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Abstract

Predation is thought to be one of the main structuring forces in animal communities. However, se-

lective predation is often measured on isolated traits in response to a single predatory species, but

only rarely are selective forces on several traits quantified or even compared between different

predators naturally occurring in the same system. In the present study, we therefore measured be-

havioral and morphological traits in young-of-the-year Eurasian perch Perca fluviatilis and com-

pared their selective values in response to the 2 most common predators, adult perch and pike

Esox lucius. Using mixed effects models and model averaging to analyze our data, we quantified

and compared the selectivity of the 2 predators on the different morphological and behavioral

traits. We found that selection on the behavioral traits was higher than on morphological traits and

perch predators preyed overall more selectively than pike predators. Pike tended to positively se-

lect shallow bodied and nonvigilant individuals (i.e. individuals not performing predator inspec-

tion). In contrast, perch predators selected mainly for bolder juvenile perch (i.e. individuals spend-

ing more time in the open, more active), which was most important. Our results are to the best of

our knowledge the first that analyzed behavioral and morphological adaptations of juvenile perch

facing 2 different predation strategies. We found that relative specific predation intensity for the di-

vergent traits differed between the predators, providing some additional ideas why juvenile perch

display such a high degree of phenotypic plasticity.
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Predation is thought to be one of the main structuring forces in

freshwater communities (e.g. Sharma and Borgstrom 2008), influ-

encing not only species assemblage through selective predation but

also the distribution and abundance of phenotypes within a popula-

tion (e.g. Kishida and Nishimura 2005; Bell and Sih 2007; Heynen

et al. 2014). Typically a prey faces multiple predators (Sih et al.

1998), which might differ in size (Scharf et al. 2000), density

(Magnhagen and Heibo 2004), habitat use (Krupa and Sih 1998),

diel activity (Turesson and Bronmark 2004), and/or hunting strategy

(Kishida and Nishimura 2005), imposing different predator-specific

selection forces on the shared prey.

In single predator systems, a predator-specific defense would de-

crease a prey’s vulnerability to predation (Krupa and Sih 1998; Sih

et al. 1998). In contrast, facing equally abundant predators with dif-

ferent strategies, a more plastic and general defense might be advan-

tageous (Krupa and Sih 1998; Sih et al. 1998). Many defense

strategies bear costs, confronting the prey with time and/or resource

allocation trade-offs (e.g. Steiner and Pfeiffer 2007). Individual
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sticklebacks Gasterosteus aculeatus that behave less actively

(Moodie et al. 1973) or more vigilantly (Godin and Davis 1995) are

less likely to fall victim to predation, but simultaneously lose forag-

ing opportunities. In Crucian carp Carassus carassus increased body

depth, though effective against gape limited predators (Nilsson et al.

1995), was also found to reduce competitive abilities (Pettersson

and Bronmark 1997). Throughout many fish species, different be-

havioral and morphological defense strategies have been described

such as group living (Magenhagen and Bunnefeld 2009), shortened

spawning ascents (Habrun and Sancho 2012), vigilance (Pitcher

1992), reduced activity (Bean and Winfield 1995), or seeking shelter

(Magenhagen et al. 2012), armor (Vamosi 2002), spines

(Zimmerman 2007), or increased body depth (Brönmark and

Pettersson 1994; Abate et al. 2010). The variety of behavioral and

morphological defenses were sometimes shown to compensate or

augment each other (Steiner and Pfeiffer 2007). In goldfish

Carassius auratus, deep bodied individuals displayed lower intensity

of antipredator response than shallow bodied ones, thus individuals

with morphological defenses exhibited less behavioral modification

than those lacking such defenses (Chivers et al. 2007). However, se-

lective predation is often measured on isolated traits in response to a

single predatory species, but only rarely are selective forces on sev-

eral traits quantified (e.g. Bell and Sih 2007; Holmes and

McCormick 2009; Smith and Blumstein 2010; Pruitt et al. 2012) or

even compared between different predators naturally occurring in

the same system (e.g. Botham et al. 2006; Holmes and McCormick

2009). Comparing the fitness consequences of just 1 axis of vari-

ation may, however, overestimate the importance of 1 trait and lead

to a fractioned view on the operating selective forces (Steiner and

Pfeiffer 2007).

Eurasian Perch (Perca fluviatilis L.) is a common freshwater spe-

cies throughout Europe (e.g. Thorpe 1977), where juveniles (like

most fishes), suffer the highest predatory mortality during their first

year (Sogard 1997; Huss et al. 2010). For juvenile perch, the 2 most

common predators are adult perch and pike Esox lucius (Persson

et al. 2003; Magnhagen and Heibo 2004), which differ in habitat

use and hunting strategies (Turesson and Bronmark 2004).

