 
development to pre-adult. However, additional re -

search may help to better differentiate the mortality 
levels at each stage. A further factor is that, whilst the 
sea lice mature from copepodid to chalimus to pre-
adult, the host is also growing (Moriarty et al. 2023a). 
This effectively reduces the ratio of sea lice to grams 
of host and, therefore, reduces the number as a pro-
portion of fish size. However, growth of host fish is 
negatively impacted by sea lice infections (Fjelldal 
et al. 2019, 2020). 

The overall impacts of sea lice on wild fish have 
been investigated using randomised control trials, 
measuring return rate of salmon from smolt releases 
treated with sea lice parasiticides compared to un -
treated smolt releases. A meta-analysis of Norwe-
gian studies by Vollset et al. (2016) found an overall 
risk ratio of 1.18 (CI 1.07−1.30); an 18% reduction in 
return rate of treated fish in comparison with un -
treated control fish. This is corroborated by studies 
in Ireland (Jackson et al. 2013, Krkošek et al. 2013), 
Scotland (Penston et al. 2004), and other studies in 
Norway (Hvidsten et al. 2007, Skilbrei et al. 2013), 
which outline that sea lice infestation can have a sig-
nificant impact on returning smolt numbers, account-
ing for between 34% (Jackson et al. 2013, Krkošek et 
al. 2014) and 39% (Krkošek et al. 2013) reduction in 
returning smolts. Vollset et al. (2023) have shown 
that wild salmon returns to the Vosso River (Norway) 
are negatively correlated with sea lice levels during 
their out-migration year. Similar correlative studies 
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Fig. 6. The severity of the impact of sea lice infestation on juvenile hosts increases with the number of lice per gram (after Ives  
et al. 2023)
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are lacking in other regions, which limits the ability 
to detect the impact of sea lice management deci-
sions on wild fish stocks, which is a major source of 
uncertainty. 

4.  DISCUSSION 

The body of literature summarised in the review of 
the current state of knowledge serves as a guide to 
how advanced our understanding of the key stages 
in the sea lice infection process already is. Regular 
reviews of the state of our science are important for 
successful adaptive management of natural re sources, 
helping to uncover areas of uncertainty (Lindenmayer 
& Likens 2009, Williams & Brown 2014, 2018). This 
provides ways to reduce or remove un certainties in 
modelling through management and institutional 
learning as evidenced in Murphy et al. (2024) or 
through improved monitoring (see Pert et al. 2022), 
which in turn helps develop and improve our models. 

Much of the modelling of sea lice production, trans-
mission and impact is already well developed and 
models are widely used in many salmon-producing 
countries to advise on management. Models have 
been developed for Scotland (Salama et al. 2018, 
Gillibrand et al. 2023, Moriarty et al. 2023b), the 
Faroe Islands (Kragesteen et al. 2018), Canada (Stuc-
chi et al. 2011), and primarily for Norway (Johnsen et 
al. 2016, Myksvoll et al. 2018, Sandvik et al. 2020), 
where they are firmly integrated into finfish aquacul-
ture management through controls on permitted sea 
lice densities (Taranger et al. 2015, Johnsen et al. 
2021, Sandvik et al. 2021a). In Norway, an operational 
coastal current model, the NorKyst800 based on the 
ROMS model (Asplin et al. 2020), is run daily in a col-
laboration between the Institute of Marine Research 
and the Norwegian Meteorological Institute, produc-
ing results covering the whole coast of Norway in a 
120 h forecast. These results are used to estimate the 
weekly copepodid abundance and distribution 
(www.lakselus.no) and provide background infor-
mation to the Norwegian traffic light system. Rou-
tinely, the results are validated against current obser-
vations showing reasonable performance of the model 
(e.g. Dalsøren et al. 2020). Recent developments to 
improve the results include data assimilation capa-
bility and routines for improving resolution by a 2-
way nesting of the numerical grid. The philosophy 
behind the NorKyst800 model is to be open source 
and readily downloadable (https://thredds.met.no), 
thereby improving the development of the model and 
strengthening the credibility of the results. 

