
Neurocomputing 527 (2023) 196–203
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Canonical cortical graph neural networks and its application for speech
enhancement in audio-visual hearing aidsq
https://doi.org/10.1016/j.neucom.2022.11.081
0925-2312/� 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

q The authors are grateful to FAPESP grants #2013/07375-0, #2014/12236-1,
#2017/02286-0, #2018/21934-5, #2019/07665-4, and #2019/18287-0, CNPq
grants #307066/2017-7, and #427968/2018-6, as well as the Engineering and
Physical Sciences Research Council (EPSRC) grant EP/T021063/1.
⇑ Corresponding author.

E-mail address: ahsan.adeel@deepci.org (A. Adeel).
Leandro A. Passos a, João Paulo Papa b, Amir Hussain c, Ahsan Adeel a,d,⇑
aCMI Lab, School of Engineering and Informatics, University of Wolverhampton, Wolverhampton, United Kingdom
bDepartment of Computing, São Paulo State University, Bauru, Brazil
c School of Computing, Edinburgh Napier University, Edinburgh, Scotland, United Kingdom
ddeepCI.org 20/1 Parkside Terrace, Edinburgh, United Kingdom
a r t i c l e i n f o

Article history:
Received 12 September 2022
Revised 14 October 2022
Accepted 21 November 2022
Available online 8 December 2022
Communicated by Zidong Wang

Keywords:
Cortical circuits
Canonical correlation analysis
Multimodal learning
Graph neural network
Prior frames neighborhood
Positional encoding
a b s t r a c t

Despite the recent success of machine learning algorithms, most models face drawbacks when consider-
ing more complex tasks requiring interaction between different sources, such as multimodal input data
and logical time sequences. On the other hand, the biological brain is highly sharpened in this sense,
empowered to automatically manage and integrate such streams of information. In this context, this
work draws inspiration from recent discoveries in brain cortical circuits to propose a more biologically
plausible self-supervised machine learning approach. This combines multimodal information using
intra-layer modulations together with Canonical Correlation Analysis, and a memory mechanism to keep
track of temporal data, the overall approach termed Canonical Cortical Graph Neural networks. This is
shown to outperform recent state-of-the-art models in terms of clean audio reconstruction and energy
efficiency for a benchmark audio-visual speech dataset. The enhanced performance is demonstrated
through a reduced and smother neuron firing rate distribution. suggesting that the proposed model is
amenable for speech enhancement in future audio-visual hearing aid devices.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

According to the World Health Organization (WHO), the num-
ber of people requiring hearing rehabilitation in the world is esti-
mated to rise from 430 million nowadays up to 700 million until
2050, with nearly 2:5 billion people presenting at least some
degree of hearing impairment [22]. Despite the impairment itself,
deafness also impacts on social relationships [19,16] and environ-
ment perception [21], leading to other psychological and health
conditions [15]. Over such circumstances, employing high-end
energy-efficient technological approaches to build cross-modal
sensory devices, i.e., combining audio and visual inputs to enhance
hearing aid devices, seems a plausible way to improve individuals’
life quality. In the last decades, machine learning-based techniques
have shown themselves as a suitable approach to tackle issues
related to virtually any field of science, industry, or even daily life,
ranging from computer vision [34] to medicine [28], and satellite
imagery processing [12,27]. Machine learning also has been suc-
cessfully employed in the context of speech enhancement [33],
whose aim is to enhance speech quality and intelligibility when
noise degrades them significantly [5]. Nevertheless, such methods
may suffer massive performance degradation in the presence of
overwhelming noise [7]. Many works address this problem using
multimodal audio-visual (AV) information fusion. Combining AV
information usually demands more sophisticated approaches,
which intrinsically comprises several challenges, like data align-
ment, finding semantic gaps between low-level features and
high-level information [8], and learning coherent and correlated
latent patterns on different input modalities.