Although perch predators hunt and search actively (Christensen

1996), pike is a sit-and-wait predator, ambushing the prey from

shelter (Bean and Winfield 1995). Juvenile perch were found to

show consistent variation in morphology (Borcherding and

Magnhagen 2008) and behavior (Magnhagen and Bunnefeld 2009).

The evidence suggests individuals adapt their behavior to the experi-

enced level of predation risk (Magnhagen and Borcherding 2008)

and increase their body depth in the presence of pike (Eklöv and

Jonsson 2007). However, to our knowledge, the relative selection

advantages of morphological and behavioral traits with respect to

predation have not yet been quantified, or even compared for differ-

ent predators.

In the present study, we therefore measured behavioral and mor-

phological traits in young-of-the-year Eurasian perch and compared

their selective values in response to the 2 most common predators,

adult perch and pike. Boldness toward a predator and morpho-

logical features describing the body shape were measured before

groups of juvenile perch faced either a piscivorous pike or perch. To

analyze the selective value of the different phenotypic traits, we

compared the initial morphological and behavioral characteristics of

the juvenile fish that survived with the characteristics of the juvenile

fish that were preyed upon. In order to reduce size selective preda-

tion in our setup, we applied a relatively low prey–predator size

ratio. This would suggest that morphological traits, like a slightly

deeper body should be of minor importance, despite indications that

predators regularly prefer shallow bodied prey to reduce handling

time. In contrast, behavioral defense strategies should then be of

higher importance in our analysis, and we hypothesize relatively risk

prone prey individuals to suffer higher mortality rates. As an actively

searching and hunting predator like perch depends to a greater ex-

tent on the behavior of its prey, we finally hypothesize that adult

perch would prey more selectively than the sit-and-wait predator

pike.

Material and Methods

In July and August 2010, in total 152 young-of-the-year perch (total

length, TL, mean 6 SD, 61.9 6 6.3 mm; weight, mean 6 SD, 2.1

6 0.7 g) were caught by beach seining in a gravel pit lake near the

city of Rees (51�460N, 6�200E), Germany. The fish were directly

transported to the Field Station Grietherbusch of the University of

Cologne nearby and stocked to an outdoor tank (1.8 m3) to accli-

mate to captivity (6–12 days). Fish were fed daily with pre-frozen

chironomid larvae (6% of total body mass). The adult piscivorous

perch used as predators (TL, mean 6 SD; 231.5 6 18.3 mm, N ¼
17) were caught in another gravel pit lake (51�450N, 6�280E) and

were fed with fish daily. Predatory pikes (TL, mean 6 SD; 146.7 6

14.9 mm, N ¼ 5) were caught in a small oxbow near the labora-

tory, and fed daily with fish.

Experimental design
Before being handled all fish were sedated with MS222. The juvenile

perch were measured, weighed and carefully placed on wet thin

towel, laying on a carved piece of Styrofoam to prevent deform-

ation. Using a digital camera perch were photographed together

with a ruler and then randomly marked with an individual color

code on the caudal fin. Subsequently, the juvenile fish were trans-

ferred to small aquaria to recover from narcosis (30 min) and as-

signed to groups of 4 in an experimental aquarium. Each group

participated in 1 behavioral experiment, with 2 repeated observa-

tions (see below). After the behavioral observations were conducted,

4 groups of 4 perch each (16 individuals) were added to 1 outdoor

tank (60 cm high, 0.47 m2, 50% cover with artificial vegetation),

containing a piscivorous pike or perch. As adult perch are more sen-

sitive to handling than pike (personal observation), the adult perch

were stocked to the outdoor tanks 10 days and the pikes 3 days prior

adding the juvenile fish. During this time the predators were not fed,

to reach a high hunger level. In total, 10 circular outdoor tanks with

recirculation pumps were used (mean 6 SD, 17.5�C 6 1.5 �C, nat-

ural light regime), to set up 5 replicates per predator species. Aiming

to examine the predator-specific selection for different behavioral

and morphological phenotypes and to ensure the comparability be-

tween the replicates, prey size was chosen to result in a constant

prey–predator size ratio (prey–predator size ratio, perch:

mean 6 SD, 0.30 6 0.02; pike: mean 6 SD, 0.39 6 0.02), which

was slightly higher for pike, because they are less gape size limited

than perch (Nilsson and Brönmark 2000). The study was conducted

in 4 successive experimental blocks (with 2 tanks stocked with fewer

prey fish, 12 individuals instead of 16). During the tank treatments,

the juvenile perch were fed twice per day equal to 15% body weight,

which was equally distributed over the whole tank and food

amounts were adjusted according to the remaining amount of fish in

each tank. The tanks were checked every second day, visually count-

ing the remaining prey fish and each treatment ended, when about

50% of the prey fish were consumed. Tank treatments were on
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average ended after 11 days, recovering between 18.7% and 66.6%

of the prey and all the predators alive (survival prey, perch: mean 6

SD, 42.4 6 15.5%; pike: mean 6 SD, 49.9 6 12.8%). After the

experiments the juvenile fish were sacrificed with an overdose of

MS222 and frozen for further morphological analyses. The perch

and pike predators were released at the same location they were

caught.

