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Abstract

Sparse coding theories suggest that the visual brain is optimized to encode natural visual stimuli
to minimize metabolic cost. It is thought that images that do not have the same statistical
properties as natural images are unable to be coded efficiently and result in visual discomfort.
Conversely, artworks are thought to be even more efficiently processed compared to natural
images and so are esthetically pleasing. This project investigated visual discomfort in uncom-
fortable images, natural scenes, and artworks using a combination of low-level image statistical
analysis, mathematical modeling, and EEG measures. Results showed that the model response
predicted discomfort judgments. Moreover, low-level image statistics including edge predict-
ability predict discomfort judgments, whereas contrast information predicts the steady-state
visually evoked potential responses. In conclusion, this study demonstrates that discomfort
judgments for a wide set of images can be influenced by contrast and edge information, and can
be predicted by our models of low-level vision, whilst neural responses are more defined by
contrast-based metrics, when contrast is allowed to vary.

Introduction

Visual processing is specialized for the efficient coding of the kinds of images that we typically
encounter in our everyday environment (Barlow, 1961; Simoncelli & Olshausen, 2001). Effi-
ciency is driven by principles such as sparse encoding by populations of neurons, whereby only a
small proportion of neurons produce a strong response to any given input (e.g., Field, 1987,
1994, 1999). Sparseness is ensured by neurons having receptive fields and contrast gain
responses that are tuned to the types of stimuli that are typical of the natural environment.

The theory of efficient coding is supported by analyses of the Fourier amplitude spectrum of
images. The Fourier transform describes how an image can be decomposed into components of
different spatial scales and orientations. Natural images have a characteristic amplitude spec-
trum, in which the amplitude (A) of components is close to inversely proportional to spatial
frequency (f ), producing an approximately A ∝ fk relationship, with k taking a value of around
�1 (Burton & Moorhead, 1987; Field, 1987; Tolhurst et al., 1992). The contrast sensitivity
function, which describes how our sensitivity to visual stimuli varies with frequency, shows a
peak sensitivity to midrange frequencies. This spatial frequency tuning has been explained as an
efficient encoding of stimuli with the 1/f amplitude spectrum that is typical of natural images
(Atick & Redlich, 1992).

Deviations from these statistical properties of natural images have been associated with visual
discomfort or visual stress (Juricevic et al., 2010). Images that create discomfort in viewers tend
to have excess contrast at midrange spatial frequencies, to which the visual system is especially
sensitive (Fernandez & Wilkins, 2008; Juricevic et al., 2010; O’Hare & Hibbard, 2011; Wilkins
et al., 1984). Hibbard and O’Hare (2015) showed how these results can be related to the efficient
encoding of images by the visual cortex. Using a simple feed-forwardmodel of receptive fields in
the primary visual cortex, we showed that uncomfortable stimuli will tend to produce large and
non-sparse neural responses. Moreover, Penacchio and Wilkins (2015) have shown the degree
to which the amplitude spectra of images deviate from those of typical natural images is a strong
predictor of visual discomfort. Fourier spectral slope analysis provides an explanation of the
visual discomfort created by some architectural (Le et al., 2017) and typographic (Wilkins et al.,
2007, 2020) designs. An excess of the type of visual content to which the visual system responds
most strongly has been hypothesized to create discomfort through excessively large neural
responses (Hibbard & O’Hare, 2015; Wilkins & Hibbard, 2014). Large responses to uncomfort-
able stimuli have been shown using visually evoked potentials (O’Hare et al., 2015; O’Hare,
2017a), functional near infrared spectroscopy (Le et al., 2017; Shi et al., 2022), and fMRI (Huang
et al., 2011).

The current study tested whether visual discomfort results from excessive responses to
stimuli that are not well-matched to the statistical properties of images for which the visual
system is optimized (Hibbard & O’Hare, 2015; O’Hare & Goodwin, 2018; O’Hare et al., 2021;
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Wilkins & Hibbard, 2014). Previous computational modeling
work has quantified how the visual systemwill respond to uncom-
fortable images (Hibbard & O’Hare, 2015; Penacchio et al., 2023;
Penacchio &Wilkins, 2015). Other studies have measured behav-
ioral (Bies et al., 2016; Fernandez &Wilkins, 2008; Juricevic et al.,
2010; O’Hare & Hibbard, 2011; Spehar et al., 2003; Taylor et al.,
1999) or neural (O’Hare & Goodwin, 2018; O’Hare et al., 2021)
responses to uncomfortable stimuli, artworks, and natural
images. However, there is not yet an integrative study that com-
bines computational modeling, image statistics, subjective judg-
ments, and neural responses to the same stimuli. This combined
approach is essential to determine whether our computational
and statistical models can account for both the special properties
of artworks as visual stimuli, and the relationship between neural
responses and visual discomfort.

We measured the low-level statistical properties of artworks,
natural images, and uncomfortable stimuli (Fourier amplitude
spectrum, fractal dimension, edge orientation anisotropy, and
physical and effective contrast (following image filtering to take
account of the contrast sensitivity function)). We also calculated
the expected neural response to each stimulus using a simple feed-
forward model of the primary visual cortex (Hibbard & O’Hare,
2015). Each stimulus was rated for discomfort so that we could
understand how this varied across stimulus categories, and the
degree to which it could be predicted from the statistical properties
of the images, and the predicted neural response. Finally, we also
measured these responses directly using steady-state visually
evoked potentials (SSVEPs). In this way, we combined computa-
tional, psychophysical, and physiological measures, and used a
broad range of stimuli that are expected to produce both high
and low levels of visual discomfort. This allowed us to test the
prediction that discomfort is related to a high level of neural activity
that is driven by the statistical properties of uncomfortable stimuli.

