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Abstract 9 

A method is presented to calculate radiation dose rates arising from radon, thoron and their 10 

progeny to non-human biota in the terrestrial environment. The method improves on existing 11 

methodologies for the assessment of radon to biota by using a generalised allometric approach 12 

to model respiration, calculating dose coefficients for the ICRP reference animals and plants, 13 

and extending the approach to cover thoron in addition to radon-derived isotopes. The method 14 

is applicable to a range of environmental situations involving these radionuclides in wildlife, 15 

with an envisaged application being to study the impact of human activities, which bring 16 

NORM radionuclides to the biosphere. Consequently, there is a need to determine whether there 17 

is an impact on non-human biota from exposure to anthropogenically enhanced radionuclides. 18 
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Introduction 24 

The radioactive isotopes 220,222Rn appear in the environment as members of decay chains of 25 

naturally occurring 232Th and 238U, thus having the historical names “thoron” and “radon”, 26 

respectively. 27 

Environmental radiological protection aims to ensure protection from anthropogenic sources of 28 

radiation exposure, including those naturally occurring radionuclides (NORM) that might be 29 

released into the environment due to human activity. Being of primordial origin, exposure to 30 

radon isotopes and their radioactive progeny has been generally regarded as a background 31 

exposure and deemed not relevant for radiation protection. However, naturally occurring 32 

radionuclides such as radon isotopes 220,222Rn and their radioactive progeny can give significant 33 

exposure to terrestrial wildlife. For example, results show that absorbed dose rates to burrowing 34 

mammals as a consequence of exposure to 222Rn are likely to be at least one order of magnitude 35 

higher than those suggested in previous evaluations of natural background exposure rates which 36 

had omitted this radionuclide and exposure pathway (Beresford et al., 2012). The resulting dose 37 

rates in some areas are considerably in excess of incremental no-effects benchmark dose rates 38 

that have been suggested for use in screening levels (Beresford et al., 2012). 39 

Unlike humans, various species are known to live in soil in close proximity to radon sources. 40 

Their exposures to these naturally occurring radionuclides are often questioned. Moreover, 41 

elevated levels of radon (222Rn) and thoron (220Rn) can appear in the environment as a result of 42 

human activity, e.g. due to uranium mining, enrichment and processing, oil and gas production, 43 

geothermal energy and water production, among others. Elevated activity concentrations of 44 

TENORM (technologically enhanced naturally occurring materials), including radon and 45 

thoron predecessors (232Th and 238U), can be regarded as anthropogenic sources of radiation 46 

exposure. In such cases, human presence can be deliberately restricted or humans might not be 47 

present anyway (for example in the oceans or underground), thus no public exposure concerns 48 

could be raised for humans, but exposures to wildlife inhabiting such places can still be 49 

questioned and may need to be assessed in the context of natural preservation and protection. 50 

In other words, animals and plants inhabit places in immediate proximity to the sources of the 51 

radioactive noble gases and, for them, radon and thoron with their progenies may become 52 

(unlike for humans) potentially relevant radiologically. 53 

Assessing doses of radiation exposure due to radon isotopes and their progeny commonly 54 

appears as a difficult task due to complicated processes of radon effluence, build-up of 55 



radioactive progeny, chemical forms and attachment to aerosols, intake, deposition and 56 

retention of radon-related radioactivity in the body of living organisms. Only a few studies in 57 

rodents consider the lung deposition of radon products using a model of the tracheobronchial 58 

tree (Harley, 1988; Hofmann et al., 2006).  59 

Due to complexity, radon dosimetry appeared for decades as a scientific challenge. Even for 60 

humans, exposure to radon isotopes and their progeny is not covered by standard ICRP 61 

biokinetic and dosimetric models (ICRP, 2010) and, correspondingly, no human dose 62 

coefficients have been recommended by ICRP.  63 

The diversity of non-human biota, expressed by their biological, morphological and metabolic 64 

differences, makes radon dosimetry for wildlife an even more complex task than that for 65 

humans. The problem is compounded by the shortage of studies dealing specifically with 66 

methodologies for the calculation of radon and thoron doses to wildlife (most investigations are 67 

orientated to human dosimetry or use laboratory animals as a surrogate for human exposures).  68 

Laboratory rats particularly are used in inhalation studies as a surrogate for human exposures 69 

and dosimetry models for inhaled radon progeny in the rat lung have been developed, with the 70 

objective of predicting bronchial dose distributions (Harley, 1988; Hofmann et al., 2006; Strong 71 

and Baker, 1996; Winkler-Heil et al., 2015). These models are quite complex, involving a full 72 

model of the tracheobronchial tree and associated lung deposition, redistribution within the 73 

airways and clearance processes for radon and thoron daughters. Such approaches are by 74 

necessity biological species-specific and require a number of parameters that are not available 75 

except for the laboratory animals studied. As such, they go beyond the need for a practical 76 

assessment tool useable for radiological screening purposes, which has to be sufficiently 77 

generic to cover a variety of terrestrial animals and must have an in-built level of conservatism 78 

(approximately one order of magnitude) in order to be adequately robust. 79 

Although the use of simplified and conservative methods for non-human biota appears as 80 

rational and appropriate, there are very few methods for radon already being in use (MacDonald 81 

and Laverock, 1998; Vives i Batlle et al., 2008). To our knowledge, no method has been 82 

published to calculate doses to non-human biota as a result of exposure to thoron, but a method 83 

has been developed for 41Ar, 85,88Kr and 131m,133Xe wildlife dose assessment (Vives Batlle et al., 84 