Behavioral experiments
The experimental aquaria were 100 L (85 � 42 � 34 cm), their

bottom was covered with gravel and the water temperature was

20.8�C 6 1.2 �C (mean 6 SD), while the light regime in the room

was set to 13L:11D. One-third of each aquarium was used for the

predator separated with a plastic net and the remaining part for the

group of perch. An opaque plastic screen was placed close to the

net, to prevent the juvenile fish habituating to the predator.

Artificial vegetation and aeration was provided in the predator com-

partment and in the half of the space for the perch group that was

furthest away from the predator. After each set of behavioral experi-

ments, one-third of the water in each aquarium was renewed.

Prior to the behavioral experiments, the small perch were acclim-

atized to the aquarium for 2 days and fed daily with red chironomid

larvae in the open area. On the third day, the behavioral experi-

ments were conducted, during which juvenile fish were observed

twice. Before each observation, the juvenile perch were enclosed by

the opaque screen in the half of their section that also contained the

vegetation. Chironomid larvae (�75 larvae, corresponding to 3% of

the total fish weight) were poured into the open space produced be-

tween the net and the opaque screen and allowed to sink to the bot-

tom. The observation started by lifting the opaque screen, making a

large perch visible to the juvenile perch though the net. Each aquar-

ium was observed for 10 min, in which an observer recorded 4 dif-

ferent activities for each individual fish: occurrence in the

vegetation, occurrence in the open, feeding, and predator inspection.

Thereby, feeding was defined as being oriented toward the bottom

and attacking the food and predator inspection as being within 2

fish lengths distance of the net and being orientated exactly toward

the predator. The activities were entered into a computer program,

which recorded 1 behavioral unit every second. After each observa-

tion the opaque screen was put back next to the net. All behavioral

experiments were conducted in the same way and with the same

predator species, adult perch, so the behavior of all juvenile perch

for the pike and the perch tank treatment was tested in the presence

of adult perch.

Morphological analyses
For morphometric analysis 12 homologous landmarks (9 defined

points to describe the outer shape, 2 for the pectoral fin and 1 for

the eye, respectively) were digitized on the left side of each specimen

using tpsDigit and tpsUtility software from Rohlf (available at:

http://life.bio.sunysb.edu/morph/; NY, USA). All the following ana-

lyses were performed with Integrated Morphometrics Package

(IMP) developed by Sheets (which is available at: http://www2.cani

sius.edu/�sheets/morphsoft.html; Buffalo, NY, USA). All specimens

were transformed to the same baseline orientation and length, using

IMP software CoordGen6 and nonshape variations were removed,

using the Procrustes superimposition option of the IMP software.

Using the software PCAGen6n, a PCA was conducted and PCA

scores were computed for the pike and perch data, respectively.

PCAGen6n was also used to visualize the morphometric distinction

along the selected PCA axes as vectors on landmarks.

Statistical analyses
The recorded behavioral data were used to calculate 7 behavioral

variables: time spent in the open area, total time spent feeding, la-

tency to start feeding, duration of the first feeding bout, activity

(number of changes between open area and vegetation), latency until

first change of habitat, and time spent with predator inspection.

Behavioral consistency over the 2 observations for the 7 behavioral

variables was analyzed with Kendall correlations, as the data were

not normally distributed. Using a principal component analyses

(PCA), the average behavior per fish over the 2 observations for the

calculated behavioral parameters were combined to behavioral

scores, reducing the number of behavioral variables but retaining

the variation present in the recorded data. Two PCAs were con-

ducted for the perch and pike treatment data, respectively.

Possible connections between the measured behavioral and mor-

phological parameters [principal component 1 and 2 from the be-

havioral analysis (B-PC1 and B-PC2) and principal component 1

and 2 from the morphological analysis (M-PC1 and M-PC2)] were

analyzed with Pearson correlations for the perch and pike treatment

data, respectively. To analyze the factors influencing the survival of

a prey individual, 2 separate linear mixed effect models were setup

for perch and pike. Survival (0/1) was used as binominal response

variable. To avoid pseudoreplication in the analysis, a nested design

was created. “Between-groups in one tank” was added as random

effect at the inner level and “between-tanks” was added as random

effect at the outer level, to account for pseudoreplication (Hurlbert

1984). The following variables were added as fixed effects: principal

component 1 and 2 from the behavioral analysis (B-PC1 and B-

PC2), principal component 1 and 2 from the morphological analysis

(M-PC1 and M-PC2), the average amount of prey consumed per day

(PCPD) in each tank and the prey–predator size ratio (PPSR).