Natural images, artworks, and uncomfortable images were
included in the study to provide a broad range of discomfort levels.
Natural images provided a baseline category, for which visual
encoding is hypothesized to be optimized (Barlow, 1961; Simon-
celli & Olshausen, 2001). Sinusoidal gratings and bandpass-filtered
noise stimuli were included since their statistical properties vary
from those of natural images in ways that have been associated with
visual discomfort (Fernandez&Wilkins, 2008; Juricevic et al., 2010;
O’Hare et al., 2015; O’Hare & Hibbard, 2011; Wilkins et al., 1984).
We used grayscale images since the role of luminance statistics in
discomfort and visual encoding is well established (e.g., Fernandez
&Wilkins, 2008; Juricevic et al., 2010; O’Hare et al., 2015; O’Hare&
Hibbard, 2011; Wilkins et al., 1984). While the current study did
not assess the chromatic properties of images, these are also known
to contribute to visual discomfort (Haigh et al., 2013; Juricevic et al.,
2010; Penacchio et al., 2021). Similarly, this focus on low-level
image properties also does not address the roles of perceptually
high-level and semantic factors in visual discomfort.

In contrast to highly artificial, uncomfortable images, artworks
have statistical properties that may be expected to be related to
higher levels of viewing comfort than natural images. Artworks
tend to have a slope closer to k =�1 than mundane images, which
has been taken as evidence that artists are attempting to create
images with an amplitude spectrum closer to optimal for the visual
system (Redies et al., 2007; Redies et al., 2008; Graham and Field,
2007a; Graham & Field, 2008; Mather, 2013, p. 149; Koch et al.,
2010). This means that these images might be considered idealized
stimuli for sensory encoding in comparison with natural images,
andwill therefore elicit low levels of discomfort. In contrast, we also

included two artworks by Bridget Riley, whose artworks have been
associated with visual discomfort (Dodgson, 2012; Wilkins et al.,
1984).

We have several research questions. Firstly we assessed whether
discomfort judgments would be predicted by models of early visual
processing, and by the size of neural responses measured at the
scalp. Secondly, we assessed whether images creating higher neural
responses measured at the scalp would be judged as more uncom-
fortable, and secondary to that we thus predicted that the smallest
SSVEP responses would be elicited by artworks, and the largest
responses by grating and bandpass filtered noise. Thirdly, we also
predicted the largest responses and greatest levels of discomfort
would be seen for stimuli with midrange spatial frequencies in
stimuli where spatial frequency was systematically varied. The
exceptions to these predictions were the two artworks by Riley,
which we predicted would elicit relatively large neural responses,
and high levels of visual discomfort. Finally, we predicted that low-
level image statistics (spectral slope, fractal dimension, measures of
contrast, edge orientation entropy) would predict discomfort judg-
ments and neural responses. In addition, and in contrast with
previous literature that tends to look at individual image statistics,
we will investigate dimension reduction, as many of the image
statistics are highly interrelated.

Materials and methods

Stimuli

Artwork stimuli were taken from www.prometheus-bildarchiv.de
following work by Wallraven et al. (2008, 2009). The categories of
artwork chosen followed those used in these papers. The reasoning
for including several genres was to sample broadly, rather than to
consider genre itself systematically. Works by Bridget Riley were
included as a distinct category due to the known association
between her artworks and visual discomfort (Dodgson, 2012; Wil-
kins et al., 1984). For the EEG experiment, a subset consisting of
two examples from each of the categories was chosen. The full set of
images used in the computational model was 514 images. It would
not be feasible for a participant to view such a large number of
stimuli. A more limited sample of 48 images was chosen for the
EEG experiment compared to the model as the human participant
is limited in terms of attention and fatigue. Testing over more than
one session would introduce additional variability in terms of
different levels of noise between sessions for each observer in terms
of time of day, caffeine consumption, electrode placement and so
on as well as possible attrition that it was felt would be better
avoided. The complete list of artworks from each genre presented
in the EEG experiment can be seen in Table 1.

It is important to note that all artwork images were gray-scaled
for use in the current study using the MATLAB rgb2gray function.
This is due to comparability with the natural images and artificial
images that were both in grayscale, and the additional complexity
of estimating low-level image statistics for color stimuli.Whilst this
is possible, it would not be able to directly compare the image
statistics for the different image categories.

Natural images were 200 images taken from the van Hateren
image database (van Hateren & van der Schaaf, 1998). For the EEG
experiment, a subset of natural images was chosen at random,
corresponding to image numbers: 13, 17, 28, 34, 41, 47, 84, 94,
103, 106, 129, 146, 161, 179. Filtered noise patterns with different
spatial frequency content “bump” stimuli were created following
Fernandez and Wilkins (2008). As these stimuli are created

2 O’Hare and Hibbard

https://doi.org/10.1017/S0952523824000051 Published online by Cambridge University Press

http://www.prometheus-bildarchiv.de
https://doi.org/10.1017/S0952523824000051


following this article, we also use the terminology of Fernandez and
Wilkins (2008). These consist of filtered noise patterns created
using a raised radial cosine function (see equation (1)).
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(1)

where T is 0.9, β is 0.5, f is the spatial frequency, and f0 is the center
frequency of the function, defining the peak of the “bump.” For the
model, the center frequencies were 0.1875, 0.375, 0.75 1.5, 3, 6, and
12 cycles/degree. For the EEG experiment, the center frequencies
were 0.75, 1.5, 3, 6, and 9 cycles/degree. Finally, vertical sinusoidal
gratings of spatial frequencies were included, for the model, these
were 0.1875, 0.375, 0.75, 1.5, 3, 6, and 12 cycles/degree, for the EEG
experiment, this was a shorter list of 0.75, 1.5, 3, 6, and 9 cycles/
degree. The lower spatial frequencies were truncated as the mid-

range spatial frequencies have been shown in previous work to be
the most uncomfortable (O’Hare & Hibbard, 2011).