Combining noisy audio and clean images for clean signal recon-
struction is analogous to reading the lips and body movements of a
speaker in a boisterous environment, e.g., a pub with loud music, to
obtain some additional information and create a context to
enhance the information quality of a speech suppressed by the
loud sound. Ngiam et at. [20], for instance, proposed a multimodal
method capable of improving a target modality feature representa-
tion. Further, Adeel et al. [2] provided several improvements to the
field, presenting a chaotic model for lip-reading integrating Inter-
net of Things (IoT) and 5G Cloud-Radio Access Network, further
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improving AV information transmission for real-time speech
reconstruction. The authors proposed a deep learning-based
approach that exploits AV cues to estimate clean audio [4], also
considering distinct language speakers in similar work [13].

Recently, Passos et al. [24] proposed a multimodal self-
supervised Graph Neural Network (GNN) that combines AV data
through using Canonical Correlation Analysis Graph Neural Net-
works (CCA-GNN) [35], also modeling the temporal information
in the graph using the so-called prior-frame positional encoding.
The method obtained outstanding results considering audio recon-
struction and energy efficiency, analyzed in terms of neuronal acti-
vation rate.

Despite the advantages presented [24], the model lacks some
points in the context of a biologically plausible approach. In this
context, Passos et al. [23] proposed a multimodal approach using
burst-dependent learning [25], a method inspired by more recent
studies on the physiological mechanism of pyramidal neurons that
regulates the learning by the frequency of bursts, where the credit
assignment problem is addressed by the primary principles of
pyramidal neurons suggested by Körding and König [18]. In paral-
lel, the study of canonical cortical circuits [9,14] provides some
interesting insights regarding the brain procedure toward multi-
modal information processing. Canonical cortical circuits model
pyramidal neurons to receive different modalities of information,
modulated in an excitatory or inhibitory fashion on deeper layers.
Moreover, biologically plausible models should not underestimate
the importance of memory in the learning process, which performs
a fundamental role in information inference, acting as an intrinsic
context for novelty comprehension.

The attributes mentioned above motivated the development of
the Canonical Cortical Graph Neural Network, a novel self-
supervised architecture that remodels and improves the ideas
developed in [24] by introducing a more biologically plausible
approach to modulating and filtering the multimodal information
inside the so-called cortical graph layers. It also introduces a mem-
ory concept inside each cortical graph block, composed of a mech-
anism to ‘‘forget” irrelevant facts and update itself considering
every consecutive node, which is presented in a logical time-step
sequence using prior-frame-based positional encoding. Experi-
ments conducted over the AV ChiME3 [5] dataset show the Canon-
ical Cortical Graph Neural Network obtained state-of-the-art
results, outperforming CCA-GNN in the contexts of faster conver-
gence, audio reconstruction, and firing neuron activation rates.
Regarding the latter, the model not only obtained lower rates of
activation, but also produced smothier firing-rate distributions.

The main contributions of this paper are presented as follows:

1. To propose the Canonical Cortical Graph Neural Network, a bio-
logically plausible model for multimodal information feature
extraction.

2. To introduce a novel paradigm for intra-layer information
fusion and memory modeling.

3. To provide a self-supervised energy-efficient model for corre-
lated feature extraction for AV-based clean audio data
reconstruction.

4. To foster the literature regarding speech enhancement and AV
hearing aids.

The remainder of this paper is presented as follows. Section 2 pro-
vides a theoretical background regarding Graph Neural Networks
with Canonical Correlation Analysis and the prior frame-based
graph positional encoding, while Section 3 introduces the novel
Canonical Cortical Graph Neural Network. Further, Sections 4 and
5 present the methodology and the experimental results, respec-
tively. Finally, Section 6 states conclusions and future works.
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2. Theoretical Background

This section provides a brief theoretical background regarding
Graph Neural Networks with Canonical Correlation Analysis and
the prior frame-based graph positional enconding.