Hence, the model for survival was fit with the predictors of PCPD,

PPSR, Beahvioral-PC1, Behavioral-PC2, Morphological-PC1 and

Morphological-PC2 without interactions and the random intercepts

of group and tank ID.

The dredge function in the MuMIn package in R was used to run

all possible combinations of the fixed effects and ranked the result-

ing models according to the associated AICs, to find the most parsi-

monious combinations of the fixed effects. Instead of focusing on a

single minimum best model, the model.avg function in the MuMIn

packed in R was used to average the models identified to best sup-

port our data (Johnson and Omland 2004), where models with

Akaike difference <2 were considered important (Burnham and

Anderson 2002). Parameter estimates were averaged according to

Akaike’s weights. This resulted in robust parameter estimates and

predictions, and helped to avoid to focusing on or rejecting a special

hypothesis, where multiple alternative hypotheses may be relevant

(Johnson and Omland 2004). This approach is especially useful,

allowing us to identify and present the relative contributions of the

different important factors in explaining our data.

Results

Behavior
For all 7 behavioral variables the behavior of the first and second

observation were significantly positively correlated (for all 7 correl-

ations P<0.01; Kendall’s tau coefficient range 0.28–0.57). For the
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behavioral data from the juvenile fish used in the pike treatments,

the PCA produced 2 behavioral principle components with eigen-

values >1 (B-PC1 and B-PC2), explaining together 79.5% of the

variation (Table 1). Whereas the PCA on the behavioral data from

juvenile prey perch used in the perch treatments resulted in only 1

axes with an eigenvalue >1 (B-PC1), however we retained the first

2 axes for comparability, explaining together 80.6% of the variation

(Table 1).

The loadings on the 2 axes were similar between the behavioral

data from the juvenile perch used in the different predator treat-

ments, resulting in comparable scores, where positive scores on B-

PC1 indicated more time in the open, more time feeding, a lower la-

tency to start feeding, a higher activity (number of changes between

open area and vegetation) and a lower latency to leave the vegeta-

tion, which would signify a fish with a high degree of boldness.

Positive scores on B-PC2 indicated more time spent with predator

inspection and a lower duration of the first feeding bout, signifying

vigilance.

Morphology
From the 2 morphometric analyses, we retained the first 2 principal

components for further analyses, explaining together 52.8% and

56.7% of the morphological variation between the juvenile perch

used for the perch and pike treatments, respectively. The shape dif-

ference associated with the first morphological principal component

(M-PC1) were similar for the pike and perch population subsamples,

where positive scores on M-PC1 indicated a more downward

bended body shape and a deeper bodied appearance (Figure 1). For

the juvenile prey perch used in the perch treatments positive scores

on M-PC2 indicate a larger head, whereas for the juveniles used in

the pike treatments positive scores on M-PC2 are associated with

smaller head morphology (Figure 1).

Neither for the perch nor the pike treatment data were any of be-

havioral parameters (B-PC1 and B-PC2) significantly correlated

with the morphological parameters (M-PC1 and M-PC2) (P >

0.05; Pearson product–moment correlation coefficient range �0.15

to 0.20).

Mixed effect models—random effects
The variance (var) explained by the 2 random effects, “between-

tanks” and “between-groups in one tank,” was close to zero (var <

1.0�5) in both the most parsimonious perch as well as the most par-

simonious pike treatment model.

Mixed effect models—fixed factors
Testing for the most parsimonious combinations of fixed effects re-

sulted in 7 models with Akaike differences <2 per predator model,

including a mean of 2 terms for the models for the perch data and

0.85 terms for the pike models, respectively (Table 2). Multimodel

inference from the subsets of important models indicates that only

the fixed factor behavioral component 1 (B-PC1 boldness) showed a

trend different from zero (Table 3). This is also reflected by the rela-

tive variable importance of the fixed factors, indicating that between

individual variation in behavioral component 1 (B-PC1 boldness),

but also variation in behavioral component 2 (B-PC2 vigilance) and

morphological component 1 (M-PC1 body shape) contribute to the

likelihood that a juvenile perch is preyed upon in a perch treatment

(Table 3, Figure 2). For the pike treatments, all examined factors

had a relative low contribution in explaining the survival of prey in-

dividuals, among which the between individual variation on behav-

ioral component 2 (B-PC2 vigilance) seems to be most important

(Table 3, Figure 2).

Discussion

In the sets of the most parsimonious models, the numbers and com-

binations of the fixed effects differed between the pike and the perch

data. The most parsimonious pike models contained zero or only 1

fixed effect, however without any consistency. In contrast, the best

perch models contained on average more fixed effects and the factor

boldness appeared consistently in all models. Consequently, the

fixed effect boldness had the highest relative variable importance in

the perch models, in which between individual prey variation in

boldness was negatively related to survival. These results indicate

that perch predators preyed selectively on bolder juvenile perch and

overall considerably more selectively than pike.