Examples of the artificial stimuli can be seen in the Open
Science materials accompanying this article, hosted at the Open
Science Framework: https://osf.io/zcfuw/. The images of the art-
works are not able to be included in the repository as these are
hosted elsewhere: www.prometheus-bildarchiv.de. Samples of nat-
ural images from the van Hateren database are likewise not repro-
duced as these are publicly available through the van Hateren
database: https://github.com/hunse/vanhateren.

Importantly, images were not matched for physical contrast as
this has been done in previous work (e.g., O’Hare et al., 2021) and
one of the aims of the study was to allow contrast to vary to be able
to account for its contribution to discomfort.

Computational model

FollowingHibbard andO’Hare (2015), amodel of the visual system
was made of 500 model cells with a range of spatial frequency and
orientation tuning taken from biologically plausible distributions.
Model cells were created using log Gabor functions, using the
DoLogGabor.m function (Goffaux & Dakin, 2010). We used dis-
tributions of cell properties based on physiological data for spatial
frequency (Devalois et al., 1982) orientation (Li et al., 2003), and
phase (Ringach, 2002). We assumed an orientation bandwidth of
16–17 degrees, also based on physiological data (Ringach, 2002).
Images were filtered using the 500 model cells, and the total model
output, as well as model response kurtosis, was estimated for each
image. Detailed model responses for each image category can be
seen in the Supplementary Material.

Image statistics

Images were analyzed for their low-level statistical properties,
including spectral slope, fractal dimension, CSF-filtered contrast,
and edge orientation entropy.

Spectral slope was estimated by taking the log Fourier transform
of the image and plotting the amplitude against log spatial fre-
quency and fitting a first-order polynomial. The resulting slope
value was taken as an estimation of spectral slope.

Fractal dimension was estimated by box-counting (Li et al.,
2009). The image is first posterized into bounded regions, using a
cut-off of 128, half themaximum possible value of the pixels of the
image. All images were first grayscaled using the rgb2gray func-
tion in MATLAB, and so in this case, although the original
artworks would have been in color, all stimuli in the current study
were converted to grayscale first. The box sizes are defined in
powers of 2, up to a maximum limited by the number of pixels in
the longest dimension of the image. This limit is the smallest
possible integer, that 2 can be raised to, that is larger than the
maximum dimension (in pixels) of the image. For example,
considering an image of 300 pixels by 300 pixels, the smallest
possible integer x that satisfies 2^x would be 9. The image is zero-
padded to the maximum box size. The number of boxes needed to
cover the non-zero elements of the posterized image is counted
for each of the box sizes. This results in a function of the number
of boxes against box size. The local slope of the function of the
number of boxes against box size can be estimated using the
following equation:

DF= �∂ log nð Þ
∂ log rð Þ , (2)

Table 1. List of artworks included in the EEG experiment

Genre Artist Artwork

Baroque Caravaggio Amor Vincit Omnia

Baroque Rubens The Consequences of War

Classicism Ingres Raphael and La Fornarina

Classicism Jacques The Oath of the Horatii

Expressionism Kandinsky Zuer Ecken

Expressionism Munch Two Young Women in Red and White

Impressionism Monet Summer

Impressionism Renoir Chestnut Tree in Bloom

Realism Courbet Portrait of Bruyas

Realism Millet Roman Landscape with Finding of Moses

Renaissance Da Vinci The Adoration of the Magi

Renaissance Raffael Madonna Colonna

Rococo Watteau The Dance

Rococo Boucher Landscape with Farmhouse

Romantic Turner The Fall of an Avalanche in the Grisons

Romantic Goya The Sleep of Reason Produces Monsters

Surrealism Dali Portrait of Frau Isabel Styler-Tas

Surrealism Magrite L’Idee Fixe

Suprematism Malevich Taking in the Rye

Suprematism Malevich Bureau and Room

Modernism Mondrian Broadway Boogie Woogie

Modernism Mondrian Chequerboard Dark Colors

Op-Art Riley Fall

Op-Art Riley Blaze
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where n is the number of boxes and r is the box size in pixels. The
gradient of this slope is constant for a series of box sizes, then this
can be the estimate of the fractal dimension.

CSF-filtered contrast was calculated by applying the contrast
sensitivity function to the image following the equation of Mannos
and Sakrison (1974).

A fð Þ= 2:6 0:0192þ0:114fð Þe� 0:114fð Þ1:1, (3)

where f is the spatial frequency of the image in cycles per degree, up
to a limit of 60 cycles per degree.

Edge orientation entropy was estimated using the method of
Redies et al. (2017). First, each image was converted to greyscale
using the “rgb2gray” function in MATLAB. Then images were
scaled down to a maximum size of 340 × 340 pixels using the
function “imresize” for ease of analysis. A set of 24 Gabor filters was
used to determine the edges of each image for a range of orienta-
tions. The edges of each image were determined using the following
Gabor function:

g = exp � x2þ y2

2 × σ2

� �
× cos

π
4
× x × sin ϴð Þþ y × cos ϴð Þþπ

2

� �� �
,

(4)

where x and y are the image pixels, σ is 1.669 (following Redies et al.,
2017), andϴ varied from 0 to π in 24 steps. Images were convolved
with the filter array to identify the edges. The responses to the
15 pixels at the edges of the images were discarded to limit border
effects. Each edge was then compared pairwise to every other edge
identified in the image. The highest response of the filter array
determined the overall orientation of the edge. Only the highest
10,000 edge responses were included in the analysis, following
Redies et al. (2017). The intensities of the two edges weremultiplied
together (the edge-pair intensity product). Histograms of these
products were created with each orientation as bins. The bins of
the histograms of edge-pair intensity products were determined by
the Euclidean distance between the two edges (d) and the angle
between the two edges (alpha). There were 500 bins for d and
48 bins for α. For each bin defined by d and α, histograms of the
angles were normalized, and the probability of each edge occurring
was estimated. The maximum possible for each section is 1/24 if
there is an even spread of orientations throughout the image. The
Shannon entropy is estimated using the following equation:

shannon α,dð Þ=
X

prob× log2 probð Þ, (5)

where α is the angle between the two edges bin, d is the Euclidean
distance bin, and prob is the probability of the edge occurring
compared to the even spread of orientations occurring in the image.
A circular plot showing a histogram of the orientation differences
for one example natural image can be seen in Fig. 1. Shannon
entropy was averaged over α and d for each image.

