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Abstract
The quantity and positioning of glazing on a building’s facade has a strong influence on the building’s heating, lighting, 
and cooling performance. Evolutionary algorithms have been effective in finding glazing layouts that optimise the trade-
offs between these properties. However, this is time-consuming, needing many calls to a building performance simulation. 
Surrogate fitness functions have been used previously to speed up optimisation without compromising solution quality; our 
novelty is in the application of a surrogate to a binary encoded, multi-objective, building optimisation problem. We propose 
and demonstrate a process to choose a suitable model type for the surrogate: a multilayer perceptron (MLP) is found to work 
best in this case. The MLP is integrated with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) algorithm, and 
experimental results show that the surrogate leads to a significant (400x) speedup. This allows the algorithm to find solutions 
that are better than the algorithm without a surrogate in the same timeframe. Updating the surrogate at intervals improves 
the solution quality further with a modest increase in run time.

Keywords  Simulation · Optimisation · Evolutionary algorithm · Surrogate

1  Introduction

Window positioning and shading is an important consid-
eration in the design of a building envelope, having a large 
impact on the energy use associated with the building’s arti-
ficial lighting, heating and cooling. Well-designed windows 
can reduce energy consumption by providing natural lighting 
and ventilation. Conversely, windows can increase energy 
consumption—in warm weather solar heat gain requires 
additional artificial cooling and in cold weather heat losses 
necessitate more heating. Earlier work [1, 2] has shown how 
this can be formulated as an optimisation problem that seeks 
to locate the Pareto-optimal front for two objectives: mini-
misation of the projected energy requirements of the opera-
tional building and minimisation of the construction cost.

The large number of explicit and implicit variable interac-
tions, and non-convex optimisation function led to the use 

of evolutionary algorithms (EAs) to approximate the Pareto-
optimal front by Brownlee et al. [1] and Wright et al. [2]. 
While this approach works well, each function evaluation is 
relatively time-consuming, making a call to a building per-
formance simulation (specifically, EnergyPlus), and a typical 
run requires thousands. Thus the present paper explores the 
use of surrogate fitness functions [3, 4] for this problem. 
A surrogate is a machine learning model trained on previ-
ous fitness evaluations, that can then take the place of the 
long-running simulation in order to speed up the search. 
Surrogates have been demonstrated for several EA-based 
optimisations of building designs in the past (e.g., [5–18]), 
but in the vast majority of cases these follow a continuous or 
mixed-integer solution representation (that is, the variables 
in the optimisation problem are reals or integers). The glaz-
ing problem we focus on uses a binary encoding so, as a nov-
elty in contrast to earlier work, we explore surrogate models 
suited to binary encodings. A further novelty is that, for the 
problem at hand, the number of bits set true in a solution 
(i.e. the total number of glazed cells) has a strong influence 
on the objectives, so we propose a structured strategy to gen-
erate the training data for the surrogate in place of uniform 
sampling of the space. Existing literature applying surrogate 
models within building performance optimisation typically 
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uses one model type (e.g., artificial neural networks, or Krig-
ing models), without a broader exploration of what might 
be most suitable. This motivates us to also propose a sim-
ple, systematic, approach to exploration of the models, that 
should be adopted for any application involving a surrogate 
to ensure best performance.

Our key contributions are as follows:

•	 a novel systematic methodology rooted in established 
best practice in machine learning for comparing differ-
ent model types, hyperparameter tuning, and choosing 
the model best suited to this specific problem

•	 demonstration of the methodology through a case study 
featuring an implementation and application of a sur-
rogate for a binary-encoded, multi-objective, building 
optimisation problem, to which surrogates have not pre-
viously been applied

•	 a novel process for generating training data with a good 
spread over the search space for binary-encoded prob-
lems where the overall count of false/true values has 
some impact on the optimisation objectives

•	 experimental results showing the impact on run time and 
solution quality of updating the model at fixed intervals, 
with the conclusion that the model should indeed be 
updated at intervals for best performance.

We show that the addition of surrogate modelling to the 
optimisation algorithm is also effective for a problem with 
binary-encoded variables, and that modest improvements are 
to be gained by updating the model over the course of the 
run. We begin with an overview of related work in Sect. 2. 
We then present the background to the glazing problem in 
our study in Sect. 3, before presenting our methodology and 
experimental results in Sects. 4 and 5. We discuss, summa-
rise and present directions for future work in Sect. 6.

2 � Related work

Evolutionary algorithms have been applied to a wide range 
of real-world applications [19], and for costly fitness func-
tions, surrogate fitness functions have been a common 
approach to improving search efficiency [4]. It is unsurpris-
ing, then, that there is also a wide and growing body of exist-
ing research bringing together building design, including 
glazing, and multi-optimisation by evolutionary algorithms, 
with some examples also showing the use of surrogate fit-
ness functions. Here we provide a brief summary of the rel-
evant literature at the intersection of these themes.