We kept size variation between the prey individuals small in the

present study, to focus purely on the effects of morphological and be-

havioral variation. In consequence, the prey–predator size ratio and

accordingly size selective predation was of only minor importance.

Size-biased predation is, however, a common phenomenon in fish

populations (Juanes and Conover 1994; Lundvall et al. 1999). It may

be attributed to gape limitations, in which a fish’s vulnerability to

predators changes with size (e.g. Lundvall et al. 1999) and body depth

(e.g. Nilsson and Brönmark 2000), but may also result from size asso-

ciated variation in preys escape ability (e.g. Taylor and McPhail

1985), conspicuousness (e.g. Lundvall et al. 1999), or behavior (e.g.

Biro et al. 2004). For example, larger prey individuals might suffer

from increased mortality, because they allocate their time in the trade-

Table 1. Factor loadings, eigenvalues, and proportion of the total variance explained by the first behavioral principle components (B-PC) ex-

tracted from the 2 PCAs over the 7 different measures of behavior, for the perch and pike treatments, respectively

Perch Pike

B-PC1 Boldness B-PC2 Vigilance B-PC1 Boldness B-PC2 Vigilance

Time in the open 0.402 0.211 0.426 �0.041

Total time spent feeding 0.403 �0.340 0.407 �0.342

Latency to start feeding �0.424 0.038 �0.439 �0.097

Duration of first feeding bout 0.318 �0.523 0.362 �0.406

Number of changes 0.403 �0.063 0.384 0.268

Time spent with predator inspection 0.256 0.725 0.060 0.748

Latency until first change �0.405 �0.185 �0.418 �0.271

Proportion of total variance 0.693 0.113 0.598 0.196

Eigenvalue 4.848 0.790 4.190 1.375
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Figure 1. Shape difference associated with the first and second morphological principle component (M-PC1 and M-PC2) from the juvenile perch that participated

in the perch and the pike tank treatment. The shape differences are depicted as growth vectors starting from the perch with small M-PC scores (solid line) to the

perch with high M-PC scores (dotted line).

Figure 2. Vulnerability function for the divergent behavioral (B-PC1 and B-PC2) and morphological (M-PC1) phenotypes in response to adult pike and perch, ex-

tracted from the averaged model for pike and perch treatment data. On the Y-axes 1 indicates survival and 0 nonsurvival (death through predation). Multimodel

inference indicate that only the behavioral component 1 (B-PC1 boldness) shows a trend different from zero.
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off between feeding and antipredator behavior to maximize growth

(Biro et al. 2004). These findings are in correlation to our results that

revealed relatively bolder juvenile perch (i.e. spending more time in

the open, more active) are less likely to survive during the perch treat-

ments. These results are consistent with previous studies on three-

spined sticklebacks Gasterosteus aculeatus, in which individuals that

were more active (Moodie et al. 1973) and fed more (Bell and Sih

2007) had a higher mortality risk. In meta-analyses across several spe-

cies, Smith and Blumstein (2008) found bolder individuals to have an

increased reproductive success, but a shorter life span due to selective

predation. Boldness that decreases refuge use and increases activity,

increases the risk to encounter and to attract primarily visual oriented

predators (Martel and Dill 1995), increasing predation risk.

Additionally, Turesson and Brönmark (2004) found that solitary

perch predators need to separate single individuals from a school to

successfully attack them. Therefore, bold individuals that more often

occupy front positions (Ward et al. 2004) and keep greater distance

from the school (Wilson et al. 1993), might be more vulnerable to pre-

dation. However, some studies on fish and other animals found bold

individuals to have a higher likelihood to survive in the presence of

predators compared to shy (Réale and Festa-Bianchet 2003; Brown

et al. 2005; Smith and Blumstein 2010). Furthermore, the relative se-

lective advantage of a specific behavior might depend on the individ-

ual predator (Smith and Blumstein 2010) and its behavior (Pruitt et al.

2012).

In contrast to perch, pike predators in the present study did not se-

lectively prey upon bold individuals. Perch were found to show con-

sistent between individual differences in behavior across situations

(Magnhagen 2006; Magnhagen and Bunnefeld 2009), indicating that

fish behaving bolder in the presence of perch predators will also do so

in the presence of pike predators. Nevertheless, it should be kept in

mind that the initial behavior of all juvenile perch was tested in the

presence of perch when interpreting predator-specific differences in se-

lection on behavioral traits. Our results indicate a lower tendency for

pike predators to hunt vigilant individuals that perform predator in-

spection. Although predator inspection is generally thought to in-

crease an individual’s vulnerability (e.g. Dugatkin 1992), Godin and

Davis (1995) demonstrated that blue acaras (Andinoacara pulcher G.,

synonym Aequidens pulcher) as predators were less likely to attack

guppies that inspected them than those that did not. In sticklebacks,

Table 2. Akaike weights (xi), Akaike differences (Di), Akaike information criteria, k values and the terms [behavioral component 1 and 2 (B-