Details of the image statistics including the results over image
category can be seen in the Supplementary Material.

Apparatus

Stimuli were displayed using an Asus Prime computer with an Intel
i7 core andNVidiaGForce graphics card, using anUbuntu 14 oper-
ating system. The display was a 22” Illyama Vision Master Pro
514 monitor set to a resolution of 1024 × 768 with a refresh rate of
60 Hz. The display was calibrated using a Minolta CS-LS110
photometer, the maximum luminance of the display was
148.33 cd/m2, and the minimum was 0.19 cd/m2. Stimuli were

created and presented using MATLAB 2013b (The Mathworks,
Natick) and the Psychtoolbox (Brainard, 1997; Kleiner et al., 2007;
Pelli, 1997).

EEG signals were recorded using a 64-channel Active-Two
Biosemi system, including eight additional facial electrodes placed
on the left and right mastoids, outer canthi, supra and suborbital
locations. Conductive electrode gel was used to reduce impedance.
The Active-Two system uses a common mode sense and a driven
right leg feedback loop to further reduce the effective impedance,
please see https://www.biosemi.com/faq/cms&drl.htm for details.

Observers

Twelve young observers reporting normal or corrected-to-normal
vision took part in the EEG experiment. All participants were
between the ages of 18 and 30 and biological sex was mixed. Those
with photosensitive epilepsy were excluded due to the use of
flickering stimuli. Ethical approval was granted by the University
of Lincoln School of Social Science Ethics committee. Written
informed consent was obtained from all participants prior to taking
part in the study, and all experiments were conducted in accor-
dance with the guidelines of the British Psychological Society. One
observer withdrew before the end of the study, leaving data from
11 observers for analysis.

Procedure

Observers were seated in a sound-attenuated darkened room 1 m
from the display. A central white fixation cross of 1.7° visual angle
appeared between each trial for 0.5 seconds. Stimuli were presented
in a Gaussian-edged window with a flat area of 150 pixels and σ of
10 pixels, resulting in a viewable area of approximately 7.3° of visual
angle. Observers were presented with stimuli that increased in
contrast and faded to mid-gray at a rate of 5 Hz for a duration of
20 seconds each. Therefore, the average luminance remained con-
stant throughout the image presentation. There were three repeti-
tions of each stimulus displayed. All trials were presented in a

Figure 1. Circular plot showing distribution of the edge information (orientation
differences) contained in one example natural image (the final in the set). Orientation
is defined across the full range of 0–360°, such that a rotation through 180° produces a
reversal in the contrast polarity of the edge.
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random order anew for each individual observer. After the
20-second trial, observers were asked to rate the stimuli for dis-
comfort on a 1–7 Likert scale. The instructions that appeared on the
screen were to rate the image, “How uncomfortable is this? 1 = not
7 = very uncomfortable.” There were no additional instructions
given to participants on how to interpret discomfort. Although it is
accepted that “discomfort” is a multifaceted term including several
factors, these are highly correlated (e.g., Sheedy et al., 2003),
therefore, we chose the aggregate measure for this study in line
with previous work (e.g., Marcus and Soso, 1989; Fernandez &
Wilkins, 2008; Juricevic et al., 2010). It is possible that the ratings
influenced the subsequent trial. However, this is mitigated by the
fixation cross forcing observers to pause betweenmaking the rating
and viewing the next stimulus. In addition, the trials were presented
in a new randomorder for each participant, and so any order effects
should be minimized through the averaging process.

Analysis

EEG data were analyzed using the EEGLAB toolboxes (Delorme &
Makeig, 2004). Data were rereferenced to the linked mastoids and
resampled to 256 Hz offline. Data were band-pass filtered
between 0.1 and 40 Hz to remove drift and line noise artifacts.
Bad channels were rejected using an automatic thresholding pro-
cedure removing any channels exceeding a threshold greater
than 5% probability. Missing channels were interpolated using
spherical interpolation. Each 20-second epoch was extracted and
a baseline of 1000 ms prior to stimulus onset was removed via
subtraction. This �1000 to 0 ms baseline period was subtracted
from 0 to 20,000 ms presentation duration, where 0 is the onset of
the flickering stimulus. Each 20-second epoch was then further
subdivided into 2-second epochs to allow for sufficient data length
to perform spectral analysis but allow epochs containing substan-
tial artifacts to be rejected. The first 2-second epoch was discarded
to reduce the influence of transient effects. Epochs containing
artifacts exceeding a threshold of ±500 μV were rejected. A

Gratton-Coles (1983) procedure was used to correct for eye move-
ment artifacts without needing to exclude trials. A threshold of
±20 μV in a 200 ms time window was used to define blink artifacts.

Spectral analysis was conducted using Welch’s method using
the MATLAB function “pwelch,” assuming a 2-second epoch
length, a sampling rate of 256 Hz, and 0 overlap. Welch’s method
of spectral analysis uses a sliding window to estimate the power
spectral density function. The peak of the power spectral density
function at 5 Hz, the fundamental frequency of the visual stimu-
lation, was chosen as the SSVEP response. As the stimulus faded in
and out of mid-gray following a sinusoidal temporal profile, this
can be considered “pattern onset/offset” SSVEP, for a technical
introduction, see Norcia et al. (2015).