Tools that allow parasitic traceability are not dis-
cussed within our review; however, genetic studies 
have attempted to characterise the population struc-
ture of sea lice in the North Atlantic with limited suc-
cess, due to high levels of gene flow (Todd et al. 2004, 
Tjensvoll et al. 2006, Nolan & Powell 2009, Glover et 
al. 2011). Recently, Jacobs et al. (2018) used more 
sophisticated genetic fingerprinting and machine 
learning to distinguish between samples taken from 
sites in Ireland, Scotland and Norway. Data gener-
ated using such techniques have the potential to pro-
vide validation for hydrodynamic/dispersal modelling 
predictions on regional scales (such as the west coast 
of Scotland (Corrochano-Fraile et al. in press). 

The usefulness of any model depends, in part, on 
the accuracy and reliability of the output. However, 
as models are normally encumbered by inadequate 
comprehension of the process, and precise environ-
mental observations are rarely available, the cer-
tainty of model output values are difficult or impos-
sible to determine (Skogen et al. 2021). This means 
there is an inter-dependence between data accu-
racy, process understanding and uncertainties in 
modelling output. The focus of this review was to 
investigate the nature of uncertainties and sensitivi-
ties in sea lice biological processes, and the parame-
ter values chosen to simulate distributions and 
abundance (specifically, sea lice dispersal modelling 
and sea lice population assessment). Figs. 2−6 and 
Table 1 summarise the modelling information out-
lined in the re view, highlighting the strength in our 
current knowledge base. 

Improved parameter estimates will increase the 
accuracy of model outputs for particle tracking of lar-
val stages and population models describing at -
tached stages of sea lice. The combination of parti-
cle tracking models and population models has been 
noted elsewhere as a research area of interest 
(Adams et al. 2015, Kragesteen et al. 2021). A com-
bined model with improved parameter estimates 
would offer a new tool in describing the dynamics of 
sea lice on farm sites, give insight into critical thresh-
olds of connectivity (Toorians & Adams 2020), and 
further inform the most effective timing of treatments 
to reduce abundance on farms, improve fish welfare 
and reduce costs (Groner et al. 2014, Rittenhouse et 
al. 2016, Kragesteen et al. 2021). A combined mod-
elling approach would also further illustrate key 
points in the marine salmonid production cycle that 
could be disrupted to reduce transmission and abun-
dance of sea lice on both farmed and wild salmonids 
(Peacock et al. 2016, 2020, Toorians & Adams 2020). 
Combined modelling would allow further refinement 
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or calibration of model parameters. Integrating this 
into a forecasting system would be a useful advance 
for the aquaculture industry. 

The reviewed literature highlights that work that 
seeks to test the underlying biological, ecological 
and physical processes, make comparisons be -
tween different models or develop ‘benchmark’ ex -
ercises for specific tools is required to increase confi-
dence in model usage. Water movements in the 
coastal zone occupied by aquaculture have a wide 
range of drivers, and there are still likely to be small-
scale features that are poorly resolved by  present 
regional models (Morro et al. 2022). Careful imple-
mentation of model packages therefore remains 
important. Coherent methods for studying sensitivity 
of model outputs to design choices, and the variabil-
ity between simulation packages, would permit bet-
ter understanding of the scope within which model 
predictions can be considered fit-for-purpose. 

5.  CLOSING REMARKS 

The types of model and associated data gathering 
required for their calibration and validation identi-
fied here are diverse (e.g. hydrodynamic, sea lice 
dispersal, sea lice population, salmon population, 
salmon smolt migration). They are also variable in 
the amount of research that is required to achieve 
outputs to plug the gaps. Prioritisation of research 
gaps in Scotland as ranked by stakeholders in vari-
ous sectors pertaining to modelling and data are 
investigated further in our companion paper by Mur-
phy et al. (2024). Monitoring options were recently 
reviewed by Pert et al. (2022). The aquaculture sec-
tor is vitally important for global food security (FAO 
2020); active research in terms of modelling and 
empirical data collection is therefore critical to 
strengthen our knowledge base, identify emerging 
issues and mitigate against them for sustainable 
industry expansion. 
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