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ABSTRACT 

Mechanical grooming to remove litter and wrack from sandy beaches reduces 

strandline biodiversity. The impact of tidal range on recovery rates of strandline 

ecosystems after grooming has not been examined to date, even though tidal range 

is known to affect the spatial and temporal patterns of seaweed. We compared taxon 

richness of macroinvertebrates that occur all year round at 104 sites on two coastlines 

at similar latitudes in Northern Europe that have pronounced differences in tidal range.  

Macroinvertebrate taxon richness was positively correlated with algae depth on both 

groomed and ungroomed beaches but was lower on groomed beaches. This was the 

case even in the off season despite wrack depths returning to similar levels found on 

ungroomed beaches. These impacts of grooming which extend into the winter 

offseason where found to be higher on beaches with a lower tidal range. We suggest 

this is likely to be because in areas with little tidal variation, irregular and unpredictable 

storm events are likely to be the predominant source of new wrack deposits.  Our 

results suggest it is particularly important that management strategies to mitigate the 

impacts of grooming are adopted in areas with low tidal range. 

 

1. Introduction 

 

Cumulative pressures on the world's coastlines are putting beaches at risk from 

a variety of anthropogenic and natural impacts. Anthropogenic pressures include 

residential, recreational, agricultural and commercial use of coastal land and near 

shore waters (Nordstrom 2003; Davenport and Davenport 2006). These pressures are 

predicted to heighten as the proportion of the human population living near the coast 



increases (Brown and McLachlan 2002; Schlacher et al. 2007, 2008; Defeo et al. 

2009). Physical processes such as beach erosion and accretion, freshwater transport, 

sediment transport and flooding, coupled with these increasing anthropogenic 

pressures, can substantially reduce the ecosystem services provided by beaches 

(Schlacher et al. 2007). It is becoming apparent that the need to act on these 

anthropogenic pressures is an urgent undertaking (Brown and McLachlan 2002, Defeo 

et al. 2009). An increase in sea level rise has been reported globally over the last 

century (Meehl et al. 2007). This rise is inevitably going to increase beach erosion and 

landward retreat of shorelines, which will in turn lead to extensive habitat loss, 

particularly on beaches where human development halts natural inland migration of 

the shoreline (Feagin et al. 2005). The protection of beaches and sand dunes is 

becoming ever more critical as a defence against rising sea levels. 

Conflicts between the needs of recreational users and the requirements of 

organisms that inhabit beaches presents a particularly difficult problem in developing 

a sustainable solution that accommodates both (Nordstrom 2003; McLachlan et al. 

2013; Kelly 2016). Many beach managers adopt mechanical grooming to remove 

seaweed and litter from beaches and prevent unpleasant odours from decaying wrack 

reducing the attractiveness of a beach to tourists. However beached wrack plays a 

key role in a number of key shoreline processes (Dugan et al. 2003; Nordstrom et al. 

2012; Kelly 2014, 2016), such as remineralisation of nutrients, the formation and 

maintenance of dune systems and providing a viable habitat for coastal flora and 

fauna. 

A number of studies have investigated the impacts of grooming (Davenport and 

Davenport 2006; Defeo et al. 2009, Kelly 2014). In California grooming resulted in a 

nine-fold reduction in wrack cover (Dugan and Hubbard 2010). The loss of wrack 



results in the loss of habitat and resources for a large number of species including 

crabs (Tewfik et al. 2016) and shorebirds (Schlacher et al. 2017). For example in 

Wales grooming was found to reduce the overall abundance and diversity of 

strandline-related species (Llewellyn and Shackley, 1996). Grooming has been found 

to impact talitrid amphipod populations in Italy (Fanini et al. 2005). Studies have shown 

grooming is associated with low strandline macroinvertebrate diversity in California 

(Dugan et al. 2003) and Scotland (Gilburn 2012), with depth of wrack being identified 

as the most important determinant of biodiversity in the latter study. Wrack provides 

food and shelter for macroinvertebrates such as amphipods, dipteran larvae and 

scavenger beetles which in turn provide food for shorebirds (Brown and McLachlan 

2002; Ince et al. 2007; Olabarria et al. 2007; Lastra et al. 2008; Defeo et al. 2009; 

Gonçalves and Marques 2011). 

The impacts of beach grooming also extend beyond the strandline. The 

abundance and richness of coastal plants were fifteen and three times lower adjacent 

to groomed beaches in California (Dugan and Hubbard 2010).  These reductions are 

likely to be occurring as the strandline facilitates nutrient remineralisation (Maun 1993) 

and enhances the growth of dune plants (Williams and Feagin 2010).  This also 

explains why another study where groomed material was redeposited elsewhere on a 

beach did not detect any substantive impact (Morton et al. 2015) as remineralisation 

will not have been majorly affected. 