2015). 85 

The radon approach by MacDonald and Laverock (1998) was designed for burrowing 86 

mammals, although the equations have been adapted to calculate radiation doses for birds 87 



(Kitowski et al., 2015). The method by Vives i Batlle et al. (2008), which has the advantage of 88 

having a wider range of application for different terrestrial animal and plant species, was 89 

initially developed in response to a need by the England and Wales Environment Agency to 90 

improve on an earlier interim approach, so as to conduct a trial assessment with set 222Rn 91 

authorisation limits under the UK Radioactive Substances Act (RSA) 1993. The approach was 92 

further developed as a dose assessment screening tool (Vives i Batlle et al., 2012), though it is 93 

as yet to be integrated into the ERICA tool for radiological impact to non-human biota. It was 94 

subsequently used in a study to derive exposures of burrowing mammals to 222Rn (Beresford et 95 

al., 2012), becoming the initial basis of the more detailed and widely applicable methodology 96 

presented here. 97 

This article deals with the issue of radon, thoron and progeny to non-human biota, providing a 98 

bespoke allometric method to calculate dose rates to terrestrial wildlife. We have recalculated 99 

the potential -energy concentration (PAEC) for radon and thoron, following the dosimetric 100 

approach adopted by ICRP and using the contemporary radionuclide emission data also 101 

recommended by ICRP (ICRP, 2008b). Then, we deliver tables with conservative (assuming 102 

full retention) estimates of dose coefficients (DCs) for non-human entities due to radon, thoron 103 

and their progeny, covering both internal and external exposure situations. The presented DCs 104 

illustrate the importance of having an appropriate definition of a critical organ (part of the body) 105 

for internal exposure to radionuclides emitting non-penetrating radiation (-particles) and show 106 

that an implausible choice of the critical organ or tissue may lead to growth of uncertainty by 107 

several orders of magnitude. 108 

Materials and methods 109 

Main dosimetric properties of radon and thoron progeny 110 
 111 
The dosimetry of radon (222Rn) and its daughter products is a widely considered topic, having 112 

been the object of numerous ICRP publications (ICRP, 1987; ICRP, 1993; ICRP, 2010; ICRP, 113 

2014b). Thoron (220Rn), due to its shorter half-life, is usually neglected in assessments of human 114 

indoor exposure, because of significant decay during transport from the point of origin to human 115 

dwellings. However, assessment of radiation exposure of animals and plants living in direct 116 

proximity to sources of radon gas may require accounting for contributions of radon as well as 117 

of shorter-lived thoron. 118 

Figures 1 and 2 give the energies of -particles emitted by radon isotopes and their progeny 119 

accounted via the ratio of transient activities of daughter nuclides to that of the parent. From 120 



the figures, the total -energy emitted per single decay of the parent nuclide can be seen to vary 121 

within a factor of two (220Rn) or three (222Rn) for non-equilibrated mixtures of decay chain 122 

members. The value of the equilibrium factor F = 0.4 shown in the figures is commonly 123 

assumed in human dosimetry (Keller et al., 1984; Wenbin et al., 1990; Wrixon et al., 1988) and 124 

thus can be used as a plausible default value for exposure of terrestrial wildlife in the outdoor 125 

environment when experimentally-based information is missing. Correspondingly, F = 1 can 126 

be regarded as a conservative value. However, as seen from Figure 2, Thoron is a short-lived 127 

nuclide and, after reaching equilibrium with its daughter 216Po in about 10 min, decays 128 

significantly, resulting in a highly non-equilibrium state with other progeny (212Pb, 212Bi, 212Po, 129 

and 208Tl). Thus, estimates of biota exposure in this case may appear more realistic with an 130 

equilibrium factor equal to one.  131 

 132 

Figure 1: Energy of -particles emitted by radon (222Rn) and its progeny per decay of the 133 

parent nuclide 134 



 135 

Figure 2: Energy of -particles emitted by thoron (220Rn) and its progeny per decay of the parent 136 

nuclide  137 

As seen in Figures 1 and 2, the use of transient activity ratios in expressing the total energy 138 

emitted by radioactive parent and daughter nuclides may be inconvenient for radon and simply 139 

impractical for thoron. For these decay chains, a ratio of time-integrated activities appears as a 140 

practical alternative compatible with the concept of potential -energy, which is common for 141 

radon dosimetry (ICRP, 1993; Porstendörfer, 1994). However, computing time-integrated 142 

activity ratios requires assessment-specific data: exposure time and location factors. In this 143 

paper, a generic approach is presented, which conservatively assumes conditions of full 144 

equilibrium between the parent and the daughters. Although convenient and plausible in many 145 

practical situations, this generic assumption of equilibrium might however become invalid for 146 

certain assessment-specific time and location conditions. 147 

Assessment of internal exposures 148 

Simplified representation of radon respiration 149 

For terrestrial animals and plants, the main pathway of internal exposure to radon and its 150 

progeny is respiration. The approach described here assumes conservatively full deposition and 151 

absorption of activity in respired air. Correspondingly, the DCs derived in the present study 152 

indicate upper bounds of radiation exposure due to environmental radon isotopes and their 153 



progeny. DCs for internal radon exposure in the present study are formulated as aggregated 154 

quantities, namely, per activity concentration in the ambient air, thus aggregating dose per unit 155 

activity in the body and concentration ratio between activity in the body and in the ambient air. 156 