Evins [20] presents work using a genetic algorithm with 
strength Pareto fitness assignment to optimise building 
designs finding the trade-off between solar gain reduction 
and construction cost. Similar to this work, it also used 

EnergyPlus for the design simulations. Suga et al. [21] used 
a multi-objective GA to optimise a window design problem, 
varying window positions, sizes and glass types. Rather than 
using an off-the-shelf simulation, custom functions were 
used to compute energy use and building performance. Cal-
das and Norford [22] used a GA to optimise window sizing 
and placement for minimum building energy use, but the 
windows were restricted to being rectangular in shape. The 
simulation software used was DOE2.1E [23]. Vukadinović 
et al. [24] used NSGA-II to optimise building construction 
(window-to-wall ratios, glazing types, shading) with mixed 
variable types for minimisation of three objectives: energy 
for heating and cooling, and hours of thermal discomfort. All 
objectives were computed using EnergyPlus.

Most relevant to this paper, the work described by Wright 
and Mourshed [25] introduced the concept of geometric win-
dow design. There, the problem was formulated as a single-
objective constrained optimisation, and experiments were 
performed using a traversal method and a genetic algorithm. 
A detailed analysis of various aspects of the problem was 
also performed. The problem was then extended in complex-
ity with the addition of window overhangs and a cost objec-
tive by Wright et al. [2] and Brownlee et al. [1]. The present 
paper builds on that earlier series of work—primarily by 
integrating the use of surrogate fitness functions.

Over the past few years several applications of surrogate 
fitness functions to speed up optimisation processes in build-
ing design applications have been described. Westermann 
and Evins [26] give an excellent review of the use of sur-
rogate models for sustainable building design, including rec-
ommendations for model choice and approaches to imple-
mentation. However, most examples found by that review 
used the surrogate as part of a sensitivity or uncertainty 
analysis via factorial or Latin hypercube style sampling, with 
22 focused on optimisation and a sub-sample of those using 
evolutionary or other search algorithms. We now summa-
rise the most relevant examples, including those publications 
published since that review that make use of multi-objective 
optimisation and surrogate models in building design. Sup-
port Vector Machines were used by Eisenhower et al. [12] to 
build several meta-models of an EnergyPlus model. Sensi-
tivity analysis was used to choose specific variables for opti-
misation. Optimisation using the meta-models was shown 
to find results close to those obtained by using EnergyPlus 
model alone. Ghaderian and Veysi [27] applied NSGA-II 
to optimisation of several continuous variables related to 
HVAC controls for minimisation of two objectives: gas and 
electricity consumption. The objectives were initially com-
puted over set of configurations obtained through design-
of-experiments; these were then used to fit linear regres-
sion surrogate models that were called by the optimisation 
algorithm. Yigit [28] used Latin Hypercube Sampling to 
create a training set that was evaluated using EnergyPlus 
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simulations, to which a Gradient Boosting Model was then 
fitted and used as a surrogate model for NSGA-II. Artificial 
Neural Networks (ANNs) were used by [8, 10, 15] in place 
of simulation runs as part of optimisation by a single-objec-
tive genetic algorithm, particle swarm optimisation, and ant 
colony optimisation, respectively. In each case, a building 
performance simulation was run on large numbers of exam-
ple designs, and the data from this was used to train and vali-
date the ANN model. A similar approach combining ANNs 
with NSGA-II for two and three objective multi-objective 
optimisation was described by by Magnier and Haghighat 
[16]; Gossard et al. [14]; Aijazi and Glicksman [6]; Asadi 
et al. [5]; Bre et al. [29]; Zou et al. [30]. Chegari et al. [31] 
combined ANNs with Multi-Objective Particle Swarm Opti-
misation algorithm (MOPSO) to optimise several continu-
ous building envelope variables for energy consumption and 
indoor thermal comfort. Yue et al. [32] found that an ANN 
achieved better accuracy as a surrogate for EnergyPlus cal-
culations of a gymnasium’s degree-hours in naturally ven-
tilated seasons and energy consumption in air-conditioning 
seasons compared to a Support Vector Machine, Random 
Forest Regression, and Radial Basis Function neural net-
work. The ANN surrogate was called by NSGA-II to opti-
mise discretised versions of mixed variable types represent-
ing the construction and lighting configurations.

The above approaches all used a single training stage: 
the surrogate models were trained and validated on data 
generated by simulation runs, then the optimisation pro-
ceeded to run using only the surrogate model. This works 
reasonably well, but the obvious problem is that errors in 
the surrogate model can lead the optimisation algorithm into 
a sub-optimal region of the search space. In a few cases, 
methods to update the model have been explored. A Krig-
ing surrogate model was trained on EnergyPlus performance 
estimates in [17], with a GA then calling the model in place 
of the simulation. Once the GA could progress no further, 
the solution generated by it was evaluated with EnergyPlus, 
the model retrained, and the optimisation run again. A case 
study showed the approach to find good solutions efficiently. 
Another approach [7] used an ensemble (referred to as a 
“committee”) of ANN surrogate models within multi-objec-
tive Particle Swarm Optimisation (PSO) to minimise the 
energy consumption, improve the thermal comfort of the 
occupants and increase the energy self-sufficiency of resi-
dential buildings. If there was a high level of disagreement 
between the models in the ensemble when estimating the 
objectives for a solution, the solution would be re-evaluated 
by the simulation and the models retrained.