Studies investigating the impacts of beach grooming have already identified 

substantial ecological impacts. However, these studies have not investigated how 

environmental factors might have synergistic or antagonistic effects together with 

grooming. Considering the importance of strandlines to conservation and ecosystem 

services and the conflict with recreational users it is essential for the development of 



successful management strategies to determine whether environmental factors do 

interact with grooming. Tidal range is one factor that potentially could be of 

considerable significance. Beaches with higher tidal ranges could receive larger 

deposits of beached wrack and as a consequence might recover from the impacts of 

grooming more quickly. Ince et al. (2007) recorded higher macroinvertebrate 

abundance levels from beaches with high wrack inputs than from those with smaller 

inputs. By contrast, areas with little or no tidal range might be largely dependent on 

unpredictable storm events for replenishing stocks of beached wrack removed by 

grooming. The aim of this study was to determine how the impacts of grooming on 

strandline macroinvertebrate biodiversity vary between two stretches of coastline with 

similar latitude but with very different tidal ranges in Scotland and Sweden by 

comparing the taxon richness of the community at beaches both within and outside of 

the grooming season. 

 

2. Materials and Methods. 

 

2.1. Study Regions 

 

The study was carried along the coastlines of Eastern Scotland and Western 

Sweden. Both coastlines have many beaches were mechanical grooming is carried 

out at least once a week during the summer months. The location of the Scottish 

beaches sites ranged from Inverboyndie (57.669834N and -2.546297E) to Barns Ness 

(55.987167N and -2.451667E). The Swedish beaches were located between 

Apelviken (57.083448N and 12.256786E) and Kåseberga (55.399386N and 



12.978539E). The tidal regime in Sweden varies from 10-40cm in the Skagerrak, 5-

20cm in the Kattegat to 0cm in the Baltic (Leppäranta & Myrberg, 2009).  By contrast 

the Scottish coastline has a tidal range between about 4-5m (UK Hydrographic Office). 

Salinity also varies between the two coastlines and is so highly correlated with tidal 

range that only tidal range was included in the study. 

 

2.2. Sampling Design 

 

The study sites were 104 sections of beach, 44 in Scotland and 60 in Sweden. 

Where only a section of the beach was groomed a site was chosen within both the 

groomed and ungroomed sections. However, where the entirety of a beach was 

groomed then the next nearest ungroomed beach was selected to generate an equal 

number of groomed and ungroomed sections of beach. All beaches were visited during 

both the summer grooming season and also during the winter offseason. This allowed 

for seasonal differences to be observed at the same beach.  

The depth of the wrack was measured at various points to establish the maximum 

depth of wrack present at each site. Each section of beach was then sampled for a 

period of 10 minutes where organisms were observed and identified to taxon level in 

situ. The method for sampling involved searching for strandline macroinvertebrates in, 

on or under the wrack starting at the point of maximum depth. Patches of wrack at all 

zones on the beach from the high water springs down to the swash zone were 

searched which resulted in wrack beds of different ages and stages of desiccation 

being covered. Each beach was sampled once during the grooming season (June-

August) and once during the off season (October-February).  



 

2.3. Study organisms 

 

Taxon richness was used as a biodiversity indicator of the fauna inhabiting the 

stranded seaweed as this has been shown to be an efficient surrogate for species 

richness generally (Williams and Gaston 1994, Balmford et al., 1996) and in the 

context of strandlines (Gilburn, 2012). Using this simple measure means that large 

numbers of sites can be included in the study. The eight taxa chosen in the surveys 

were used as they the most commonly found on beaches throughout the UK and 

Sweden, are a diverse selection of organisms with different niches within the strandline 

environment and have successfully be used as an indicator of the impact of grooming 

on macroinvertebrate strandline communities (Gilburn, 2012). Furthermore all these 

taxa can be found both within and outside the grooming season. Six of the taxa were 

assessed at the family level, one, mesostigmata mites, was assessed at the level of 

order and one taxon, oligochaetes, to the level of sub-class. The eight taxonomic 

groups used were: 1) Diptera - Coelopidae (Coelopa frigida and Coelopa pilipes); 2) 

Diptera - Sepsidae (Orygma luctuosum); 3) Diptera - Anthomyiidae (Fucellia maritima); 

4) Diptera - Sphaeroceridae (Thoracochaeta zosterae); 5) Coleoptera - Staphylinidae 

–  (Cafius xantholoma and Aleochara algarum); 6) Amphipoda - Talitridae (of three 

genera Talitrus, Talorchestia and Orchestia); 7) Mesostigmata (Parasitus kempersi 

and Thinoseuis fucicola); and 8) Oligochaete. 