This makes them different from the internal DCC definition adopted in the ICRP dosimetry 157 

framework for non-human biota (ICRP, 2008a), which are formulated in terms of dose rate per 158 

unit activity concentration in the body or organ. In other words, our formulation is 159 

complementary to the ICRP approach, and can be regarded as conservative in the sense that it 160 

can eliminate from consideration situations of low radiological relevance by calculating doses 161 

that may be safely said to not have been exceeded. This can be regarded as a more practical and 162 

convenient alternative in certain exposure situations. 163 

Respiration of radon and its progeny is modelled as constant flow into the relevant respiratory 164 

system, conservatively assuming that radon gas is in equilibrium with its daughters (equilibrium 165 

factor F = 1), thus helping to avoid an underestimation of the dose due to a variety of 166 

environmental conditions which may not be fully known at the time of assessment. The degree 167 

of conservatism incurred by this equilibrium assumption does not typically exceed as factor of 168 

2 or 3, because environmental measurements usually show the annual mean value of F in open 169 

air to be 0.4 (Keller et al., 1984), 0.51 ± 0.12 (Kojima, 1996) or 0.6 (Wenbin et al., 1990). 170 

Elsewhere (Porstendörfer, 1994), a range 0.4 – 0.8 at 1.5 m above ground was also reported. 171 

Other authors (Beresford et al., 2012) applied an equilibrium factor for outdoor air of F = 0.8.  172 

Full absorption of progeny is assumed within the respiratory organs/systems, and no further 173 

redistribution of the deposited activity due to biokinetic processes, exhalation or excretion from 174 

the organism, is accounted for. Parent radon isotopes are chemically inert gases and they are 175 

assumed to escape without significantly contributing to the total internal dose. This is because, 176 

although it can be present in physical solution, chiefly in the body water and fat, radon has a 177 

small solubility in water and body fluids and, being chemically inert, it does not participate at 178 

normal pressures in biochemical reactions of the human body (Tobias et al., 1949). 179 

Under the above assumptions, the following equation applies to the conversion coefficient, DC 180 

(µGy h−1 Bq−1 m3), which is defined as absorbed dose rate in target tissues due to radon progeny 181 

per unit activity concentration of parent isotope (220Rn or 222Rn) in ambient air: 182 

 
T

E
DC B g

M
  (1) 183 



where B is the respiration (breathing) rate (m3 h−1), E is the total energy absorbed in the target 184 

tissues due to radiation emitted by the radon progeny until decay to (quasi)stable lead isotopes 185 

(µJ Bq−1), MT is the mass of the target tissue/organ (kg), and g is the geometrical factor which 186 

takes into account (in)homogeneity of activity deposition in airways/respiratory organs 187 

(dimensionless).  188 

Alpha-particles contribute about 95% to the total emitted energy of radon progeny (ICRP, 189 

2008b) and this energy can be represented using concept of the potential -energy (ICRP, 1987; 190 

ICRP, 1993), thus assuming respiration of equilibrium mixture of radon daughters and 191 

neglecting the contribution of electrons and photons to the absorbed dose. The reason for 192 

neglecting the electron and photon contributions is not only the fact that they carry 5% or less 193 

of the emitted energy, but also that they are more penetrating radiation types and their absorbed 194 

fractions in the tissue of interest can be significantly less than one, depending on the organism 195 

anatomy or morphology. Updated values of the potential -energy, based on data from the 196 

ICRP Publication 107 (ICRP, 2008b), are shown in Table 1, which is functionally similar to 197 

the previously published Table A1 in ICRP Publication 50 (ICRP, 1987) and Table 2 in 198 

Publication 65 (ICRP, 1993).  199 

Due to short range of -particles in tissue, they can be regarded as non-penetrating and fully 200 

depositing their energy in the tissue. In other words, absorbed fractions for -particles are 201 

assumed equal to one ( 1AF  ) and the total -energy released in decay of radon progeny is 202 

assumed to be absorbed internally. The geometric factor g accounts for the heterogeneity of the 203 

airways of some organisms, which might result in energy deposition not in the living tissues 204 

but in internal air or in mucous or other inert biological fluids. Simple reasoning leads to the 205 

conclusion that the geometrical factor may vary from 0.5 (-emitters on interface) to 1.0 (-206 

emitters deep in tissue). 207 

 208 



Table 1: Potential -energy for radon (222Rn) and thoron (220Rn) progeny calculated using 209 

emission data from ICRP Publication 107 (ICRP, 2008b) 210 

Radionuclide Half-life 

Potential  energy 

per atom per unit of activity 

(MeV) (10−12 J) (MeV Bq−1) (10−10 J Bq−1) 

Radon (222Rn) progeny 

218Po 3.10 min 13.95 2.23 3743 6.0 

214Pb 26.8 min 7.84 1.26 18176 29.1 

214Bi 19.9 min 7.84 1.26 13496 21.6 

214Po 164.2 µs 7.84 1.26 1.9×10−3 3.0×10−6

Total (at equilibrium), per Bq of radon 35415 56.74 

Thoron (220Rn) progeny 

216Po 0.145 s 15.86 2.54 3.318 5.3×10−3

212Pb 10.64 h 8.95 1.43 494807 792.7 

212Bi 60.55 min 8.95 1.43 46931 75.2 

212Po 3.0×10−7 s 8.95 1.43 2.5×10−6 4.0×10−9

Total (at equilibrium), per Bq of thoron 542047 870.73 

 211 

The target tissue exposed by the radon progeny varies significantly depending on the physico-212 

chemical properties of inhaled radon and its radioactive progeny, as well as on the biological 213 

variety of breathing organisms. For most types of organisms though, since the internal dose rate 214 

is predominantly due to α-radiation, the lungs will receive virtually the entire internal dose rate. 215 