2.1. Graph Neural Networks with Canonical Correlation Analysis

Let G ¼ ðX;AÞ be a graph where A 2 RN�N represents the adja-
cency matrix and X 2 RN�F the input data represented by graph
nodes. Additionally, F represents the feature space dimension,
and N denotes the number of nodes. The CCA-GNN [35] comprises
three main steps, i.e., a random graph generator T, a graph neural
network encoder f h, where h denotes the network’s learnable
weights, and an objective function based on Canonical Correlation
Analysis. The graph generator produces two augmented versions of
the same graph, which are presented to the graph neural network
encoder for further computing and maximizing the canonical cor-
relation between their outputs.

The idea behind such an approach is discarding decorrelated
components while preserving correlated ones. In a nutshell, the
model tries to keep the more significant information present in
both augmented versions and to avoid individual behaviors, such
as anomalies and noise. Fig. 1 depicts the Canonical Correlation
Analysis Graph Neural Network.

The graph augmentation process comprises the same approach
presented in [36,29], which conducts a random feature masking
and edge dropping. In this context, each ti � T comprises a distinct
view, i.e., a transformed version of G, sampled at each iteration i.

The encoder is composed of a two-layered GNN but can be
easily replaceable by any fancier model. The target function is
designed to model the learning process as a canonical correlation
maximization problem [10] using a self-supervised approach that
considers two normalized views, ZA and ZB, produced over ran-
domly augmented versions of the original graph. The objective is
to maximize the correlation between these views, formalized as
follows:

LðZA;ZBÞ ¼ jjZA � ZBjj2F þ k jjZT
AZA � Ijj2F þ jjZT

BZB � Ijj2F
� �

; ð1Þ

where k is a non-negative trading-off hyperparameter, and I is the
identity matrix. The left term indicates the invariance term, which
is responsible for minimizing the invariance between the two
views. In contrast, the term on the right side describes the decorre-
lation term, which facilitates distinct features to capture different
semantics through a regularization procedure.

The terms in Eq. 1 can be decomposed using a variance–covari-
ance perspective [30]. Let s be an augmented version of the graph
sampled from an input x, and Zs is a view of s obtained from a
decoder output. The invariance term is minimized using expecta-
tion, described as follows:

Linv ¼ jjZA � ZBjj2F ¼
XN
i¼1

XD
k¼1

ðzAi;j � zBi;jÞ
2

ffi Ex

XD
k¼1

Vsjx½Zs; k�
" #

� 2N; ð2Þ

where V denotes the variance. Similarly, one can formalize the
decorrelation term as follows:

Ldec ¼ jjZT
SZS � Ijj2F ¼ jjCovs½z� � Ijj2F ffi

X
i–j

ðqzs
i;j Þ

2
;8ZS 2 fZA;ZBg;

ð3Þ
where q denotes the Pearson correlation coefficient, and Cov stands
for the covariance matrix.



Fig. 1. Canonical Correlation Analysis Graph Neural Network. Each sample represents a node in a graph whose edges describe the relationship between pairs of samples. The
random graph generator T produces two augmented versions of this graph, which are employed to feed the GNN model. The output of both versions is compared using the
canonical correlation analysis, and the network parameters are adjusted to maximize this metric.
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2.2. Prior Frame-based Graph Positional Enconding

A time-sequence based approach for graph positional encoding
was recently proposed by Passos et al. [24]. The method computes
the node neighborhood by connecting them to their k prior frame
nodes in time sequence and attributing connection weights to the
edges according to their distances in this time-based space. Fig. 2
depicts this idea.

The calculation of the edge weightwij that connects a node i to a
node j is performed as follows:

wij ¼ kþ 1� dij; ð4Þ
where dij denotes the distance from node i to node j in a frame-step
space. Those values are stored in a distance matrix used to compute
the positional encoding of the nodes.