PC), morphological component 1 and 2 (M-PC), prey consumed per day (PCPD), and the prey-predator size ratio (PPSR)] and associated co-

efficients in each model for the perch and pike treatment models

Intercept B-PC1

Boldness

B-PC2

Vigilance

M-PC1

Body shape

M-PC2

Head size

PCPD PPSR k AIC DAIC AIC

weight

Perch �0.328 �0.246 4 112.0 0.000 0.098

�0.332 �0.258 13.91 5 112.8 0.811 0.065

�0.332 �0.242 �0.301 5 102.9 0.885 0.063

�0.328 �0.252 15.04 5 113.4 1.416 0.048

�0.335 �0.255 �0.293 13.57 6 113.7 1.740 0.041

�0.527 �0.263 0.147 5 113.8 1.815 0.039

0.391 �0.247 �2.39 5 114.0 1.975 0.036

Pike �0.111 3 105.6 0.000 0.094

�0.112 0.221 4 106.4 0.847 0.061

�3.834 9.39 4 106.9 1.282 0.049

�0.113 10.68 4 106.9 1.356 0.047

0.453 �0.912 4 107.0 1.425 0.046

�0.112 �11.18 4 107.2 1.561 0.043

�0.111 0.032 4 107.5 1.925 0.036

Table 3. The coefficient, standard error, lower and upper 95% confidence interval, and the relative variable importance (Rel var importance)

for each term [behavioral component 1 and 2 (B-PC), morphological component 1 and 2 (M-PC), prey consumed per day (PCPD), and the

prey–predator size ratio (PPSR)] of the averaged model for pike and perch treatment data

Coefficient SE Lower CI Upper CI Rel var importance

Perch Intercept �0.283 0.679 �1.640 1.070

B-PC1 Boldness �2.251 0.114 �0.479 �0.023 1.00

B-PC2 Vigilance �0.079 0.155 �0.384 0.226 0.27

M-PC1 Body shape 3.740 7.140 �10.300 17.800 0.27

M-PC2 Head size 1.850 4.560 �7.140 10.800 0.12

PCPD 0.014 0.050 �0.084 0.114 0.10

PPSR �0.223 1.620 �3.450 3.000 0.09

Pike Intercept �0.531 1.240 �2.970 1.910

B-PC1 Boldness 0.031 0.116 �0.200 0.264 0.10

B-PC2 Vigilance 0.221 0.209 �0.196 0.637 0.16

M-PC1 Body shape 10.700 13.400 �16.000 37.400 0.13

M-PC2 Head size �11.200 16.900 �45.000 22.600 0.11

PCPD �0.912 1.210 �3.320 1.490 0.12

PPSR 9.390 11.100 �12.800 31.600 0.13
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predator inspection was correlated with prey condition and escape

ability (Kulling and Milinski 1992) and Pitcher (1992) suggested that

predator inspections signals the predator that the prey is aware of its

presence. Pike is a highly effective ambush predator (Eklöv and Diehl

1994; Bean and Winfield 1995; Turesson and Bronmark 2004), typic-

ally attacking its prey from a hideout in littoral vegetation. This tactic

was suggested to be highly successful in piscivores because predators

mostly attack unaware prey (Turesson and Bronmark 2004).

However, this strategy might be less effective once detected by the

prey, hence inspection might deter the predator from attacking

(Pitcher 1992; Godin and Davis 1995).

Compared to the behavioral traits, selection on morphological

traits was relatively low in the present study. Slightly downward

bended individuals, with a deeper bodied appearance were more

likely to survive than fish with a more slender appearance. Increased

body depth is generally interpreted as an adaptive morphological

prey characteristic that decreases a fish’s vulnerability to gape size

limited piscivores (e.g. Nilsson and Brönmark 2000). Indeed,

Nilsson et al. (1995) could show that pike needs longer to process

deep bodied Crucian carp and preferably attacks slender bodied in-

dividuals. We found pike predators to exhibit less morphological se-

lection than perch predators. However, morphological variation in

natural perch populations might be much more pronounced, sug-

gesting that in the present study morphological variation might have

been too small to be a selection criterion. Pike predators in the pre-

sent study preyed less selectively than perch. Pike had a shorter star-

vation period and faced prey relatively larger than perch. Starvation

is suggested to decrease selectivity in fish (Turesson et al. 2006),

whereas increased relative prey size is assumed to pronounce mor-

phological selection for shallow bodied prey in pike (Nilsson and

Brönmark 2000). Hence, it might be suggested that the shorter star-

vation period and the higher prey–predator size ratio would rather

increase selectivity in pike. This indicates that differences in selectiv-

ity between the divergent predators observed in our study are prob-

ably not an experimental artifact, but might be more pronounced

under equal starvation levels. We found pike and perch to select dif-

ferently on the different behavioral and morphological traits. Pike

tended to positively select shallow bodied and nonvigilant individ-

uals, whereas perch predators selected for shallow bodied and

bolder juvenile perch. This supports the idea that different

antipredator defenses may not be independent from each other (e.g.