A convenient assumption is that the sensitive tissues of the respiratory system have a cylindrical 216 

shape, since they consist of the epithelium surrounding the walls of the airways, as is the case 217 

for humans (Hofmann and Winkler-Heil, 2015; ICRP, 1994; ICRP, 2002). The most significant 218 

difference between human and rat lungs, in fact, is the branching structure of the bronchial tree, 219 

which is relatively symmetric in humans, but monopodial in rats (Winkler-Heil et al., 2015). 220 

Thus, assuming that the shape of the airways is a cylinder with radius Raw and accounting for 221 

the small thickness hT of the sensitive tissue (hT << Raw), we can express the mass of target 222 

tissues MT as: 223 
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where T is the density of the target tissue taken equal to 103 kg m−3, and ST is the 225 

tracheobronchial surface area (m2). 226 

The active depth of sensitive tissue, i.e. the thickness of the bronchial epithelium (without cilia), 227 

is assumed conservatively (for lack of species-specific information) to be 55 µm as for the ICRP 228 

human respiratory tract model (ICRP, 1994).  229 

Allometric scaling of respiration parameters for animals 230 

The respiratory tract properties, including breathing rate, vary among organisms because of 231 

their biological and morphological diversity. Despite this variability, there exist structural 232 

similarities between related organisms; these similarities are expressed by so-called allometric 233 

relationships or ‘laws’ (Kleiber, 1947; Rubner, 1883). Allometric scaling can be used to assess 234 

organism-specific parameters. For example, in mammals, the breathing rate has been found to 235 

correlate with body mass M according to the following allometric equation: 236 

 ( ) bB M a M  (2) 237 

where a and b are the base and exponent, the latter being close to ¾, according to Kleiber’s 238 

allometric scaling law (Kleiber, 1932; Kleiber, 1947). For example, cardiac output and 239 

pulmonary exchange scale as M3/4 in mammals (Schmidt-Nielsen, 1984), and similarly for the 240 

rate of respiratory ventilation (West and Brown, 2005). However, the above equation is an 241 

approximation, and experimental data suggest that the relationship between mass and metabolic 242 

rate has convex curvature on a logarithmic scale (Kolokotrones et al., 2010). This means that 243 

extrapolating the breathing rate as a function of body mass using Eq. 2 from either small or 244 

large masses will result in an underestimation at the opposite end of the mass range.  245 

This problem can be rectified by using generalised allometric equations (ICRP, In press; 246 

Ulanovsky, 2016). For example, for the breathing rate of terrestrial mammals, the generalised 247 

allometric equation is as follows: 248 

 
*

0 1 21 ln*( ) MbB M a M e M     , (3) 249 

where B is the ventilation rate (m3 h−1) and M is the mass of the organism (kg). 250 

From the compilation of Bide et al. (2000) on ventilation rate for terrestrial mammals, the 251 

following values have been found statistically significant (Ulanovsky, 2016): 0 = −3.562 ± 252 



0.050, 1 = −0.226 ± 0.019 and 2 = (7.26 ± 4.45) × 10-3. Note that neglecting the log-quadratic 253 

term in exponent reduces eq. (3) to: 254 

 0 11( )B M e M  , 255 

which is simply the ‘Kleiber law’ with an exponent of 0.77 instead of 0.75. In this sense, Eq. 256 

(3) can be called a generalisation of the first-order allometric equation.  257 

Using the respiratory tract parameters of the ICRP 'Reference Man' (ICRP, 2002) and applying 258 

allometric scaling, the DCs for internal exposure of animals (terrestrial mammals) can be 259 

expressed as simple allometric power functions for a range of target tissues such as, for 260 

example, the bronchial epithelium (B), tracheobronchial tree (TB), full lung (L) and whole body 261 

(WB): 262 
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Where aL and bL are the base and exponent of the allometric formulae for lung mass (Vives i 267 

Batlle et al., 2012), STB
RM= 0.269 (m2) and SB

RM = 0.0291 (m2) are the surface area of the 268 

tracheobronchial tree and the bronchial epithelium of the ICRP Reference Man, and MRM = 70 269 

kg is the mass of the ICRP Reference Man. 270 

The above approach is derived for terrestrial mammals. Thus, there is no guarantee that 271 

respiration rates of other lung-breathing ICRP reference organisms such as birds, reptiles and 272 

amphibians still follow Eq. 3 for the breathing rate or the other allometric relationships for 273 

respiratory system implicitly present in Eqs. 5-7. As a practical solution, Vives i Batlle et al. 274 

(2012) have suggested that the allometric approach for mammals could be used conjecturally 275 

for organisms having structurally simpler breathing systems if no other option is available, and 276 

that this is likely to give conservative estimates for these organisms.  277 

Internal exposure of plants 278 



For plants, a simple conservative approximation is used, whereby the whole surface area of the 279 

plant is assumed to be exchanging gases with the atmosphere and the following approximations 280 

for DCs of plant tissue (DCS) and whole plant (DCP) have been suggested (Vives i Batlle et al., 281 

2012): 282 

 