Chen and Shi [11] used a three-layer radial basis func-
tion (RBF) neural network to estimate energy consumption 
and indoor comfort. NSGA-II was used to seek the trade-off 
between these two objectives, using the surrogate model to 
filter promising solutions. The surrogate model was then 

updated each generation. Brownlee and Wright [9] also used 
RBFs in place of long-running simulations to filter solutions 
within the NSGA-II algorithm. In that case, the surrogate 
was checked for accuracy every generation, and updated if 
the correlation between the surrogate’s predictions and the 
results of the full simulation fell below a certain threshold.

Kriging has the ability to estimate the uncertainty on pre-
dictions. This was employed by Safarzadegan Gilan et al. 
[33] as a means of sample selection to improve the model. 
A recent work by by Østergård et al. [34] comparing the 
accuracy (and several other characteristics) of six meta-
modelling approaches, including linear regression, Gauss-
ian processes (Kriging), ANNs, support vector regression, 
random forest and multivariate adaptive regression splines, 
on 13 problems, showed Kriging to work best for smaller 
problems and ANNs to work best on larger ones.

In the present work, we focus on a binary-encoded prob-
lem with multiple objectives. A surrogate model is used to in 
place of some simulation runs, and the surrogate is updated 
at regular intervals using feedback from the simulation. 
None of the existing literature above has considered this 
combination of factors in the building performance domain. 
Furthermore, most approaches adopt, from the outset, a sin-
gle machine learning model as their surrogate. While some 
explicitly refer to cross-validation for tuning hyperparam-
eters (e.g., Bamdad Masouleh et al. [8]; Bamdad et al. [7]), 
only Østergård et al. [34] and Yue et al. [32] appear to have 
performed a systematic comparison of model types, and both 
pieces of work focused on a problem with mixed variable 
types rather than the binary encoding that we consider here.

3 � Case study optimisation problem

The problem forming our case study was first presented by 
Brownlee et al. [1] and Wright et al. [2], and for further 
details the interested reader is referred to the latter of those 
earlier works. Here, we summarise the main points relevant 
to understand the optimisation task at hand.

Glazing and its design have a significant influence on 
the energy performance of buildings; it impacts on daylight 
penetration, artificial lighting energy use, and heating and 
cooling energy use. The approach taken by Brownlee et al. 
[1] and Wright et al. [2] allows variation in the shape and 
position of the windows, in addition to the overall amount 
of glazing. Those previous works demonstrated that genetic 
algorithms are effective for finding near-optimal designs 
with respect to minimising building energy use and the capi-
tal cost of construction.

Thus, again here we seek to optimise the size, shape and 
position of windows and associated shading placed on a 
building; the goal is a design which minimises operational 
energy use (for heating, lighting and cooling) and capital cost 
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(for construction). These objectives conflict with each other: 
a building with minimal cost has no glazing, so requires more 
energy for lighting, and does not benefit from solar gain so 
potentially requires more energy to heat. The picture is fur-
ther complicated by the increased energy requirement for air 
conditioning if there is extensive glazing. This led the earlier 
works to explore multi-objective optimisation algorithms that 
approximate the Pareto-optimal trade-off between the objec-
tives. In the rest of this section we now detail the specific 
building design scenario considered in our experiments, and 
the formulation of the optimisation problem’s objectives and 
variables. We will conclude this section with the approach to 
measuring run times, which provides the main motivation for 
the novel use of surrogates in the present paper.

3.1 � Building configuration and weather

The wall measures 15 m wide by 8.2 m high and is divided 
into a grid of 120 1 m2 cells, 15 wide by 8 high, and each 
cell may be either glazed or unglazed solid wall. The atrium 
behind the wall is 15 m deep. In Fig. 1, we see the fully 
glazed building with shading overhangs on all windows. 
This approach to the design can result in solutions reminis-
cent of those developed by Le Corbusier for the Chapel of 
Notre Dame du Haut, where the South façade, known as the 
“wall of light”, has windows of varying size that are ran-
domly placed on the wall. In our target building, each win-
dow also has an optional shading overhang, a physical shade 
designed to reduce the light and heat entering the building 
via the window. Inclusion of these adds extra complexity 

to the optimisation problem as each overhang affects the 
energy impact of the window it is associated with and has 
corresponding increase in overall cost.

In common with the previous studies on this application 
the building in question is based on an atrium of a commer-
cial building located in Chicago, USA. Chicago has inter-
esting weather for such a study, with high temperatures in 
the summer and low temperatures in the winter. The atrium 
is 15 m wide by 15 m long by 8.1 m high with only the 
southern façade being exposed to the external environment. 
The other three sides of the atrium are connected to interior 
spaces that are controlled to have the same thermal condi-
tions as the atrium. The roof, internal partition walls and the 
external façade have a light-weight construction; the floor is 
constructed from uninsulated concrete; and the window cells 
have a double-glazed construction.

3.2 � Optimisation objective 1: energy

The first objective is to minimise the energy use of the build-
ing. This is the unweighted sum total of the energy used by 
heating, cooling and lighting systems over a specified period 
in a particular set of environmental circumstances. These 
figures are computed by the EnergyPlus building simula-
tion package [35] (v9.3) and the process is simply that the 
design specification is generated then passed to EnergyPlus, 
which produces a text CSV containing the energy perfor-
mance data. The total energy consumption fenergy(x) for a 
specific design configuration x of the building is extracted 
from this CSV. The full specification of the building’s design 
and simulation configuration is given in Sections 5.1 and 5.2 
of [2]. The EnergyPlus simulation simulates the building’s 
performance over an entire year, using a publicly available 
weather data set for the location. However, this process can 
take tens of seconds per run, motivating the exploration of 
surrogates in the present study (indeed, with more complex 
building models, minutes or hours per run are typical).