Lind and Cresswell 2005). In previous studies, different antipredator

behaviors (e.g. Lind and Cresswell 2005), but also morphological

and behavioral defense traits, were found to compensate or augment

each other, depending on the ecological circumstances (Steiner and

Pfeiffer 2007). For example, bolder Radix balthica (aquatic snail)

exhibit a more defended shell shape than shy individuals (Ahlgren

et al. 2015) and goldfish (Chivers et al. 2007), anural tadpoles Rana

pirica (Kishida et al. 2009) and largemouth bass Micropterus sal-

moides (Brown et al. 2002) were found to decrease antipredator be-

havior with increasing body depth. However, we found no

correlation between boldness, vigilance, and body depth for juvenile

perch. Vigilance, that is predator inspection is generally interpreted

as an act of boldness. In our study boldness (time in unsheltered

habitat, activity, latency to leave the shelter) (as defined by e.g.

Magnhagen and Borcherding 2008) and vigilance (predator inspec-

tion) were loaded on different PC axes, giving some evidence that

they are not connected. Similar results were obtained in previous

studies on juveniles from Swedish (Heynen et al. unpublished data)

and German perch populations (Goldenberg et al. 2014), fathead

minnows Pimephales promelas (Pellegrini et al. 2010) and

sticklebacks (Huntingford 1976). However, behavioral trait correl-

ation or behavioral syndromes might also be species specific

(Conrad et al. 2011). Our results on juvenile perch indicate that

boldness and vigilance might represent uncorrelated alternative

antipredator tactics, as suggested for shoaling and predator inspec-

tion in sticklebacks (Bell and Sih 2007). This is assumed to be ad-

vantageous for juvenile perch, as we found pike and perch to select

differently on the 2 behavioral traits. Furthermore, defense strategies

might bear costs, confronting the prey with time and/or resource al-

location trade-offs (Steiner and Pfeiffer 2007). This can be also

assumed in the present study, in which vigilance and shyness was

associated with a lower foraging rate, as watching out for potential

threats, inactivity, hiding and foraging are largely incompatible (e.g.

Lind and Cresswell 2005). In previous studies, fishes were found to

display a high degree of phenotypic plasticity (e.g. DeWitt and

Scheiner 2004; and references therein). Juvenile perch were found to

adapt their behavior on a long-term basis to the experienced level of

predation risk (Magnhagen and Borcherding 2008; Magenhagen

et al. 2012), but also to short-term changes of predation risk (Bean

and Winfield 1995), by reducing activity and foraging, while inten-

sifying the use of shelter. Furthermore, juvenile perch were found to

increase in body depth in the presence of pike (Eklöv and Jonsson

2007). Hence, the results of the present study indicate that these

plastic reactions are adaptive and might decrease an individual’s vul-

nerability to predation. This might be particularly advantageous in

the natural environment, where predation risk is not a fixed con-

stant factor (Lima 2002). Predation risk for juvenile perch is ex-

pected to be variable due to population size structure, density and

distribution of pike and adult perch, and might change through har-

vesting (Lewin et al. 2006), natural population circles (Persson et al.

2003), and/or interactions between predators (Eklöv and Diehl

1994). In a recent study, Svanb€ack and Persson (2009) suggested

that the intrinsically driven population dynamics in perch may favor

morphological plasticity in perch over genetic diversification.

Bearing in mind the results of the present study, that is that the 2

most common predators select with different intensity on different

traits, clearly supports the idea of Svanb€ack and Persson (2009).

Thus, our results give some further hints, that not only the specific

behavioral or morphological phenotypic reactions that individuals

were found to display in response to predator risk (e.g. Bean and

Winfield 1995; Eklöv and Jonsson 2007; Magnhagen and

Borcherding 2008), but also the intrinsic ability to respond plastic-

ally to predation risk might be adaptive for perch (Svanback and

Persson 2009; Kishida et al. 2010). Predator induced selection is

suggested to effect the evolution of behavioral traits and wild popu-

lations of three-spined sticklebacks (Dingemanse et al. 2009), min-

nows Phoxinus phoxinus (Magurran 1986), and Trinidadian guppy

Poecilia reticulata (Templeton et al. 2004) with differential predator

regimes were found to differ in their antipredator behavior. The ju-

venile perch in the current study stem from a pike sympatric popula-

tion and future studies including pike sympatric and naı̈ve

populations would help further elucidate the effects of multiple

predator systems on the evolution of behavioral traits.