3. Canonical Cortical Graph Neural Network

This paper presents a novel self-supervised approach for train-
ing multi-modal graph neural networks in a more biologically
plausible way. In this context, the architecture combines several
concepts inspired on cortical circuits observed in the brain [14,9]
to model memory and multimodal information fusion with canon-
ical correlation analysis [10], and to maximize the correlation of
the information extracted from different inputs. Fig. 3 presents a
general overview of the proposed model, which suggests the more
interesting procedures of the model are implemented at layer
level. Therefore, Fig. 4 illustrates this in-layer process, also depict-
ing the behavior of each operation.

A formal description of the procedures depicted in Fig. 4 and
performed inside each cortical layer is provided bellow. Firstly,
one should compute the audio f a, visual f v , memory f m, and mod-
ulation f w filters as follow:

f a ¼ r Waha þ bað Þ; ð5Þ
Fig. 2. Prior frame-based node neighborhood modeling considering 2 prior frames.
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f v ¼ r Wvhv þ bvð Þ; ð6Þ

f m ¼ r Wm½ha;hv � þ bmð Þ; ð7Þ
and

f w ¼ r Ww½ha;hv � þ bwð Þ; ð8Þ
where r stands for the Sigmoid function, Wa;Wv ;Wm, and Ww, are
the weight matrices for the audio, visual, memory, and modulation
filters, respectively, and ba; bv ; bm, and bw are the biases for the
audio, visual, memory, and modulation filters, respectively, while
½ha;hv � denotes the concatenation of the audio ha and the visual
hv graph convolution outputs. Further, the pre-modulation q is
computed as follows:

q ¼ tanh Wq½ha; hv � þ bq
� �

; ð9Þ
where Wq and bq are the pre-modulation weight matrix and bias,
respectively. Finally, the modulation x is computed as follows:

x ¼ f w � q; ð10Þ
where � stands for the dot product.

The memory l is the more tricky updating since it considers
both ‘‘forgetting” irrelevant memories using the memory filter f m
and introducing new experiences presented in the modulation x.
Moreover, the operation is performed individually for each node
n 2 f0; . . . ;Ng since they are connected in a logical temporal
sequence established by the prior frame positional encoding [24],
described as follows:

ln ¼ xn þ f nm � ln�1� �
; ð11Þ

where ln;xn, and f nm are the node’s n memory, modulation, and
memory filter. In the sequence, the memory is updated as follows:

l ¼ tanh Wllþ bl
� �

; ð12Þ
where Wl and bl are the memory weight matrix and bias, respec-
tively. Finally, the layer output, i.e., the new node representation of
the audio and visual graphs h0

a and h0
v , respectively, are computed as

follows:

h0
a ¼ l� f a ð13Þ

and

h0
v ¼ l� f v : ð14Þ

Finally, h0
a and h0

v become the node representations of the subse-
quent layer audio and visual graphs, respectively, in case of an
intermediate layer. Regarding the output layer, the model performs
the canonical correlation analysis between h0

a and h0
v using Eq. 1 and

backpropagates this value to optimize the network parameters.



Fig. 3. Canonical Cortical Graph Neural Network.

Fig. 4. Cortical graph layer. The top and middle frames describe the symbols and operations employed in the cortical graph block, respectively. The bottom block depicts the
layer’s pipeline.
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4. Methodology

This section describes the dataset and configuration employed
during the experiments.

4.1. AV ChiME3 Dataset

The dataset used in this paper aims to combine environmental
information, i.e., audio and visuals, to train an efficient model for
enhancing and amplifying clean audio signals considering multi-
modal data. The dataset comprises triples composed of image,
clean audio, and noisy audio signals, from which the image and
noisy audio denote the model’s input while the clean signal stands
for the desired output, i.e., the instance target in the context of
supervised learning. The videos are extracted from Grid [11] data-
set, in which different classes of noises (public transport, pedes-
trian area, street junction, cafe) with signal to noise ratios (SNR)
ranging from �12 to 12 dB extracted from ChiME3 [6] are intro-
duced, composing the AV ChiME3 [5] dataset. Further, the samples
are preprocessed to improve the sentence alignment and incorpo-
rate multiple visual frames to include temporal data. In total, the
dataset contains 989 sequences from 5 different speakers,
199
described as one black male, two white males, and two white
females. Each sequence comprises 48 frames, summing up to a
total of 47;472 synchronized triples of samples.