 

2.4. Data analysis 

 



Statistical analyses were undertaken using R version 3.2.2 (R Core Team 2015). 

The lm4 (Bates et al 2015) and MuMIn (Barton 2015) packages were used for 

statistical analysis, whilst ggplot2 (Wickham 2009) and the effects package (Fox 2003) 

were used for graphics. We performed a series of Generalised Linear Mixed-Effects 

Models (GLMMs) with binomial distribution and logit link (Zuur 2009). We ran models 

using presence/absence of each of the eight taxa as the response variable with 'site' 

included in all models as a random (grouping) factor to quantify both within and 

between site variance. The following predictor variables were included in the starting 

model: log tidal range, aspect, exposure, Longitude, Latitude, grooming season (a 

factor with two levels: winter or summer), grooming status (a factor with two levels: 

ungroomed or groomed) and log algae depth. Models were compared and the best 

model selected using an information theoretic approach (Akaike Information Criteria, 

AIC, Burnham & Anderson 2002). Akaike weights give the probability that a model is 

the best model, given the data and the set of candidate models (Burnham & Anderson 

2002). Salinity was excluded from the model due to its high level of collinearity with 

tidal range which resulted in excessively high variance inflation factors. A better model 

was generated using tidal range than salinity. All two-way interactions between 

significant variables were explored and a three-way interaction between tidal range, 

grooming status and season to determine whether tidal range affects the impacts of 

grooming between seasons. A further linear model was performed with algae depth 

with the same response variables with the exception of algae depth itself.  

 

3. Results  

 



3.1. Taxon richness 

 

The GLMM did not retain the predictor variables aspect, exposure, longitude or 

latitude. Taxon richness was found to be positively associated with the depth of wrack 

present and negatively associated tidal range (Table 1). The model also suggested 

that grooming was having a strong negative impact on taxon richness and predicted 

more species should be present in summer. Several interactions involving all four 

variables also affected taxon richness (Table 1). No interaction was found between 

grooming and algal depth suggesting that the same pattern of association is present 

between algal depth and taxon richness on both groomed and ungroomed beaches 

(Figure 1). There was a strong interaction between grooming and season with 

groomed beaches having particularly low diversity during the grooming season (Figure 

2).  

We detected an interaction between season and tidal range with taxon richness 

decreasing with tidal range in summer and increasing with tidal range in winter (Figure 

3). There was also a three-way interaction between grooming, season and tidal range. 

The difference in taxon richness between summer and winter on groomed beaches is 

strongly associated with tidal range with little difference between summer and winter 

on beaches with low tidal and large differences on beaches with high tidal range 

(Figure 3). There was also a highly significant positive interaction between tidal range 

and algal depth in their impacts on taxon richness, with the depth of algae being 

associated with more pronounced increases in taxon richness in areas with higher tidal 

range. 

 



3.2. Algal depth 

Algal depth was highly positively associated with taxon richness (Table 1). A 

linear model of algal depth only retained grooming status and season (Table 2). Wrack 

beds were deeper during the winter (Figure 4). There was also a significant interaction 

term between grooming status and season (Figure 5) with groomed beaches having 

relatively low depths of wrack during the grooming season but not during winter. 

 

4. Discussion 

Our study shows that mechanical beach grooming on beaches in both Scotland 

and Sweden is having a marked effect on the strandline macroinvertebrate community. 

We also reveal that the level of macroinvertebrate diversity on a beach is being 

predominantly determined by the depth of wrack deposits and the impacts of grooming 

on this community likely occur largely as a result of reducing the depth of wrack. We 

show that the rate of recovery from that impact is associated with the tidal range at a 

beach which will affect the replenishment rate of wrack which has major implications 

for beach management. 

 

4.1 Grooming and Macroinvertebrate Taxon Richness 

Our model revealed that several factors, grooming, season, algae depth and tidal 

range are all associated with macroinvertebrate taxon richness. Diversity was highly 

significantly lower on groomed beaches and the impacts of grooming on diversity were 

significantly greater during the grooming season suggesting that some recovery does 

occur of taxon richness during the winter off season. The rate of recovery on groomed 



beaches was found to be strongly associated with tidal range with substantial recovery 

of diversity occurring on beaches with high tidal range but little on beaches with low 

tidal range. This could be as a result of wrack deposits being more rapidly replaced on 

beaches with high tidal range during spring high tides. Beaches will low tidal ranges 

tended to be more brackish and around the Baltic the deposits also contain a high 

proportion of eelgrass (Mossbauser et al. 2012) whereas deposits on higher tidal 

range beaches which are predominantly consist of macroalgae. 