Results

Discomfort ratings

Average discomfort ratings can be seen in Fig. 2. The greatest
discomfort responses are to the striped stimuli and the work of
Bridget Riley. Realism results in the lowest overall discomfort
response. Therefore, the discomfort judgments for the artworks
are lower even though contrast measures are higher (see
Supplementary Material), indicating contrast is not the sole pre-
dictor of discomfort.

We would expect some image types to be more uncomfortable
than others. A linear mixed effect model was created to predict
discomfort judgments including image type as a fixed effect, and
observer as a random effect. There was a significant effect of image
type (F(4,523) = 11.10, p< 0.001). The results can be seen in Table 2.
Please note, the intercept represents the image category natural
images, and this is the category to which others are compared.
Compared to natural images, there was a non-significant trend for
artworks to be less uncomfortable. Stripes, bumps, and the work of
Bridget Riley were all more uncomfortable compared to natural
images. The model accounted for 9% (adjusted R2 = 0.09) of the

Figure 2. Average discomfort judgments for each of the image categories. Error bars indicate 95% confidence intervals. The black dotted line indicates the average values for the
natural images to facilitate comparison across categories.
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variance. Please note, due to the ordinal nature of the discomfort
judgments, when the assumptions were checked, this was found to
show a violation of the assumptions of the linear mixed effect
model. As a result, ordinal regression was used to reanalyze the
data more conservatively. This showed the broadly similar pattern
of results, but this time the artworks were also statistically signif-
icantly different from the natural images. Full details of the linear
mixed effect model and the more conservative ordinal regression
can be found in the Supplementary Material.

EEG results

Fig. 3 shows the scalp topography of the SSVEP responses to each of
the four image classes at the fundamental frequency of 5 Hz. Strong
activity can be seen in the occipital and in the frontal channels. The
occipital areas were of interest in the study based on the predic-
tions. However, for completeness, the frontal activity was also
analyzed in the same way. This can be seen in the Supplementary
Material. The eye channels that do not appear in the figure were
analyzed separately (see below and Supplementary Material).

Fig. 4 shows spectral slope averaged over the channels of inter-
est. Channels of interest were in the posterior regions and defined
as Iz, Oz, O1, O2, POz, PO3, PO4, PO7, and PO8 based on the scalp
topography. Clear peaks can be seen at the fundamental frequency
(5 Hz) as well as the harmonics of the response. The main analysis
was conducted on the fundamental frequency. For completeness,
analysis of the 10 Hz harmonic was also conducted. This can be

seen in the Supplementary Material. There were no statistically
significant effects at the 10 Hz harmonic.

Fig. 5 shows the average peak SSVEP response at the funda-
mental of 5Hz for each of the stimulus categories. Typical of SSVEP
responses, peak responses can be seen at the fundamental fre-
quency of stimulation (5 Hz), and the harmonics.

Fig. 5 shows the average SSVEP response for all images within a
category.

Analysis of these SSVEP results, and their relationship to dis-
comfort ratings, model responses, and image statistics, are pre-
sented below in relation to the hypotheses outlined in the
introduction:

Hypothesis 1. Can we predict discomfort judgments from
SSVEP and total model responses?

A linear mixed effect model was created to predict discomfort
judgments from SSVEP, total model response and model
response kurtosis, taking image category and observer as ran-
dom variables. The model accounted for 8% of the variance in
discomfort judgments (R2 = 0.08). Discomfort judgments were
predicted by total model response (estimate of the coeffi-
cient = 4.84x10�7, SE = 1.43x10�7, p < 0.01, CI = [2.03 x10�7,
7.64 x10�7]), and model response kurtosis (coefficient = 0.003, ±
0.001 SE, p < 0.05, CI = [0.0005, 0.005]), but not SSVEP
responses (coefficient =�0.004, SE = 0.02, p = 0.83, CI = [�0.04,
0.03)). Fig. 6 shows a scatterplot of discomfort judgments pre-
dicted by SSVEP and total model responses, image category is
indicated with the different colors. For assumptions of the
model, the model fitting process, and the complete set of outputs
of the model, please see Supplementary Material.

Hypothesis 2. Are the smallest SSVEP responses elicited by
artworks, and the largest responses by grating and bandpass filtered
noise?

Linear mixed effect model was created to predict SSVEP
responses from image type, including observer as a random inter-
cept and random slope. There was a significant effect of image type
(F(4,523) = 3.37, p = 0.01). Compared to natural images, only the
work of Bridget Riley elicited a statistically significant greater

Figure 4. Power spectrum showing the average spectra for the response to each of the
image categories: artworks, natural images, bump stimuli, and sine wave gratings,
averaged over the channels of interest.

Figure 3. Topographic maps showing SSVEP response to fundamental frequency of
5 Hz. Note the eye channels are not included on this figure.

Table 2. Results of the linear mixed effect model assessing the effect of image
type on discomfort judgments

Name Estimate SE T DF p Lower CI Upper CI

Intercept 3.46 0.11 30.96 523 <0.001 3.24 3.68

Artworks �0.28 0.14 �1.92 523 0.055 �0.56 0.0061

Bump 0.77 0.22 3.45 523 0.00060 0.33 1.20

Stripe 0.80 0.29 2.74 523 0.0063 0.23 1.37

Riley 0.84 0.32 2.61 523 0.0093 0.21 1.47
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SSVEP response. Again, please see Supplementary Material for
more detail on the model fitting process and full details of outputs.

Hypothesis 3. Do the mid-range spatial frequencies elicit the
greatest discomfort and largest SSVEP responses?