4.1.1. Audio feature extraction
Log-FB vectors were employed to extract both clean and noisy

audio features. The technique samples the audio signal at
22;050kHz for further segmenting it into M 16 ms frames with
800 samples per frame and 62:5% increment rate. Furthermore,
it uses a hamming window and Fourier transformations to produce
a 2048-bin power spectrum. Moreover, it employs a logarithmic
compression to obtain the 22-dimensional log-FB signals.

4.1.2. Visual feature extraction
The samples extracted to generate the visual set of features

were obtained using an encoder-decoder architecture over the Grid
Corpus dataset. Lip-regions were detected using Viola-Jones [31]
algorithm, for further tracking the frame sequence using the
method proposed in [26]. Additionally, a manual effort was
employed to randomly inspect the sentences, ensuring good lip
tracking [1]. The encoder-decoder approach is then used to create
vectors of pixel intensities, in which the 50 first components are



Fig. 5. Canonical correlation analisys maximization.

Fig. 6. Clean audio reconstruction error convergence considering the proposed
model (Cortical) and CCA-GNN architectures based on the noisy audio and clean
visuals.

Table 1
Average Mean Squared Error and standard deviation over Canonical Cortical GNN and
CCA-GNN considering clean audio reconstruction given noisy audio and visual inputs
over two block layers network architecture.

Neighbors CCA GNN Cortical

3 0:0204	 0:0048 0:0188	 0:0041
5 0:0208	 0:0049 0:0200	 0:0057
7 0:0214	 0:0052 0:0243	 0:0067
10 0:0216	 0:0052 0:0282	 0:0059
15 0:0216	 0:0048 0:0278	 0:0049
20 0:0205	 0:0045 0:0266	 0:0048
25 0:0200	 0:0045 0:0262	 0:0056
30 0:0199	 0:0045 0:0246	 0:0058
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vectorized in a zigzag order and then interpolated to match the
equivalent audio sequence.

4.2. Experimental Setup

The experiments conducted in this paper compare the proposed
Canonical Cortical Graph Neural Networks against the recent state-
of-the-art model CCA-GNN for the task of multimodal clean audio
reconstruction based on noisy audio and visual features, extracted
using logFB and an encoder-decoder approach, respectively, as
described in Section 4.1. Both models comprise a similar architec-
ture composed of two hidden layers, the first comprising 512 and
the second 256 neurons. The parameters were selected empirically.
The learning is conducted to maximize the canonical correlation
analysis for coherent feature extraction during 200 epochs using
the Adam optimizer with a learning rate of 10�3 and a trading-
off parameter of k ¼ 0:0001 (Eq. 1). At the same time, the hyperpa-
rameters of the CCA-GNN follow the configuration employed in
[24]. Finally, the graphs are generated considering eight distinct
prior-frame scenarios, i.e., k 2 ½3;5;7;10;15;20;25;30�. Notice that
the plots provided in experimental results comprise only
k 2 ½3;10;30� to illustrate the difference between a low, medium,
and a high number of neighbors/prior frames.

After maximizing the canonical correlation analysis between
the two channels, the features extracted by the networks are
employed to feed a dense layer responsible for reconstructing the
clean signal by minimizing the mean squared error as the cost
function. The model is optimized during 2;000 epochs using the
Adam optimizer with a learning rate of 0:005 and a weight decay
of 0:0004.