1

1

2 6

PL

PL

b
PL

S

T

b
P PL

a aM
DC E

h

DC E a M









 (8) 283 

where aPL=1.9510−4 (m3 s−1) is the allometric base for respiration rate in plants calculated 284 

based on net CO2 efflux data by Vives i Batlle et al. (2012) and previous data (Reich et al., 285 

2005), and bPL is the exponent of that allometric breathing rate, which for plants is calculated 286 

to be very close to unity at 1.02 (Vives i Batlle et al., 2012) so that Eq. 8 is virtually mass-287 

independent. Moreover, a is the minor axis or average of non-equal minor axes of the ellipsoid 288 

representing the plant (m), hT is the depth of sensitive tissue, which is based on the morphology 289 

of plant cells and the range of -particles in plant tissue, whereupon the representative value of 290 

the depth of sensitive tissue can be taken to be 50 µm. 291 

It should be noted also that due to the important role of carbon dioxide in the metabolism of 292 

living species, the allometric approximation for the plant respiration rate in Eq. 8 may lead to 293 

additional conservatism of the aggregated DCs.  294 

Due to its simplicity, the above approximation has been tested against a more complex dynamic 295 

model that considers interception of the unattached and attached fractions of the airborne radon 296 

daughters by plant stomata, diffusion of radon gas through stomata, permeation through the 297 

plant’s epidermis and uptake of deposited activity to the plant interior (Vives i Batlle et al., 298 

2011). This more sophisticated approach can calculate separately the dose contributions arising 299 

from radioactive materials deposited internally, externally and on the plant surface.  300 

Results of this comparison are given in Table 8 of Vives i Batlle et al. (2011). The total (internal 301 

plus surface-deposition) dose rates for the present methodology are 18% lower than calculated 302 

by the plant dynamic model, which is reasonably consistent. External dose rates for the current 303 

approach are 1.9 times higher than the plant model, which is not surprising, given that we 304 

adopted an equilibrium factor of 1, whereas the dynamic model generates an equilibrium factor 305 

for outdoor air of about 0.5.  306 

Assessment of external exposures 307 

Absorbed fractions and DC approach for animals and plants 308 



External exposure of terrestrial animals and plants to radon isotopes and their progeny may 309 

occur in various locations: in soil, on the ground surface and in the air above. Due to the short 310 

range of -particles even in air, external exposure to radon isotopes and their progeny is mainly 311 

created by photons and electrons emitted by ambient radioactive sources.  312 

Under the assumptions of a uniform isotropic model, external exposure can be considered as 313 

complementary to internal and, correspondingly, it can be expressed via absorbed fractions for 314 

specific radiation types and for the given shapes of the body (Ulanovsky and Prohl, 2012). 315 

The external dose assessment methodology adopted here allows expressing the DC for external 316 

exposure of terrestrial animals in soil and on the surface to sources distributed in soil, as well 317 

as for organisms above the ground interface exposed to sources in soil or in air. Being flexible 318 

and versatile, this approach is based on the dataset calculated by Monte Carlo technique for a 319 

set of pre-defined shapes corresponding to FASSET/ERICA organisms (Taranenko et al., 2004) 320 

and for tissue-equivalent spheres (Ulanovsky, 2014) for terrestrial organisms on and above 321 

ground surface exposed to radioactive sources in soil or in air. The DC for external exposure of 322 

terrestrial organisms can be interpolated for arbitrary masses and heights above ground, though 323 

obviating the effects of shape.  324 

An alternative analytical parameterisation had been suggested based on a set of absorbed 325 

fractions for pre-defined set of shapes representing various aquatic and terrestrial animals 326 

(Vives i Batlle et al., 2004). Absorbed fractions for these shapes have been calculated using 327 

Monte Carlo integration of point kernels for photons and electrons (Berger, 1968; Berger, 328 

1971). Correspondingly, these approximations for absorbed fractions have been applied to 329 

compute DCs for terrestrial animals exposed to radon and progeny isotopes in air. This 330 

approach acounted for the short-lived progeny of 222Rn included 218Po, 218At, 214Pb, 214Bi and 331 
214Po. Longer-living, quasi-stable 210Pb and its progeny 210Bi and 210Po have been ignored. 332 

Radiations emitted by the considered nuclides encountered 93 electron-, 75 gamma- and six -333 

lines, for which values for the decay energy or mean energy and the related quantum yields 334 

were taken from the ICRP Publication 38 (ICRP, 1983).  335 

External exposure to -particles is commonly ignored because of their short range and the 336 

shielding properties of tissue layers (e.g. fur, feather or dead skin) which cover the bodies of 337 

organisms. The contributions of low-energy (E<10 keV) electrons and photons sources to the 338 

external DC have been found negligible in comparison with electrons and photons of higher 339 

energy.  340 



 341 
Results and discussion 342 

Dose coefficients for internal exposure 343 

Calculated radon and thoron DCs for some ICRP Reference Animals and Plants (RAP) are 344 

given in Tables 2 and 3. The calculation of internal absorbed dose can be carried out simply by 345 

multiplying the listed DCs by the parent radon activity concentration in ambient air. A linear 346 

correction factor can be applied if an equilibrium factor different from unity is required.  347 

Table 2: Parameters for calculation and values of aggregated unweighted DCs for internal 348 

exposure of animals due to progeny of radon isotopes 220,222Rn 349 

Parameter or 

quantity 

Amphibian 

(ICRP Frog)a 

Reptile 

(ERICA 

snake)a 

Mammal 

small 

(ICRP rat) 

Mammal big 

(ICRP deer) 