Based on previous literature, we would expect discomfort
judgments to show spatial frequency tuning in those images that
vary systematically by spatial frequency (bumps and stripes).
Fig. 7 shows spatial frequency tuning for discomfort judgments.
This appears to be in a different direction for bump and stripe
stimuli, which is unexpected, based on previous work. A linear
mixed effect model including spatial frequency (as both quadratic

and linear terms), image type (bump or stripe), and their inter-
action was created, including the observer as a random effect
(slope and intercept). As the functions contain a maximum or
minimum, rather than a monotonic relationship, spatial fre-
quency was included as a quadratic term. Further, as this peak
is by necessity at a non-zero spatial frequency, a linear term for
spatial frequency was also included to allow us to capture tuning
around this center frequency. Results showed there to be a sig-
nificant linear effect of spatial frequency (indicating non-zero
peak, coefficient = �0.82, ± 0.39 SE, p = 0.040, CI = [�1.62–
0.04]), a significant quadratic effect of spatial frequency
(indicating tuning, coefficient = 0.15, ± 0.07 SE, p = 0.025,

Figure 5. Average SSVEP response for each of the image categories. Error bars indicate 95% confidence intervals. The black dotted line indicates the average values for the natural
images to facilitate comparison across categories.

Figure 6. Discomfort judgments predicted by SSVEP and total model responses, each color indicates a different image category.
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CI = [0.02 0.28]), and a significant interaction between spatial
frequency and image type (coefficient = �0.06, ± 0.02SE,
p = 0.003, CI = [�0.11–0.02]). To unpack this interaction, two
separate mixed effects models, including spatial frequency as both
a linear and a quadratic term showed there to be no significant
effects of spatial frequency for either bump or stripe stimuli. No
significant effects of spatial frequency were found for this qua-
dratic, reflecting the only modest spatial frequency tuning evident
for each stimulus type in Fig. 7. For full details of themodel, please
see Supplementary Material.

We would expect the SSVEP response to vary with spatial
frequency for images where this has been systematically varied,
specifically bumps and stripes. This effect of spatial frequency is
clear in Fig. 8, which shows SSVEP increasing with frequency.
While we might predict a peak at midrange frequencies when
image size is kept constant, it should be noted that the spatial
contrast sensitivity tends toward a more lowpass character at

higher temporal frequencies, as used here (Kelly, 1979). Due to
the monotonic effect of spatial frequency on SSVEP, a linear mixed
effect model was created for the bump and stripe images, including
spatial frequency and image type as fixed effects, with observer as a
random effect (slope and intercept). This allowed us to model the
increase in SSVEP with increasing spatial frequency. Our predic-
tion was supported, Fig. 8 shows the increase in SSVEP power with
increasing spatial frequency (coefficient = 0.44, ± 0.20 SE, p= 0.026,
CI = [0.06 0.83]). This is in itself as expected, as the SSVEP response
has long been demonstrated to show spatial frequency tuning (e.g.,
Plant, 1983). However, it does demonstrate that the manipulation
is working as expected. For full details of the model, please see
Supplementary Material.

Hypothesis 4. Do low-level image statistics predict discomfort
judgments and neural responses?

Image statistics are highly non-independent. For example, RMS
and CSF-filtered contrast are both related measures of contrast in
the image, first-order edge orientation entropy is closely related to
second-order edge orientation entropy. To reduce dimensionality,
principal component analysis was conducted including image sta-
tistics of fractal dimension, spectral slope, RMS and CFS-filtered
contrast, the total model response, first- and second- order edge
orientation anisotropy. The first three principal components
accounted formuch of the variance, the first component accounted
for around 57% of the variance, and the second component
accounted for around 18% of the variance, and the third around
11%of the variance. Only the eigenvalues for principal components
1 and 2 were greater than 1, however principal component 3 was
also included in the analysis following testing the assumptions and
the model build statistics (see Supplementary Material). Fig. 9
shows the scree plot and the loadings.

A linear mixed effect model was created to predict discomfort
judgments from the principal components 1, 2, and 3, including
the observer as a random effect. Principal component 1 signifi-
cantly predicted discomfort judgments (�0.12, ± 0.03 SE,
p < 0.001, CI = [�0.17, �0.06]), as did principal component 3
(�0.24 ± 0.07 SE, p < 0.05, CI = [�0.37–0.11]). Principal com-
ponent 2 did not predict discomfort judgments statistically sig-
nificantly (�0.08, ± 0.05 SE, p = 0.10, CI = [�0.18, 0.02]).
However, the model accounted for a negligible amount of the
variance (6%). This did not meet the requirements of the linear
mixed model, and so again ordinal regression was used as a more
conservative estimate, this gave a similar pattern of results, please
see Supplementary Material for model build, assumptions, and
alternative analysis.

A linear mixed effect model was created to predict the SSVEP
response from principal components 1 and 2, including observer as
a random effect. The model accounted for 58% of the variance
(adjusted R2 = 0.58). Principale component 1 was not statistically
significant (coefficient = 0.05, ± 0.05 SE, p = 0.34, CI = [�0.05
0.14]), but principal component 2 was statistically significant
(coefficient = 0.18, ± 0.09 SE, p < 0.05, CI = [0.01 0.35]), as was
principal component 3 (coefficient = �0.61, ± 0.10 SE, p < 0.05,
CI = [�0.82–0.39].

The first principal component loadings were low slope, high
first order entropy and high second order edge entropy values. Low
slope values will relate to images with relatively less low-spatial
frequency information compared to high spatial frequency infor-
mation, perhaps images that includemore fine details. The first and
second order edge orientation entropy values relate to the

Figure 8. Spatial frequency tuning of SSVEP responses, error bars are ±1SE of
the mean.