The dataset was divided into 20 folds to provide an in-depth
statistical analysis. Each fold comprises 50 sequences of 48 frames
each, summing up to 2;400 samples per fold. As stated in Sec-
tion 4.1, the dataset is formed by three subsets: (i) clean audio,
(ii) noisy audio, and (iii) clean visual. The noisy audio and the clean
visual input are used to feed the multimodal GNNs, while the clean
audio is considered the reconstruction target. Finally, each fold is
split into train, validation, and test sets, following the proportions
of 60%;20%, and 20%, respectively. The Wilcoxon signed-rank test
[32] with 5% of significance was considered for statistical
evaluation.

5. Experiments

This section exploits the superiority of the proposed Canonical
Cortical Graph Neural Networks over the state-of-the-art CCA-
GNN. The experimental results consider the contexts of feature
extraction analysis, clean audio signal reconstruction, as well as
neuronal activation and energy efficiency.

5.1. Feature Extraction Analysis

This section explores the task of self-supervised feature extrac-
tion in terms of canonical correlation analysis. The idea consists of
extracting correlated features considering both the audio and
visual channels, contributing to better features for clean audio
reconstruction. In this context, the Canonical Cortical Graph Neural
Networks, presented in Fig. 5 as Cortical, showed a performance
75% higher than the CCA-GNN, on average, considering a small,
medium, and high neighborhood, i.e., k 2 ½3;10;30�.

5.2. Clean Signal Reconstruction

Fig. 6 provides some insights regarding the convergence of the
model regarding the Mean Squared Error (MSE) over the testing
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set reconstruction. In this context, one can observe that (i) the pro-
posed model (Cortical) converges a bit faster than CCA-GNN (the
blue line when k ¼ 3) and remain the best result until completing
the 2;000 epochs; (ii) the convergence is faster for small values of
k, i.e., k ¼ 3, for both Cortical and CCA-GNN; (iii) the proposed
model presents an overfitting behavior for larger values of k,
described by the orange (k ¼ 10) and green (k ¼ 30) lines.

Further, Table 1 provides the final MSE values over the testing
set considering eight distinct k scenarios, i.e.,
k 2 ½3;5;7;10;15;20;25;30�. Notice bold values stand for the best
values considering the Wilcoxon signed-rank test [32] with a sig-
nificance of 5%. Such results show that the proposed model pre-
sents a better behavior when exposed to a reduced number of
neighbors, i.e., the historical information is reduced, obtaining
the lowest MSE overall over this scenario. This result can be
explained by the memory implemented in the architecture, i.e.,
since the memory tries to model the predictions based on past
frames, a longer temporal sequence makes this information
ambiguous, leading the model to an extra exposure to past
instances, thus overfitting. The idea is reinforced by the CCA-
GNN approach, where an opposite behavior is observed in most



Fig. 7. Two examples of clean audio signal reconstruction considering the proposed approach (Cortical) and the baseline, i.e., CCA-GNN.
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cases, i.e., since CCA-GNN does not implement a memory, higher
numbers of neighbors usually lead to lower prediction errors.

Finally, Fig. 7 depicts some examples of clean audio reconstruc-
tion for both models. Notice that the Canonical Cortical Graph Neu-
ral Networks with a reduced number of past frames, i.e., k ¼ 3,
obtained almost perfect reconstructions of the clean signal in both
cases, which reinforces the idea that the memory implementation
replaces the necessity of longer temporal information, described by
a higher number of neighbors. Fig. 6(b) shows that CCA-GNN is also
capable of producing good representations when then the number
of past frames is big enough, i.e., k ¼ 30, even though the recon-
struction is not as good as the proposed method.

5.3. State-of-the-art Comparison

Table 2 provides a comparison of the Canonical Cortical Graph
Neural Network against the state-of-the-art results reported in
recent works using the AV ChiME3 dataset and multimodal
Table 2
Comparison of the Canonical Cortical Graph Neural
Network against state-of-the-art results reported
in recent approaches for audio-visual speech
reconstruction in terms of ean squared error.