Bird 

(ICRP duck)a 

M (kg) 0.0314 0.744 0.314 245 1.26 

a (m) 0.08 1.2 0.2 1.3 0.3 

b (m) 0.03 0.035 0.06 0.6 0.1 

c (m) 0.025 0.035 0.05 0.6 0.08 

B (m3 h−1) 2.1×10−3 0.023 0.012 2.5 0.034 

DCs per air concentration of 222Rn (µGy h−1 Bq−1 m3) 

DCB 1.4 1.8 1.7 4.2 1.9 

DCTB 0.15 0.20 0.18 0.46 0.21 

DCL 0.032 0.014 0.017 4.1×10−3 0.012 

DCWB 3.8×10–4 1.7×10−4 2.1×10−4 5.8×10−5 1.5×10−4 

DCs per air concentration of 220Rn (µGy h−1 Bq−1 m3) 

DCB 22 28 26 65 30 

DCTB 2.4 3.0 2.8 7.0 3.2 

DCL 0.49 0.21 0.26 0.062 0.18 

DCWB 5.9×10–3 2.6×10–3 3.2×10–3 8.9×10–4 2.4×10–3 

a DC for non-mammals are shown for illustrative purposes only 

 350 



Table 3: Parameters for calculation and values of aggregated unweighted DCs for internal 351 

exposure of plants due to progeny of radon isotopes 220,222Rn 352 

Parameter or 

quantity 

Lichen & bryophytes  

(ICRP bryophyte) 

Grasses and herbs  

(ICRP wild grass) 

Trees  

(ICRP pine tree) 

M (kg) 1.1×10−4 2.6×10−3 471 

a (m) 0.04 0.05 10 

b (m) 2.3×10−3 0.01 0.3 

c (m) 2.3×10−3 0.01 0.3 

B (m3 h−1) 6.5×10−5 1.6×10−3 360 

DCs per air concentration of 222Rn (µGy h−1 Bq−1 m3) 

DCSS 0.031 0.14 5.5 

DCWB 3.3×10−3 3.5×10−3 4.5×10−3 

DCs per air concentration of 220Rn (µGy h−1 Bq−1 m3) 

DCS 0.48 2.2 85 

DCP 0.051 0.054 0.069 

 353 

Alpha-particles belong to class of densely ionising high-LET radiations. Correspondingly, an 354 

assessment of the radiobiological effects of exposure to radon might require weighting internal 355 

doses with an appropriate radiation weighting factor for -particles (W). For human 356 

radiological protection, ICRP recommends using a value of 20 for the W(ICRP, 2007), whilst 357 

for non-human biota, where protection of a species is aimed at the population level and radiation 358 

weighting factors need to be formulated for biological endpoints that could “lead to changes in 359 

population size or structure” (ICRP, 2014a), there is no recommended value yet. Although a 360 

degree of consensus around a value of W= 10 has emerged (Brown et al., 2008; Vives i Batlle 361 

et al., 2004), the DCs presented in this article are left un-weighted to avoid loss of generality. 362 

The present approach is compatible with the earlier method of MacDonald and Laverock 363 

(1998), except that these authors considered the whole lung as reference tissue for dose 364 

calculation. For non-penetrating -particles, a simple re-scaling procedure can be used to 365 

compare the dose for different reference tissues to the dose to a whole lung as calculated by 366 



McDonald and Laverock (1998). Previous comparison (Vives i Batlle et al., 2012) showed the 367 

compatibility of the dose rates obtained by both methods. 368 

As seen in Table 2, DCs for animals vary within four orders of magnitude between 369 

compartments of respiratory tract and the whole body. In real exposure situations, air contains 370 

the radioactive progeny in gaseous form and attached to aerosols and dust. Depending on the 371 

size of aerosol particles and their chemical form, deposition and further absorption of 372 

radioactive substances in airways may vary significantly, thus leading to various patterns of 373 

activity distribution between different parts of respiratory system and other organs. Due to this, 374 

it appears plausible to assume that more realistic dose estimates can be achieved by assuming 375 

fractional deposition in various compartments and, correspondingly, by computing the total 376 

internal dose as the weighted sum of partial doses in the compartments.  377 

As previously stated, the DCs for amphibians, birds and reptiles are to be used conjecturally 378 

because the respiratory systems of these animals are not only dimensionally but also structurally 379 

different. DC values are given here for illustrative purposes and are not guaranteed for use in 380 

assessments until allometric modelling of the respiration rates for these organisms is established 381 

on a sounder basis. 382 

The DCs shown above are given for various target tissues, while the whole body dose is the 383 

quantity most often used in assessments of environmental risk, including previous radon studies 384 

(Beresford et al., 2012; Vives i Batlle et al., 2008). This is due to scarcity of data on radiation 385 

effects in wild animals and plants with which the predicted dose rates to target tissues could be 386 

interpreted. The dose-rate benchmarks used by ICRP are based primarily on whole-body 387 

exposures (ICRP, 2008a).  388 

Calculated external DC values 389 

The DCs for the ICRP RAPs in the terrestrial environment exposed to external sources of radon 390 

and thoron isotopes and their progenies in the ambient air are given in Table 4. The data shown 391 

in the table come from two independent methods. The first method (Vives i Batlle et al., 2012) 392 

under assumptions of uniform isotropic model computes DCs for external exposure as 393 

complementary fractions to the full absorption limit. An analytical approximation, based on 394 

Monte-Carlo-integrated point kernels of various radiation in an infinite medium, is used for 395 

computation of absorbed fractions for photons and electrons. Further re-scaling of the computed 396 