In conclusion, our results emphasized the importance of looking

at more than 1 predator and more than 1 trait (e.g. Kishida and

Nishimura 2005; Steiner and Pfeiffer 2007). This is mainly due be-

cause relative specific predation intensity for the divergent traits dif-

fered between the predators, in which the positive selection of perch

predator on bold individuals was the most important. Thus, the re-

sults of the present study support the assumption that behavioral

and morphological reactions of juvenile perch in response to a

Heynen et al. � Facing different predators 255

Deleted Text: ,
Deleted Text:  since
Deleted Text: &acute;
Deleted Text: while 
Deleted Text: -
Deleted Text: -
Deleted Text: while 
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: i.e. 
Deleted Text: .
Deleted Text: -
Deleted Text: two 
Deleted Text:  
Deleted Text: ,
Deleted Text: i.e.
Deleted Text: two 
Deleted Text: -
Deleted Text: one 
Deleted Text: one 


predator might be advantageous, as it was suggested in several previ-

ous studies (e.g. Eklöv and Jonsson 2007; Magnhagen and

Borcherding 2008). Furthermore, our results are, to the best of our

knowledge, the first that analyzed behavioral and morphological

adaptations of juvenile perch facing 2 different predation strategies.

We provide some additional ideas as to why juvenile perch display

such a high degree of phenotypic plasticity.

Acknowledgments

We thank Ulrike König for assistance in the field and during the behavioral

experiments and Markus Volpers who programmed the computer software to

record behavior. The experiments complied with the current laws of Germany

and were approved by the University of Cologne. The study was financially

supported by the German Research Foundation to JB (BO 1507/6-3).

References

Abate ME, Eng AG, Kaufman L, 2010. Alarm cue induces an antipredator

morphological defense in juvenile Nicaragua cichlids Hypsophrys nicara-

guensis. Curr Zool 56:36–42.

Ahlgren J, Chapman BB, Nilsson PA, Brönmark C, 2015. Individual boldness

is linked to protective shell shape in aquatic snails. Biol Lett 11:20150029.

Bean CW, Winfield IJ, 1995. Habitat use and activity patterns of roach Rutilus

rutilus (L.), rudd Scardinius erythrophthalmus (L.), perch Perca fluviatilis

(L.) and pike Esox lucius (L.) in laboratory: the role of predation threat and

structural complexity. Ecol Freshw Fish 4:37–46.

Bell AM, Sih A, 2007. Exposure to predation generates personality in three

spined sticklebacks Gasterosteus aculeatus. Ecol Lett 10:828–834.

Biro PA, Abrahams MV, Post JR, Parkinson EA, 2004. Predators select against

high growth rates and risk-taking behaviour in domestic trout populations.

Proc R Soc Lond Ser B Biol Sci 271:2233–2237.

Borcherding J, Magnhagen C, 2008. Food abundance affects both morphology

and behaviour of juvenile perch. Ecol Freshw Fish 17:207–218.

Botham MS, Kerfoot CJ, Louca V, Krause J, 2006. The effects of different

predator species on antipredator behavior in the Trinidadian guppy Poecilia

reticulata. Naturwissenschaften 93:431–439.

Brönmark C, Pettersson LB, 1994. Chemical cues from piscivores induce a

change in morphology in crucian carp. Oikos 70:396–402.

Brown C, Jones F, Braithwaite V, 2005. In situ examination of boldness-

shyness traits in the tropical poeciliid Brachyraphis episcopi. Anim Behav

70:1003–1009.

Brown GE, Gershaneck DL, Plata DL, Golub JL, 2002. Ontogenetic changes

in response to heterospecific alarm cues by juvenile largemouth bass are

phenotypically plastic. Behaviour 139:913–927.

Burnham KP, Anderson DR, 2002. Model Selection and Multimodel

Inference: A Practical Information - Theoretic Approach. New York:

Springer.

Chivers DP, Zhao XO, Ferrari MCO, 2007. Linking morphological and be-

havioural defences: prey fish detect the morphology of conspecifics in the

odour signature of their predators. Ethology 113:733–739.

Christensen B, 1996. Predator foraging capabilities and prey antipredator be-

haviours: pre- versus postcapture constraints on size-dependent predator-

prey interactions. Oikos 76:368–380.

Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A, 2011. Behavioural syn-

dromes in fishes: a review with implications for ecology and fisheries man-

agement. J Fish Biol 78:395–435.

DeWitt TJ, Scheiner SM, 2004. Phenotypic Plasticity: Functional and

Conceptual Approaches. Oxford: Oxford University Press.

Dingemanse NJ, Van der Plas F, Wright J, Reale D, Schrama M et al., 2009.

Individual experience and evolutionary history of predation affect expres-

sion of heritable variation in fish personality and morphology. Proc R Soc

Lond Ser B Biol Sci 276:1285–1293.

Dugatkin LA, 1992. Tendency to inspect predators predicts mortality risk in

the guppy Poecilia reticulata. Behav Ecol 3:124–127.
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