3.3 � Optimisation objective 2: cost

The second objective is the minimisation of the construction 
cost for the building given the specified window and shading 
configuration x. The size of each glazed cell is fixed at 1 m2 
so this is a straightforward linear function of the cost of the 
opaque concrete construction, the number of windows nw(x) 
and shading overhangs no(x) and does not involve the simu-
lation software, so does not need to be replaced by the sur-
rogate. The total cost fcost(x) is defined in equations (1) to (3).

The total cost of the windows cw is £350 per glazed cell, 
plus the base cost of £112 for the concrete construction of 
each non-glazed cell:Fig. 1   Fully glazed facade
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The total cost of overhangs co is based on them being £128 
each:

The total capital cost fcost(x) is the sum of unglazed cells, 
glazed cells and overhangs:

These cost figures are taken from Spon [36] and are some-
what old, but are kept for consistency with the earlier work 
on this same building [1, 2].

3.4 � Optimisation variables and encoding

The problem naturally lends itself to a binary solution rep-
resentation; this is the approach adopted by Brownlee et al. 
[1] and Wright et al. [2] which we replicate here. The wall is 
divided into 120 cells which may be glazed or unglazed: this 
translates into a 120 variable bit string in which a bit is set to 
true for a glazed cell and false for an unglazed one. A second 
string of 120 bits represents the presence of shading overhangs 
on each window. When compiling the building design for input 
to the EnergyPlus simulation, a shading is only included if its 
corresponding cell is glazed—otherwise, it is omitted. This is 
a restriction imposed by the simulation which will only allows 
shading above glazed areas. It does mean that for individuals 
with unglazed areas there are corresponding redundant vari-
ables—this could be avoided by using a variable-length bit 
string encoding but it was felt that this represented excessive 
complexity. It would be interesting in future work to try an 
encoding which avoids this redundancy, possibly by using 
variables with three possible values of unglazed, glazed, or 
glazed + overhang.

3.5 � Optimisation problem

Bringing together the previous two sections, we can now for-
mally define the optimisation problem. The goal is to find a 
solution x in the space of 240 bit vectors X = {0, 1}240 that 
simultaneously minimises fenergy(x) and fcost(x):

3.6 � Timing

The justification for using the surrogate is the long running 
time of the EnergyPlus simulation. To illustrate this point, 
we report the results of a simple timing experiment whereby 
the run times of EnergyPlus on randomly generated solu-
tions are given.

(1)cw = 112(120 − nw(x)) + 350nw(x).

(2)co = 128no(x).

(3)fcost = cw(x) + co(x).

(4)minfenergy(x), fcost(x), where x ∈ X = {0, 1}240.

We generated 100 solutions; in each solution 1/n bits were 
true (i.e. glazed or shading applied) where n was the solution 
number (i.e. n = [1, 100] ). The specific glazed cells are cho-
sen at random. The evaluations were performed on a Ryzen 
5 3600 CPU @3.6GHz. The run times for evaluations were 
from 1.6 s for the solutions with very little glazing to 24.5 
s for solutions near 100% glazed. The mean run time over 
the 100 solutions explored was 11.2 s. Given that a typical 
run of an EA will take 1000 s of evaluations, the result-
ing run times run in to many hours, even days. Each of the 
repeat runs in our experiments using EnergyPlus alone took 
around one week of CPU time. This obviously increases to 
30 weeks of CPU time with the repeat runs necessary to add 
confidence to the results. While this can be sped up using 
parallelism and faster CPUs, we propose that this can be 
supplemented through the use of surrogate models for addi-
tional improvements to run times. Occupying a designer’s 
machine for weeks to months of time (or cloud compute 
instances charged per CPU hour) for a single modestly sized 
building project is clearly infeasible. More importantly, as 
our results show, the surrogate EA is allowed to run for more 
iterations in the same time frame than would be possible in 
years’ worth of full simulations, leading to still better results.

4 � Methodology

We now explain the overall approach of our proposed 
methodology for integrating surrogates within building 
performance optimisation. We begin with the selection of 
a suitable surrogate model and its hyperparameters before 
summarising the evolutionary algorithm we used (NSGA-II) 
and the integration of the model with it.