DC, using density of air at normal conditions, allowed expressing the DC as per unit volume 397 

activity concentrations in air.  398 

399 



Table 4: Comparison of the DC for animals and plants externally exposed to radon and thoron 400 

(220,222Rn) and their progeny in ambient air 401 

Organism 

DC (µGy h−1 Bq−1 m3) 

in infinite 

air a 

in air b 

(h = 500 

m) 

in air b 

(h = 10 m) 

on the 

ground b  

Radon (222Rn) and progeny 

Amphibian (ICRP frog) 7.8×10−4 7.5×10−4 4.4×10−4 4.1×10−4 

Reptile (FASSET snake) 7.6×10−4 7.5×10−4 4.4×10−4 4.1×10−4 

Mammal (ICRP rat) 7.3×10−4 7.6×10−4 4.5×10−4 4.1×10−4 

Mammal (ICRP deer) 3.8×10−4 5.1×10−4 3.0×10−4 2.8×10−4 

Bird (ICRP duck) 6.9×10−4 7.5×10−4 4.4×10−4 4.1×10−4 

Lichen and bryophytes (ICRP bryophytes) 9.9×10−4 6.0×10−4 3.5×10−4 3.3×10−4 

Grasses and herbs (ICRP wild grass) 8.5×10−4 7.2×10−4 4.2×10−4 3.9×10−4 

Tree (ICRP pine tree) 5.1×10−4 4.5×10−4 2.7×10−4 2.5×10−4 

Thoron (220Rn) and progeny 

Amphibian (ICRP frog) n.a. 6.7×10−4 4.0×10−4 3.8×10−4 

Reptile (FASSET snake) n.a. 6.9×10−4 4.1×10−4 3.9×10−4 

Mammal (ICRP rat) n.a. 6.9×10−4 4.2×10−4 3.9×10−4 

Mammal (ICRP deer) n.a. 4.9×10−4 3.0×10−4 2.8×10−4 

Bird (ICRP duck) n.a. 6.9×10−4 4.1×10−4 3.9×10−4 

Lichen and bryophytes (ICRP bryophytes) n.a. 4.5×10−4 2.7×10−4 2.5×10−4 

Grasses and herbs (ICRP wild grass) n.a. 6.0×10−4 3.6×10−4 3.5×10−4 

Tree (ICRP pine tree) n.a. 4.4×10−4 2.7×10−4 2.5×10−4 

 

aUniform isotropic model method, using absorbed fractions based on Monte Carlo integration of photon 402 

and electron point kernels (Vives i Batlle et al., 2012) 403 
bAbsorbed doses in tissue-equivalent spheres exposed to photon-only sources in air (Ulanovsky, 2014) 404 

 405 



The second method (Ulanovsky, 2014) uses differential air kerma above infinite terrain due to 406 

radioactive sources in ambient air, calculated by a Monte Carlo method. Absorbed doses for 407 

living species have been derived from the differential air kerma using a dose-per-kerma 408 

conversion function, which is interpolated using data pre-computed by an analogue Monte 409 

Carlo method for tissue-equivalent spheres in isotropic monoenergetic photon fields. The 410 

results obtained with this method are provided for both radioactive radon isotopes (220,222Rn) 411 

and their progeny. 412 

The method based on the uniform isotropic model has been compared with the external DC for 413 

in-soil exposure to radon and progeny using a DC calculation facility (Ulanovsky et al., 2008) 414 

largely compatible to that available in the ERICA assessment tool (Brown et al., 2016; Brown 415 

et al., 2008). The comparison was satisfactory, with relative differences ranging from 3 to 10% 416 

in animals and 3 to 25% in plants. These differences are attributable to differences in the way 417 

the absorbed fractions are calculated by the two methods. 418 

The comparison of the DC for animals and plants externally exposed to radon isotopes given in 419 

Table 4 demonstrates (a) good compatibility regardless of different methods and data used in 420 

their computations, (b) low inter-species variability of the external DC, and (c) variability of 421 

the DC due to change of exposure source from infinite to semi-space, predictably limited within 422 

a (geometrical) factor two. The low variability of the presented DC due to organism size and 423 

irradiation geometry implies that the effect of transient activities in the radon and thoron decay 424 

chains may become considerably stronger and more influential to dose estimates. As the DCs 425 

in Table 3 are computed assuming equilibrium conditions in the decay chains, they can be 426 

regarded as conservative estimates of the respective DCs resulting in non-equilibrated mixtures 427 

of radon isotopes and their progeny.  428 

External dose calculation  429 

Assessment of external exposures of terrestrial biota to environmental radon and its progeny 430 

should consider mobility of the radioactive gases and aerosols, which results in the existence 431 

of various configurations of radioactive sources and biological targets. The variability of 432 

habitats and life styles of biota also contribute to the variability of possible exposure scenarios. 433 

The universal method to cope with this diversity is to apply the superposition principle, which 434 

means that dosimetric response to a complicated (realistic) exposure scenario can be 435 

characterised as a weighted sum of responses to simple basic exposure situations, for which the 436 