Figure 7. Spatial frequency tuning of discomfort responses, error bars are ±1SE of
the mean.
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predictability of the edge information in images. Therefore, the first
principal component might be interpreted as relating to edge
predictability in highly detailed images, and unstructured, highly
detailed images are uncomfortable. The second principal compo-
nent loadings were low fractal dimension, high RMS and high CFS-
filtered contrast values. Images low in fractal dimension have less
predictability in the form of self-similar patterns compared to
images with high fractal dimension, thus the second principal
component might be interpreted as relating to images with high
contrast, but low predictability. The third principal component
related to high fractal dimension, low slope, and low first order edge
orientation entropy. This might be interpreted as complex, pre-
dictable images with predominantly more fine edge information.
This showed a negative relationship with both discomfort judg-
ments and SSVEP responses.

The stripes were removed from the principal component anal-
ysis due to undefined values for slope. However, the relationship
between RMS contrast and discomfort can be assessed in the whole
image set. Considered separately, RMS contrast does predict discom-
fort judgments (coefficient = 3.32 ± 1.3 SE, p = 0.01, CI = [0.75 5.89]),
but again only a small amount of the variance is accounted for (9%).
Similarly, when striped patterns are included, CFS-filtered contrast
can predict discomfort judgments (coefficient = 0.02 ± 0.01SE,
p = 0.03, CI = [0.002 0.04]), with 9% of the variance explained. Please
see Supplementary Material for full details of the models.

Control analysis: Eye channels

It has been suggested that visual discomfort from flicker may be
related to eye movements (Kennedy & Murray, 1991; Wilkins,
2016). Although the flicker in the literature tends to be much faster
than the rates used in the current study, given that there was a large
response in the frontal electrodes, particularly for the 5 Hz SSVEP
responses, it was considered important to check for this possibility.
Therefore, vertical and horizontal eye channels were estimated
following Jia and Tyler (2019), full analysis can be seen in the

Supplementary Material. There was no statistically significant rela-
tionship between the horizontal (p = 0.88) or vertical (p = 0.38)
electrodes with discomfort judgments of stimuli. Neither the hor-
izontal (p = 0.51) nor vertical electrodes (p = 0.19) showed a
significant relationship with spatial frequency for the stripe and
bump stimuli. Neither PCA1 nor PCA2 predicted the horizontal
eye channels (p = 0.86, p = 0.41, respectively) nor the vertical eye
channels (p = 0.15 and 0.99, respectively).

Discussion

The aim of the current study was to investigate the predictions of
efficient coding in response to artworks, natural images, and
uncomfortable images. Our specific goals were to understand
(1) which factors predict discomfort, (2) the relationship between
discomfort and SSVEP responses, (3) how SSVEPS vary across
image categories, (4) the effects of spatial frequency on SSVEP and
discomfort, and (5) the relationship between image statistics,
SSVEPs and visual discomfort, via dimension reduction. We
used a model of early visual processing, SSVEP responses, and
image statistical properties such as contrast, fractal dimension,
spectral slope, and edge information entropy. As these statistical
properties are highly interrelated, principal components analy-
sis was performed to reduce the dimensionality into fewer
components. Two major components emerged the first might
be interpreted as relating to the presence of unstructured, high
spatial frequency information, and the second to contrast. A
third component also emerged, related to higher fractal dimen-
sion, low spectral slope and low first-order edge entropy; this
component showed a negative relationship with both discom-
fort and SSVEP responses.

As in previous work, uncomfortable images had statistical
properties that differed fromnatural images (Fernandez &Wilkins,
2008; Juricevic et al., 2010; O’Hare & Hibbard, 2011). Striped
patterns and the work of Bridget Riley were judged the most
uncomfortable, in agreement with previous research (O’Hare,

Figure 9. Left: Scree plot of the eigenvalues against component number and Right: PCA loadings. “First” refers to first-order edge orientation entropy, “second” refers to second-
order edge orientation entropy, “fractal” refers to fractal dimension, “effective” refers to effective contrast, “RMS” refers to root-mean-squared contrast, and “slope” refers to
spectral slope.
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2017a; O’Hare et al., 2021;Wilkins et al., 1984). Artworks showed a
non-significant trend toward being more comfortable compared to
natural images, again in line with the predictions that artworks
might be pleasing to the eye (e.g., Graham & Field, 2007b; Graham
& Field, 2008).

Importantly, discomfort judgments were predicted by the com-
putational model of early visual processing. This supports previous
modeling work (Hibbard & O’Hare, 2015) suggesting that low-
level, feed-forward visual processing can account for some aspects
of visual discomfort in a wide range of images, including different
genres of artworks and different types of artificial images thought to
be uncomfortable. Moreover, spectral slope and first and second
order edge anisotropy are both related to principal component
1, which predicted discomfort, suggesting that unstructured, highly
detailed images were those judged more uncomfortable.

Unstructured highly detailed images might prove challenging
for the visual system as they contain a lot of unpredictable visual
information. Predictable visual information could be efficiently
processed, and this is determined by their structure (Field, 1999).
Although the focus of this study is visual discomfort, the converse
argument is that images with a predictable structure should be
esthetically pleasing. Edge properties are important for esthetics
(Grebenkina et al., 2018; Stanischewski et al., 2020). Several of the
metrics of image statistical properties are determined by edge
information, for example, edge orientation anisotropy; the higher
the entropy, the less predictable the orientations of the edges in the
image are (Redies et al., 2017). Although spectral slope does not
directly take account of edge locations, it does reflect the level of
detail and self-similarity of an image (Graham and Redies, 2010).
Spectral slope has been directly associated with visual discomfort
(Juricevic et al., 2010; O‘Hare & Hibbard, 2013).