4.1 � Surrogate model selection and development

The choice of model type, and its hyperparameters, can have a 
large effect on the model’s accuracy. For example, Multilayer 
Perceptrons are sensitive to the hyperparameters used dur-
ing training: the learning rate, momentum, training time and 
number of hidden layer neurons are only a few factors that 
can influence accuracy. Similar is true for most model types. 
Choice of model type itself also has a large influence: linear 
regression is simple and transparent but assumes linear rela-
tionships. Regression Tree models are efficient and relatively 
transparent, but prone to overfitting. Multilayer Perceptrons 
can model non-linear dependencies well, but the backpropa-
gation algorithms used to train them can be slow and can get 
caught in local optima. No single model is best for all prob-
lems. It is thus important to explore as broad a combination 
of these systematically to choose a model with the highest 
accuracy and generality for a given problem. Thus we propose 
the following procedure to select a suitable surrogate model.
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Following standard practice in machine learning [37], 
we considered several potential models and tested their per-
formance as surrogates for this problem using k-fold cross-
validation. This well-established technique trains several 
copies of a model, validating its accuracy on unseen data, by 
splitting the data set into several ‘folds’. Each fold serves as 
the validation data for one copy of the model, with the rest 
serving as training data. Average performance over all folds 
is used to compare different model types and hyperparameter 
configurations, in order to determine how well each particular 
model configuration fits the overall distribution of the data.

First, 500 solutions were generated to serve as training 
data. For this specific problem, an additional consideration 
is that the objectives are both sensitive to the total number of 
glazed cells. Uniform sampling, which would generally cre-
ate solutions with around 50% glazing, would consequently 
miss a large part of the search space. So, we propose a struc-
tured scheme to ensure that the training data contained a wide 
spread of glazing amounts from 0% to 100%, set out in Algo-
rithm 1. This procedure could go further still by ensuring that 
the locations of glazing are adequately varied as well, but as 
the results shortly will show, good results are obtained with 
the procedure as it stands. These solutions were evaluated for 
energy consumption by EnergyPlus as per Sect. 3. 

Algorithm 1   Method to generate a uniform distribution of 
solutions (note: total is capped at 500, so in practice the “all 
zero” unglazed solution replaces one of the 90%+ glazed 
ones)

Several models were then fitted to this data following 
a fivefold cross-validation. Most machine learning models 
have multiple hyperparameters that control their training 
convergence and generalisation capabilities. It is important 

to tune such parameters for optimal performance on a given 
target data set. Two approaches are commonly used for this 
in the machine learning literature: Grid Search and Ran-
dom Search. The former uses a full factorial coverage of all 
combinations of possible hyperparameters, and while guar-
anteeing to find the best configuration from those available, 
is time-consuming to run. A frequently used compromise 
is Random Search, whereby a fixed number of configura-
tions drawn uniformly at random from the space of possible 
hyperparameters are tested. Thus, in our study a Random 
Search over 500 configurations was used to tune the hyper-
parameters for each. All models were the implementations 
from the WEKA Java machine learning library.1 The mean 
r2 over 5-folds for each model is given in Table 1, in addi-
tion to the best configuration found by parameter tuning. 
We use r2 because this captures the model’s ability to rank 
solutions. The optimisation algorithm we use employs tour-
nament selection. When comparing solutions tournament 
selection is only concerned with their performance relative 
to each other, thus the model is only required to rank solu-
tions accurately.

Following this experiment, it was clear that the multi-
layer perceptron offered good performance on this problem. 
Despite the fact that 500 solutions represent a very sparse 
coverage of the full search space ( 2240 ), the MLP achieves an 
average r2 of 0.992 over all folds. The MLP had also proved 
robust; the random search hyperparameter tuning exercise 
on the hidden layer sizes, momentum and learning rate did 

not improve the results beyond the default configuration. 
As a result, our surrogate implementation used the default 
multilayer perception configuration in WEKA: learning rate 

1  Version 3.8.5—https://​www.​cs.​waika​to.​ac.​nz/​ml/​weka/

https://www.cs.waikato.ac.nz/ml/weka/
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0.3; momentum 0.2; single hidden layer size of (number of 
features), i.e. 240; trained using stochastic gradient descent 
with 500 epochs.

4.2 � NSGA‑II

The Non-dominated Sorting Genetic Algorithm II [38]. 
Deb’s algorithm is one the best-known and frequently imple-
mented MOEAs. More importantly, although easily outper-
formed for problems with 3 or more objectives, it remains 
competitive for 2-objective problems [19], and was found to 
outperform several other algorithms for this glazing problem 
[1]. In common with most evolutionary algorithms, NSGA-
II starts with a randomly generated population of candidate 
solutions. Each iteration of the algorithm, a new population 
is generated, gradually improving in quality until the pop-
ulation converges on an approximation to the Pareto front 
for the problem. To generate a new population, promising 
solutions are selected, then recombined (“crossover”) and 
mutated (these operations being probabilistic). The process 
is repeated until either a predefined maximum number of 
generations is reached or a predefined maximum number of 
solutions evaluated. The selection of promising solutions is 
based on the solutions’ fitness; to determine fitness, NSGA-II 
uses non-dominated sorting of individuals in the population, 
with a crowding distance penalty applied to individuals to 
maintain a diverse Pareto front. There is no external archive 
to hold the Pareto front, so the optimal front found is simply 
the set of non-dominated individuals in the final population.