Technique Best value

Cortical (ours) 0:0188
CCA-GNN 0:0199
CCA-MLP [24] 0:0189
MLP [5] 0:0200
LSTM [3] 0:0780
CC-STOI DL [17] 1:2770

Fig. 8. Neuron activation rate considers the multimodal architectu
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approaches for audio-visual speech enhancement, i.e., CCA-GNN
and CCA Multilayer Perceptron (CCA-MLP) [24], a Long-Short Term
Memory (LSTM) [3] and a Multilayer Perceptron (MLP) [5] based
approaches, as well as a canonical correlation-based short-time
objective intelligibility deep learning (CC-STOI DL) [17] method.
Notice the proposed approach provided the most accurate results,
outperformed all the compared tecniques.

5.4. Neuronal Activation Analysis

The neuronal activation rate analysis is fundamental for future
audio-visual hearing aids since the metric reflects the model’s
energy efficiency, a critical feature considering energy-
constrained environments like hearing aids and embedded devices.
In this context, reducing the firing rate directly implies a reduction
in energy consumption. Fig. 8 depicts the neuron activation rate
over the intermediate block layers concerning the audio and visual
channels. Notice that both audio and video channels obtained
pretty similar values concerning the Cortical model, suggesting
that the two tracks contribute almost equally to the results.

A numerical representation is presented in Table 3, which com-
prises a more complete set of neighbors (past frames), i.e.,
k ¼ ½3;5;7;10;15;20;25�. The results reinforce the idea that the
proposed model relies almost equally upon both noisy audio and
visual modalities for the final output since their areas under the
curve are practically the same for all cases, except for k ¼ 10, with
an irrelevant difference, i.e., 256 and 255 for noisy audio and
visual, respectively. The results also show that the proposed model
outperforms the baseline in the context of neuronal activation and,
consequently, energy consumption in every possible scenario,
showing itself as a suitable approach for speech enhancement in
re’s hidden block over (a) noisy audio and (b) visual channels.



Table 3
Area under the curve considering the multimodal architecture’s hidden block.

Audio Visual

Neighbors Cortical CCA-GNN Cortical CCA-GNN

3 255 276 255 291
5 253 265 253 288
7 256 266 256 288
10 256 268 255 290
15 255 268 255 288
20 258 267 258 285
25 251 267 251 288
30 255 260 255 280
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future audio-visual hearing aid devices considering both accuracy
and energy performance.
6. Conclusion

This paper proposed a novel self-supervised method for multi-
modal correlated feature extraction through canonical correlation
analysis maximization. The proposed model comprises a block-
based neural network, where each block comprises two Graph
Neural Networks layers, i.e., one for noisy audio and the other for
the visual features, a memory, and a set of operations to filter,
insert, delete, and modulate the input signals. Such operations
are inspired in recent discoveries related to cortical cells and their
interactions.

Experiments were conducted over the AV ChiME3 dataset,
designed for the task of multimodal clean audio reconstruction
considering noisy audio and clean visual instances, compared the
proposed approach against the CCA-GNN, a similar state-of-the-
art method proposed recently for the task. Results show that the
proposed Canonical Cortical GNN provides more coherent and
better-quality features, reaching higher values of canonical corre-
lation analysis. The proposed approach also obtained more accu-
rate reconstructions, generating cleaner reconstructions.
Moreover, the model delivers higher efficiency in terms of energy,
evaluated by neurons’ firing rate. Finally, it also showed itself to be
less dependent on a more extended prior-frame sequence, i.e., high
values of k, since the memory can store and track temporal
information.

Regarding future work, we aim to extend a similar cortical-
based architecture to Convolutional Neural Networks and applica-
tions to two-dimensional data. We also aim to implement the
model on chips for training and inference for possible future imple-
mentation in hearing aid devices for AV speech enhancement.
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