It is important to note that discomfort will be an aggregate of
several components, including image contrast, composition, illu-
sory effects, and semantic content. This explains why the linear
mixed effects models did not account for a large amount of the
variance of discomfort judgments, despite statistically significant
predictors. There are several contributing concepts to visual dis-
comfort, including blurring, eyestrain, and headache (Sheedy et al.,
2003), reflected in the variability of questions used to measure
discomfort, including topics related to illusory percepts and the
readability of text (Conlon et al., 1999; Wilkins & Evans, 2001). In
addition, high-level and semantic processes influence discomfort
judgments for real images, and there is less experimental control
over image content. For example, natural scenes containing build-
ings may be problematic as some architecture styles have been
associated with discomfort (Alkhalifa et al., 2020; Le et al., 2017).
However, generalizability to real images was an important consid-
eration in the current work.

Principal component analysis did not use the stripe images, as
there is no spectral slope value for these images, nor is there a value
for first and second order edge anisotropy for these stimuli. When
stripes are included, RMS and CFS-filtered contrast predict dis-
comfort judgments. Neural responses to images measured using
SSVEP were predicted by principal component 2, but discomfort
judgments were not. This component consisted of low fractal
dimension, high RMS- and CFS-filtered contrast. Fractal dimen-
sion is a measure of image predictability and complexity, and
repeating self-similar patterns have been suggested to be easier to
process for the visual system (Aks & Sprott, 1996; Spehar et al.,
2003). Images low in fractal dimension lack this predictable struc-
ture, and so arguably may be less easy for the visual system to
process. CFS-filtered contrast is determined by the modulation

transfer function in conjunction with the image spatial frequency
content. Contrast and spatial frequency content are important to
both SSVEP responses (Plant, 1983) and discomfort judgments
(Fernandez & Wilkins, 2008), however, behaviural results show
that discomfort judgments are not altered when contrast effects are
accounted for (O’Hare & Hibbard, 2011). In a sophisticated model
including contrast normalization processes, Penacchio et al. (2023)
have shown that model activation, sparseness, and isotropy all
relate to visual discomfort. Overall, this result further strengthens
the idea that discomfort cannot be entirely accounted for by simple
contrast effects, although the neural responses are heavily influ-
enced by global image contrast for a wide range of artworks, natural
images, and artificial images.

Discomfort judgments and SSVEP responses were negatively
related to principal component 3, that related to high fractal
dimension, low spectral slope, and low first-order edge entropy
(highly detailed, predictable images). Many naturally occurring
fractal patterns are highly detailed (Spehar et al., 2003). Recent
work has shown fractal patterns to influence walking speed (Burtan
et al., 2023) supporting the idea that the visual system is optimized
to process the kinds of images encountered in nature.

Discomfort judgments showed spatial frequency tuning. For
striped stimuli, this is in the expected direction, with mid-range
spatial frequencies being the more uncomfortable. By contrast,
mid-range bump stimuli were judged to be the most comfortable,
which is not in line with previous results (Fernandez & Wilkins,
2008; O’Hare & Hibbard, 2011). This is unexpected, but is perhaps
due to stimulus flicker, since in the previous experiments mid-
range bump stimuli were shown to bemore uncomfortable in static
images. Bump stimuli have been shown to be more uncomfortable
than other image categories in previous work using SSVEP
responses (O’Hare et al., 2021), although this study did not address
spatial frequency tuning.

It was unexpected that SSVEP responses did not predict dis-
comfort judgments. It could be argued that the eyemovementsmay
account for visual discomfort in the current study, especially given
the strong response in the eye channels. Additionally, observers
may include effects relating to eye movements in their assessment
of discomfort. For example, the Pattern Glare test specifically refers
to shimmering and scintillating illusions in the static image
(Wilkins & Evans, 2001), however, these patterns remain uncom-
fortable even in the absence of eye movements (O’Hare, 2017b).
Works of Op-art designed to induce illusory motion effects have
been investigated in terms of illusory motion (e.g., Otero-Millan
et al., 2012; Troncoso et al., 2008) although this was not found to
relate to eye movements (Hermens & Zanker, 2012). The
Supplementary Material shows the eye movement analysis for
the current study. There is no distinguishable SSVEP response in
the eye channels, and no systematic relationship is found with the
eye channel responses. Therefore, although effects relating to eye
movements may have contributed to the appraisal of discomfort,
eye movements alone cannot account for the results in the current
study. In future research, it would be helpful to measure eye
movements directly. It has been shown in the past that relation-
ships between SSVEP responses and discomfort judgments are
relatively small (O’Hare et al., 2021). As the SSVEP response is
heavily influenced by image contrast (e.g., Plant, 1983) and physical
contrast was allowed to vary in the current study, a parsimonious
explanation is that any relationship between SSVEP and discomfort
might be overwhelmed by effects of physical contrast.

We used a diverse range of images, which by necessity creates a
lack of experimental control of many image properties. Color was
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not included to allow for greater comparability between images, but
plays an important role in visual discomfort (e.g., Penacchio et al.,
2021). It may also be beneficial in future to investigate the effects of
edges more systematically using parametrically controlled stimuli.
Importantly, from the current study, it seems that the predictability
of images is important in visual discomfort, as predicted by efficient
coding. Edge information is carried in the phase spectrum, which
can be scrambled (e.g., Coggan et al., 2016) or swapped between
images (e.g., Oppenheim & Lim, 1981). In summary, visual dis-
comfort for a wide range of image types, including varying art
genres, natural and artificial images, was predicted by a low-level
model of visual discomfort. Low-level image statistics relating to
highly detailed, unstructured images predicted discomfort judg-
ments, whilst neural responses measured using SSVEP were pre-
dicted predominantly by contrast. This provides support for the
ideas of efficient coding in accounting for some aspects of visual
discomfort.

Supplementary material. The supplementary material for this article can
be found at http://doi.org/10.1017/S0952523824000051.
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