As with the machine learning model’s hyperparameters, 
it is generally best practice to explore different configura-
tions for the genetic algorithm. The precise configuration of 
NSGA-II in our experiments was determined empirically. 
Following Brownlee et al. [1], where further details for imple-
mentation of crossover and mutation for this problem can be 
found, population sizes of {50,100,200}, crossover rates of 
{0.5,0.9,0.99,1}, and mutation rates of {0.25,0.5,1,2}/n were 
tested, and the best configuration comprised:

•	 Population size of 100
•	 Tournament selection
•	 Elitist generation replacement, whereby the fittest half of 

the union of the previous generation and newly generated 
offspring are carried to the next generation

•	 Uniform crossover with a rate of 100%
•	 Bit-flip mutation with a gene rate of 0.25/n.

The same configuration was used for the algorithm with and 
without the surrogate.

4.3 � Integrating the surrogate

Integration of the surrogate with NSGA-II is relatively 
straightforward. Figure 2 shows the overall workflow of the 
base algorithm, and the workflow for the algorithm with 
surrogate. The main loop in both cases evaluates the solu-
tions, then applies non-dominated sorting to locate the fronts 
(starting with the Pareto front, then identifying the front 
lying ‘behind’ it, and so on). Standard genetic algorithm 
selection, crossover, and mutation operators are then applied 
to generate a new population. The key difference is that, 
with the surrogate, a model is trained at the beginning of the 
run, and takes the place of calls to the EnergyPlus simula-
tion. The final population in both algorithm configurations 
is always passed to EnergyPlus to ensure that the evaluation 
of the results that are output is consistent. We also explored 
a variation whereby the surrogate model is retrained at fixed 
intervals through the algorithm’s run: the intervals being 
after 1/4, 1/2, and 3/4 of the iterations had completed. For 
retraining, EnergyPlus is called to evaluate the current popu-
lation, and the results are used as training data to retrain the 
surrogate model from scratch. We also explore the impact 
of this retraining process later in the paper. The concept of 
retraining can be taken further. For example, Brownlee and 
Wright [9] proposed a measure based on model accuracy 
that was used to trigger the retraining process. In our pro-
posed methodology, we wish to keep the overall framework 

Table 1   Mean r2 over 5-folds for each model tested on training data of 500 solutions

Model Description and best performing configuration after tuning Mean 
r
2 over 

5-folds

Decision stump Single node tree as sanity check; no hyperparameters to tune 0.524
Decision table Simple majority DT; with global table majority and forward search 0.888
Linear regression Akaike criterion for feature selection, ridge with constant of 108 0.611
M5P tree Uses pruning, smoothed predictions, and min 4 instances per leaf 0.820
Multilayer perceptron Learning rate 0.3; momentum 0.2; single hidden layer of 240; stochastic gradient descent with 500 epochs 0.992
REP tree Builds a regression tree using variance, pruned by reduced-error pruning (with backfitting); min 2 

instances per leaf; no max depth
0.858

Simple linear regression Picks the attribute that results in the lowest squared error 0.465
SMOReg Support vector machine for regression. Trained using RegSMOImproved; complexity 1; PolyKernel 0.688
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as simple as possible so omit such a scheme, but it should 
be considered should the model error for a given problem 
increase unacceptably during the optimisation run.

5 � Experiments and results

We now present the results of our experiments. We begin 
with the quality of solutions returned by the optimisation 
runs with different algorithm configurations. We then sum-
marise the impact on run times of using the surrogate. Lat-
terly, we look at a sample of solutions generated by the opti-
misation process, and the accuracy of the surrogate models.

5.1 � Optimisation: solution quality

Three configurations of NSGA-II were each run on this prob-
lem 30 times, with each repeat using different randomly gen-
erated starting populations. The three configurations were: 
(1) without the surrogate, using EnergyPlus to evaluate all 

solutions; (2) with the surrogate, with no retraining after 
the surrogate was fitted at the start of the run; and (3) with 
the surrogate, being retrained as per Sect. 4.3. The random 
number generator seed was set so that the same 30 starting 
populations were used for both algorithm configurations. 
The algorithms were otherwise configured as described in 
Sect. 4.2, and ran for 50 000 evaluations (500 iterations). 
“evaluations” is the number of solutions evaluated by the 
algorithm as the search proceeds. These are either calls to 
EnergyPlus or to the surrogate. Runs of EnergyPlus used 
to train the surrogate are distinct from this as they do not 
directly form part of the search process. Run times appear in 
the next section, so it is also worth noting that all EnergyPlus 
simulations were run in parallel split across the 6 cores of a 
Ryzen 5 3600 CPU.

Summary attainment surfaces [39] for the three algo-
rithms are shown in Fig. 3. These figures are similar in con-
cept to boxplots, but designed for Pareto fronts, and show the 
aggregate performance of the algorithm runs. The solid lines 
show the parts of the objective space found by at least half of 

Fig. 2   The overall framework 
for NSGA-II (left) and NSGA-II 
with the surrogate model inte-
grated (right)