The taxa included in the study were chosen because they occur all year around. 

No difference was found in the level of macroinvertebrate richness between summer 

and winter on ungroomed beaches which confirms our choice of study organisms. 

Previous studies have found differences between summer and winter (Gonçalves and 

Marques 2011). Including those taxa that are less commonly or not found in would 

have been much less informative about the impacts of grooming and the subsequent 

recovery period during the off season.  

Fewer taxa were found on groomed beaches on both seasons suggesting that 

the impacts of grooming extend into the winter off season. A previous study has shown 

that grooming reduces macroinvertebrate richness during the summer grooming 

season in Scotland (Gilburn 2012) but our study is the first to report a similar effect in 

Sweden and the first to report that the impacts of grooming extend into the winter in 

both Scotland and Sweden. A previous study in Sweden found no impact on littoral 

macroinvertebrates (Malm et al. 2004) but did not consider strandline 

macroinvertebrates. This study was also conducted further into the Baltic Sea where 

wrackbeds predominantly consist of eelgrass (Mossbauer et al. 2012) which provides 

a much less useful resource for many strandline taxa for example species such as 

coelopids are not found due to the lack of brown algae within the deposits. So the likely 



difference in the two studies is that ours was restricted to those parts of Sweden where 

deep wrackbeds occur and only considered species that inhabit the wrack and which 

therefore are most likely to be impacted by beach grooming. Our study also found that 

depth of algae was a key factor in determining macroinvertebrate diversity with more 

taxa found on beaches with deeper deposits of wrack. The low levels of wrack around 

the Baltic are therefore likely to have resulted in lower levels of macroinvertebrate 

diversity prior to grooming.  

It should be noted that tourist beaches are inevitably more likely to be subjected 

to mechanical grooming. Tourists can damage coastal environments (Davenport and 

Davenport 2006) by trampling dunes or using recreational vehicles. However, tourists 

do tend to actively avoid deposits of wrack due to their unpleasant odour and 

associated invertebrates. Indeed this is major factor in why many local authorities 

engage in mechanical grooming, therefore we consider it unlikely that the toursts have 

directly contributed to the loss of strandline biodiversity. Consequently any impacts of 

tourism are likely to be indirect through encouraging the use ofmechanical grooming.  

 

4.2. Grooming and Depth of Algal Deposits 

The maximum depth of algae at a beach was found to be an important 

determinant of taxon richness at both groomed and ungroomed beaches. The 

relationship between algal depth and diversity was the same for both groomed and 

ungroomed beaches although the level of diversity was lower on groomed beaches at 

each depth. This could suggest either additional negative impacts of grooming 

unrelated to the depth seaweed, for example disturbance or removal of sand, or a time 



lag before recovery from grooming occurs once seaweed has been redeposited upon 

a groomed beach.  

The maximum depth of algae at a beach was found to higher in winter than 

summer on both groomed and un groomed beaches. On ungroomed beaches this is 

likely to be due to storms depositing more seaweed during winter than summer. On 

groomed beaches, the cessation of grooming during winter will allow the wrack 

deposits to start to accumulate to more natural depths. There was more than a three-

fold difference in maximum algal depth between groomed and ungroomed beaches 

during the summer but little difference by the winter off season showing that seaweed 

does reaccumulate. However, the lower levels of macroinvertebrate diversity on 

groomed beaches in winter, particularly in areas with low tidal range, suggests that in 

addition to replensihment of wrack, macroinvertebrate communities also suggests 

need time to recover from grooming events.  

Tidal range did not seem to impact the amount of seaweed found on beaches in 

either summer or winter. This seems to conflict with the finding that diversity on 

beaches with lower tidal range seems to recover more slowly. However, beaches with 

higher tidal range are likely to get regular deposits of fresh wrack whereas beaches 

with lower tidal range might have to wait for irregular storm events for a large deposit 

of wrack.  

 

4.3. Long-term impacts 

Sandy beach proceses operate over the long-term and our study just considered 

two snapshots in time, one in the grooming season and one in the off-season. It has 

been suggested that because of the complex nature of processes at sandy beaches 



that long term studies should be carried out. However, such studies are likely to be 

spatially limited in terms of the number of beaches that they could include in the study. 