DCs are already known or can be easily derived. Weighting of a basic scenario is expressed via 437 

so-called ‘occupancy factor’, which is constructed to express: (a) the time-share spent by the 438 



organism in locations described by the basic ‘source-target’ configurations (e.g. in soil, on the 439 

ground surface, in air), and (b) the relative contribution of radiation sources affecting the 440 

organism at the specified location.  441 

An example of applying the occupancy factors in an external dose assessment can be given for 442 

the situation where the organism is exposed to radiation arising from (a) radon present in the 443 

air-filled soil pores (e.g. in burrows) and (b) direct immersion in the atmosphere with radon and 444 

its progeny. Both components of the external dose can be represented by the following 445 

equations: 446 
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 (9) 447 

where DS and DI (µGy h−1) represent the dose rates from radon in the air-filled soil pores and 448 

direct immersion in the atmosphere, respectively; CRn
s (Bq kg−1) is the concentration of 222Rn 449 

in soil, CRn
a (Bq m−3) is the concentration of 222Rn in atmospheric air, CF (m3 kg−1) is the factor 450 

used to convert volume concentration of radon in the air of the soil pores to mass concentration 451 

of radon in soil, accounting for soil porosity, DCext (µGy h−1 Bq−1 m3) is the DC, fS, fSS and fA 452 

(dimensionless) represent the occupancy factors for three exposure situations: below ground in 453 

soil, on the soil surface and immersion in air above the ground, and F is the equilibrium factor 454 

(if a value different from 1 is used). A dimensionless radiation-dependent reduction factor can 455 

optionally be introduced to modify the dose for organisms in above-ground air as received from 456 

radiation sources in soil. It is zero for -particles and low-energy electrons and approximately 457 

0.25 for higher energy electrons and photons.  458 

It is not possible to give a CF value for all soils of different characteristics under varying 459 

moisture conditions. By way of example, an indicative value for the CF of 10−4 m3 kg−1 can be 460 

obtained by assuming that radon in pore air is at the same concentration as ground level air 461 

concentrations. This can be calculated as follows: The effective porosity of soil typically varies 462 

within the ranges 0.01 - 0.18 for clay and 0.16 - 0.46 for medium sand (McWorter and Sunada, 463 

1988). In wet soil, a portion of the available pore space will be occupied by water. An 464 

assumption is made for free air space of 0.15 by volume. Assuming also a bulk density for soil 465 

of 1500 kg m−3, the free air space would be 0.15/1500 or 10−4 m3 kg−1. Thus, this value can be 466 

used as a conversion factor between activity concentration in air (Bq m−3) and in wet soil (Bq 467 

kg−1).  468 



Occupancy factors can be set as, for example, default values in the ERICA assessment tool 469 

(Brown et al., 2016; Brown et al., 2008), which for terrestrial animals assumes 100% occupancy 470 

on the soil surface except for rat which is considered to have 100% occupancy inside the soil. 471 

Uncertainties in dose calculation 472 

The methodology presented here is based on calculated dose coefficients, which as such cannot 473 

be validated against direct measurement. However, it is possible to evaluate the uncertainties 474 

in the dose calculation process. On the one hand, the analytical approximation used to calculate 475 

absorbed fractions with body shapes from spherical to highly protracted or oblate ellipsoids has 476 

an uncertainty (expressed by an absolute coefficient of variation) not exceeding 15% for 477 

photons and 10% for electrons (Ulanovsky, 2014; Ulanovsky and Prohl, 2006; Ulanovsky et 478 

al., 2008). On the other hand, the second-order polynomial formula used to estimate the 479 

breathing rate as a function of organism mass (Eq. 3) has a low uncertainty of the residuals 480 

characterised by a geometric standard deviation of 1.47, corresponding to a ratio of 97.5% to 481 

2.5% percentiles being equal to approximately 4.6. The differences between absorbed whole 482 

body dose and air kerma for the energies and organism sizes involved are also negligible, such 483 

that the latter can serve as a reasonable surrogate for the average whole-body absorbed dose 484 

(ICRP, In press). Ultimately, the numerical factors influencing our Monte Carlo-calculated DCs 485 

are not the main uncertainty sources for exposure scenarios and attention should focus on other 486 

more significant aspects of Eq. 9, such as the determination of contamination of the 487 

environment in specific locations, the CR used to convert activity concentration between soil 488 

and air, the equilibrium factor F and the occupancy factors used in the assessment. 489 

Conclusions 490 

A method has been presented to calculate radiation dose rates arising from radon and thoron 491 

progenies to a selection of terrestrial biota represented by the ICRP Reference Animals and 492 

Plants. This method is relatively simplified in terms of assuming spherical and ellipsoidal 493 

geometries, uniform distribution of radionuclides in the biota, absorbed doses averaged to the 494 

level of the whole organism, etc. 495 

That radon or thoron and their progeny are natural sources of radiation is not a real argument 496 

to neglect them in an impact assessment for wildlife, especially given the releases of 497 

radioactivity from the industrial or technological applications resulting in enhanced 498 

concentrations of NORM in the biosphere. These may be ‘natural’ isotopes but man artificially 499 



introduces them in significant quantities in the surface environment and one should have 500 

methods to deal with their radiological impact on non-human biota. 501 

The implications of the contribution that 220,222Rn makes to wildlife dose rates and effects 502 

arising thereof, needs to be further explored with reference to the application of the ICRP 503 

derived consideration reference levels (DCRLs) for wildlife (ICRP, 2008a) and other suggested 504 

benchmark dose rates. The problem is compounded by the fact that data on radiation effects 505 

arising from exposure of radon or thoron to biota are not currently available. Hence, this study 506 

represents a start for enabling a future examination of the consequences of radon exposure and 507 

subsequent comparisons with exposure to background (radon) levels, signalling the way for 508 

future investigations. 509 
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