Industrial Artificial Intelligence             (2025) 3:4 	 Page 9 of 13      4 

the repeat runs of the algorithm, with the shaded area show-
ing variation: the regions reached by all runs and by at least 
one run. Also shown are, as a baseline, the best points gen-
erated by a random search of 50 000 evaluations, the same 
number visited by NSGA-II. Poorer (higher cost/energy) 
points found this way are omitted to allow the scale to con-
centrate on the attainment surfaces. NSGA-II improves on 
the random search in all the repeat runs. The algorithm using 
no surrogate shows consistent performance: a very narrow 
shaded area. The median attainment surface (solid line) for 
the algorithms using the surrogate are to the left and below 
those for the algorithm without the surrogate, indicating 
improved performance on average. Likewise, most of the 
shaded area for the surrogate runs is below the shaded area 
for the non-surrogate runs, indicating that most of the time 
the algorithms with the surrogate find better Pareto fronts 
that the algorithm without. It is also clear that the surrogate 
has allowed a greater exploration of the space; both variants 
of the algorithm including the surrogate consistently find-
ing lower cost and lower energy solutions at the extremes 
of the fronts. The median run of the algorithm without the 
surrogate found solutions of 43 746kWh energy and £18 500 
capital cost. The corresponding figures for the surrogate-
assisted runs were 41 611kWh and £17 750 without model 
updates and 41 458kWh and £17 750 with updates. There is 
little difference in performance between the algorithm where 
the surrogate is updated and the algorithm where it is not.

The major advantage of the surrogate is the reduced time 
to evaluate solutions compared to running the EnergyPlus 
simulation every time. This allows for much longer runs to 
be made, so a second experiment ran the two algorithms 

using a surrogate to 100 000 iterations. The attainment sur-
faces for these are shown in Fig. 4. In both objectives, the 
results are improved on those seen for the 50 000 evaluation 
runs. Updating the surrogate model has resulted in better 
results for energy, with similar results for cost for both algo-
rithm variants. The minimum figures for solutions in median 
fronts for these runs were 41 072kWh and £15 750 without 
model updates and 40 420kWh and £16 000 with updates. 
The explanation for the difference between the objectives 
is that only the energy objective uses the surrogate in place 
of the EnergyPlus simulation; cost does not. Imperfections 
in the surrogate can be corrected over the course of the run 
through retraining, and without this correction the algorithm 
is misled into a slightly poorer part of the space.

To add a numerical comparison of the Pareto fronts, we 
use the hypervolume (S) measure of Zitzler [40]. While not 
without its faults, Knowles and Corne [41] note that hyper-
volume provides a good balance between measuring the dif-
ferent traits of a Pareto front: convergence to the true Pareto 
front, spread of solutions and extent of the front. It also does 
not require the true Pareto front to be known in advance for 
comparison. Hypervolume is simply the multi-dimensional 
value between the Pareto front and a specific reference point. 
To compute hypervolumes, we normalised all objective val-
ues to [0, 1], using the minimum and maximum from the 
complete set of all solutions found over all the experiments. 
For energy, the range was [40186.55, 45670.30] and for cost 
the range was [12000, 28750]. The reference point for hyper-
volume was then (1, 1) in the normalised space. Table 2 
shows the median hypervolumes computed for the Pareto 
fronts found by each algorithm. Larger values are prefer-
able. A Wilcoxon signed-rank test on all pairs of algorithms 

Fig. 3   Attainment surfaces for the three algorithm configurations, 
for runs limited to 50 000 evaluations. Each solid line indicates the 
region of the objective space reached by at least half of the runs of 
the algorithm, with the shading representing the region reached by all 
runs and by at least one run. The black points are the best of those 
visited random search limited to 50 000 evaluations

Fig. 4   Attainment surfaces for the three algorithm configurations, for 
runs limited to 100 000 iterations. Each solid line indicates the region 
of the objective space reached by at least half of the runs of the algo-
rithm, with the shading representing the region reached by all runs 
and by at least one run
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(using Bonferroni correction for multiple tests) indicated 
that the difference in hypervolume for was statistically sig-
nificant with p < 0.05 in almost all cases. The only exception 
was for the 50 000 evaluation runs with the surrogate with 
updates vs the same algorithm without updates.

5.2 � Optimisation: run times

Table 3 reports the median run times for each algorithm 
configuration. The algorithm without surrogate was not run 
for 100 000 iterations as it was estimated to take around 104 
days to complete. The time saved by using the surrogate is 
clear: over 400x speedup for 50 000 evaluations. The addi-
tional EnergyPlus simulations used by the algorithm when 
updating the model does extend the run time. The previous 
section showed that this does lead to improved results over 
the algorithm without updates to the surrogate: there is obvi-
ously a trade-off here but given that the difference is a few 
minutes it would appear to be worthwhile including some 
updates to the model over the run.

5.3 � Example solutions

The overall goal of the optimisation process is exploration 
of the design space. We now briefly consider how the results 
in the objective space relate to actual designs for the façade. 
Figure 5 shows solutions taken from the Pareto front with 
the highest hypervolume returned by the 100 000 iteration 
run with the surrogate and retraining. The layout on the left 
represents a solution with the lowest energy consumption 
for that configuration. The layout on the right represents the 
lowest cost solutions. The layout in the middle lies at about 
the mid-point of the trade-off between energy and cost. The 
rightmost solution is the minimal cost scenario (no glazing).

It is interesting that the glazed cells are not laid out in a 
specific pattern. The windows appear to spread all over the 
façade, rather than clustered in a specific area. This implies 
that the absolute locations of the glazed cells do not mat-
ter much, with the overall amount of glazing being more 
important. This is relevant to the analysis in the next section.