We temporally-limiting our study by only sampling each beach twice consequently we 

were able to include over 100 beaches across several different coastlines with different 

tidal ranges and aspects. The strong patterns of association we found show that this 

strategy has been successful in highlighting clear patterns and impacts of grooming 

although it should be noted that our study was not conducted blind as the data would 

have been collected in the knowledge of the management programme present at each. 

This is an issue that is not really possible to avoid as even if naïve data collectors were 

employed there would still be evidenc eof mechanical grooming such as tractor marks 

and lack of seaweed, and at some sites collections of raked seaweed that would have 

made a truly blind study unfeasible. The strong associations  we found between 

grooming, tidal range, algal depth and season are also unlikely to be have to be 

generated by external confounding factors considering the large spatial scale of our 

study. It should also be noted that grooming had been occurring over many 

consecutive seasons at most of the beaches included in the study so the lower 

diversity at groomed beaches both in summer and winter are likely to have included 

longer-term impacts from repeated grooming events over many years.  

 

4.4. Management Implications 

We show that tidal range has a major impact on recovery rates on groomed 

beaches, it is possible for managers to use this information and tailor their policies to 

try and minimise the impacts of grooming. In Sweden, where tidal range is low macro-

invertebrate communities take longer to recover. This is likely because these beaches 



must wait until a storm event to receive fresh inputs of wrack.  Rather than being 

removed the seaweed could be transported to a more suitable area of the beach where 

it is less likely to be considered a nuisance by the public and where it can naturally 

decompose to recycle nutrients into both dune and marine environments. In Scotland 

littering laws would prevent councils from moving wrack from one part of a beach to 

another if it contained any litter which is likely in most deposits.  In Sweden grooming 

is carried out by each local municipality (or kommun) and a small number of kommuns 

already carry out this practice. If it was made more widespread then it substantially 

help mitigate or even remove the impacts of grooming by avoiding the removal of any 

material from the beach (Morton et al. 2015). Indeed gathering several thin strands of 

wrack and redepositing it in a deeper pile at one end of the beach might even improve 

the environment for most beach macro-invertebrates as our study and others have 

found that algae depth is a key factor in determining diversity. 

On beaches where it is not practical to move the seaweed to one end, for 

example on small beaches or beaches where the entire beach is likely to be used, 

then managers could be encouraged to only groom the lower part of the beach (Kelly 

2016). This could be particularly effective on beaches with higher tidal ranges and 

consequently more stratification of deposits up the beach. The lower part of the beach 

is where most recreational activities occur so this would enable some wrack and 

macro-invertebrates to remain whilst minimising the impact of beach users (Kelly 

2016). 

.  
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Tables  

Table 1. Model parameter estimates for the fixed effects from a GLMM of taxon 

richness with binomial distribution and log link. (The intercept in this case is showing 

the coefficient for ungroomed beaches in winter).  

Fixed Effects: Estimate Std. Error z value       P 

Intercept  -3.17 0.70 -4.56 <0.001 

Grooming -0.69 0.19 -3.62 <0.001 

Season (Summer) 1.84 0.51 3.61 <0.001 

Tidal range -0.76 0.15 -5.05 <0.001 

Algae depth 1.48 0.14 10.28 <0.001 

Grooming x Season -0.90 0.30 -3.01 0.003 

Grooming x Tidal range 1.40 1.10 1.44 0.149 

Season x Tidal range -0.21 0.11 -2.00 0.045 

Season x Algal depth -0.37 0.17 -2.20 0.028 

Tidal Range x Algal depth 0.31 0.05 6.86 <0.001 

Grooming x Season x 

Tidal range 

-0.35 0.15 -2.36 0.018 

 

 

  



Table 2. Model parameter estimates for a linear model estimating algae depth during 

on sandy beaches. The intercept is showing the coefficient for ungroomed beaches 

in winter.  

Coefficients: Estimate Std. Error z value       P 

Intercept  3.16  0.12 26.17 <0.001 

Grooming -0.24 0.17 -1.40 0.160 

Season (Summer) -0.68 0.17 -4.02 <0.001 

Grooming x Season -1.17 0.24 -4.78 <0.001 

 

  



 

 

Fig. 1. Association between taxon diversity and algae depth on groomed and 

ungroomed beaches. 



 

Fig 2. Effect of both season and grooming status on mean taxon diversity. Error bars 

represent standard error. 



 

Fig. 3. Interaction plot showing the effect on taxon diversity of interactions between 

tidal range, grooming status and season (summer or winter). 



 

 

Fig. 4. Differences in algae depth in Scotland and Sweden during winter and 

summer. 



 

Fig. 5. Plot showing the effect of grooming season and grooming status on algae 

depth. 

 