5.4 � Model updates and accuracy

The accuracy of the surrogate is important: if it inaccurately 
predicts the objective values, then the optimisation algo-
rithm may be ‘misled’ in the wrong direction and become 
unlikely to find an optimal solution. This is reflected by the 
improved results seen when updating the surrogate at inter-
vals. It can also be quantified. For the final populations of 
the 100 000 iteration runs, we computed the Spearman cor-
relation between the predicted energy values and the values 
computed by EnergyPlus. The correlation for the surrogate 
that had been updated was 0.407; for the non-updated sur-
rogate it was 0.368. It is interesting that these correlations 
are rather weak, but still the surrogate was able to improve 
the performance over the course of the optimisation run. 
(We would expect this correlation to be much lower than 
the r2 values seen when choosing the model in Sect. 4.1, 
because the final population of the optimisation run is genu-
inely unseen data for the model: the optimisation process is 
intended to find solutions quite different from the uniform 
sampling that generated the training data.)

We now consider whether the surrogate is better at pre-
dicting some types of solutions than others. The absolute 
error (difference between surrogate prediction and Energy-
Plus) was calculated for each solution from the five Pareto 
fronts with the highest hypervolume for the 100 000 itera-
tion runs. These errors are plotted against the number of 
glazed cells in the solutions in Fig. 6. The more shaded 
windows there are in a layout, the bigger the absolute error. 
This variation of model accuracy with cell count retrospec-
tively provides some additional motivation for following 
the procedure we used to generate training solutions when 
choosing the model in the first place. The algorithm to gen-
erate the data was designed to ensure that solutions with 
cell counts from near zero to nearly fully glazed would be 
generated. The absolute error is larger still for the retrained 
model: despite this, the Spearman correlation was better 
with retraining. This indicates that, although the error does 
vary with the amount of glazing, the ability of the model to 
rank solutions by energy use is still strong. Ranking is all 
that is required for the optimisation process (which simply 
proceeds on the basis of whether one solution is better than 
another, not by how much), so the surrogate is still effective 
for all solutions in the population. That the algorithm with 

Table 2   Hypervolumes for each algorithm configuration

Large figures are medians over the 30 runs, with inter-quartile ranges 
in subscript

Evaluations Surrogate, no update Surrogate, update No surrogate

50 000 0.409
0.029

0.388
0.048

0.214
0.013

10 000 000 0.560
0.024

0.625
0.040

n/a

Table 3   Run times in seconds for each algorithm configuration

Large figures are medians over the 30 runs, with inter-quartile ranges 
in subscript

Evaluations Surrogate, no update Surrogate, update No surrogate

50 000 112.02
3.00

397.00
16.25

46259
1010

10 000 000 476.65
14.78

701.50
29.75

n/a
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model updates is better able to rank solutions with higher 
glazing counts coincides with the improved performance of 
that algorithm in Fig. 4, where the low energy (high cost/
high glazing count) end of the Pareto front dominated that of 
the algorithm without retraining. It is also possible that the 

surrogate error partly explains the improved performance: 
the surrogate “smoothes” the search landscape [3] allowing 
the NSGA-II to more efficiently explore it; further investiga-
tion in this direction would provide an interesting direction 
for future work.

Fig. 5   Samples of the solutions from the Pareto front from the 100 000 evaluation optimisation run having the highest hypervolume

Fig. 6   Samples of the solutions from the Pareto front from the 100 000 evaluation optimisation run having the highest hypervolume
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6 � Conclusions

While there have been many examples of surrogate mod-
els being used within optimisation processes for building 
designs, typically one model type is chosen and applied. The 
first contribution of this paper is the description and demon-
stration of a systematic process for selecting and tuning an 
appropriate surrogate model, in which a sample of solutions 
spanning the search space are generated, and models then 
fitted to these and compared.

Few examples exist of surrogates for binary-encoded, 
multi-objective, building optimisation problem such as 
forms our case study. Our case study also demonstrates the 
implementation of a surrogate integrated within NSGA-II 
for such a problem. We also developed a procedure to gener-
ate training data with a sufficient spread of solutions from 
little to extensive glazing. We have shown that the surrogate 
leads to a considerable speedup and improvement in solution 
quality for such a problem. Without the surrogate, in the 
median case solutions taking 43 746kWh energy and £18 
500 capital cost were found in 46 259 s. With the surrogate, 
solutions taking 41 072kWh and £15 750 were found in 477 
s without model updates and 40 420kWh and £16 000 in 
702 s with updates. Thus, introducing limited updates to the 
model improves the quality of the final solutions returned by 
the optimisation process, but at the cost of a slightly longer 
run time. We also investigated the accuracy of the model for 
the optimal solutions found. Given the variability of model 
accuracy as increasing numbers of bits in the solutions are 
set true, the procedure to ensure a good spread of solutions 
for this training data was shown to be particularly particu-
larly important. It was also noteworthy that despite the high 
mean absolute error in the model’s predictions, its ability 
to rank solutions, a Spearman correlation of 0.407 between 
the predicted ranks and the true ranks as measured by the 
EnergyPlus simulation, was enough for the optimisation 
algorithm to locate high-quality Pareto fronts.

Future work in this area will include exploration of other 
binary encoded problems and a more systematic approach 
to updating the surrogate model.
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