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Abstract. 1 

Context: Neurodynamic tension affects hamstring extensibility and stretch tolerance, and is 2 

considered important in hamstring injury management. Neurodynamic tension was postulated 3 

to affect segmental muscle extensibility and stretch tolerance, and potentially also demonstrate 4 

extra-segmental and contralateral effects. Objectives: Assess the effects of a novel sciatic-5 

tibial neurodynamic tension technique, the modified long sit slump (MLSS), on segmental, 6 

extra-segmental and contralateral muscle extensibility and stretch tolerance. .  Study design: 7 

Counterbalanced cross-over study.  Setting: University research laboratory. Participants: 8 

Thirteen healthy and active subjects (mean±SD age 24±8 y, BMI 23.1±2.8 kg·m-2). 9 

Intervention:  MLSS application (5 seconds, 5 repetitions, 3 sets) on two occasions with a 10 

three-week washout period, and either stance or skill leg treated in a counterbalanced manner. 11 

Main outcome measures: Segmental and extra-segmental muscle extensibility were measured 12 

utilising passive straight leg raise (PSLR) and prone knee bend (PKB) at pre-, immediately 13 

post- and one hour post-intervention. Stretch intensity ratings were measured utilising a simple 14 

numerical rating scale (SNRS). Results:  MLSS significantly increased PSLR and PKB 15 

bilaterally (p<0.001). The effect for PSLR was greater in the ipsilateral leg compared to the 16 

contralateral leg (baseline to one hour post: +9±6°and +5±5° respectively, p<0.001), but not 17 

for PKB (baseline to one hour post: ipsilateral leg +5±5°, contralateral leg +5±4°). For both 18 

PSLR and PKB the effect of the first session was retained at the start of the second session 3 19 

weeks later. SNRS data were consistent with increased stretch tolerance. Conclusions: 20 

Application of a novel sciatic-tibial neurodynamic tension technique, the MLSS, increases 21 

muscle extensibility and stretch tolerance segmentally, extra-segmentally and contra-laterally. 22 

Level of evidence: 2C Outcomes research. 23 

Key words: flexibility, hamstrings, muscle extensibility, neurodynamics, stretching, neuronal 24 

desensitisation.25 
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INTRODUCTION 26 

 27 

Hamstring strain injury (HSI) is one of the most  common non-contact injuries in athletes,1-3 28 

with high rates of recurrence,4  despite considerable research efforts.5 The role of hamstring 29 

flexibility, also termed extensibility herein, in HSI, 4,6-7,11 re-injury and rehabilitation, 2,8,12,13 30 

has not been fully elucidated to date. 8-10 Neurodynamics is a term describing mobilisation of 31 

the nervous system and its surrounding structures.14-15 Neurodynamic tension techniques 32 

elongate the neural tissue and are considered to increase nerve tension and strain, whereas 33 

neural sliding techniques aim to maximise nerve excursion.16 Neurodynamic tension has been 34 

demonstrated to significantly influence hamstring extensibility17-18 and is considered important 35 

in HSI, re-injury and rehabilitation.19-20 For example, Turl & George20 demonstrated 57% of 36 

elite rugby players with recurring grade one HSI demonstrated positive slump test21 after 37 

returning to play, suggesting suboptimal neurodynamics may contribute to known high rates 38 

of re-injury.4,22  Similarly, Kornberg & Lew19 demonstrated inclusion of a neurodynamic 39 

tension technique to rehabilitation of Australian Football League players with HSI resulted in 40 

significantly faster return to play. 41 

 42 

Human in-vivo hamstring stretching studies in non-injured subjects strongly supports 43 

stretch tolerance as a primary mechanism  responsible  for lasting increases in hamstring 44 

extensibility utilising intervention protocols of up to eight weeks duration, with longer term 45 

stretching postulated to potentially induce structural alterations in hamstring muscle length and 46 

passive stiffness.23-25 Immediate stretch-induced  changes in hamstring passive stiffness are 47 

considered to be due to viscoelastic stress relaxation, with effects typically potentiated within 48 

five loading cycles and attenuated within an hour.26 Previous research has demonstrated lasting 49 

increases in hamstring extensibility are of similar magnitude irrespective of the stretching 50 
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protocol utilised, citing total weekly stretch time as the most important variable.27-29 However, 51 

there is some evidence that more intense stretching may effect greater changes in extensibility, 52 

or at the very least, saves time and is therefore considered more efficient.28,30 As neurodynamic 53 

tension is associated with relative increased levels of reported stretch intensity during 54 

hamstring stretch for a common ROM,17,31 it was postulated that it may have a significant role 55 

in afferent modulation of stretch tolerance.18,25  56 

Compared to muscle stretching protocols, there has been relatively little research 57 

investigating utilisation of neurodynamic techniques on lasting changes in hamstring 58 

extensibility and stretch tolerance.18,32-33 For example, Castellote-Caballero and colleagues32 59 

demonstrated a significant increase in passive straight leg raise (PSLR) of nine degrees 60 

following three sessions of a neurodynamic slider over one week. Although comparatively this 61 

is an average PSLR gain for a hamstring extensibility study, it was achieved in a relatively 62 

short period of time.34-35 More recently, Sharma and co-workers18 reported significantly greater 63 

hamstring extensibility gains when neurodynamic techniques and muscle stretching were 64 

utilised compared to muscle stretching alone, but the intervention dosing between the groups 65 

was inconsistent which lessens the strength of conclusions drawn from this randomised 66 

controlled trial (RCT). 67 

The specific groups of afferent neurones primarily affected during stretching and 68 

modulation of stretch tolerance are yet to be fully elucidated.25,36 Small and large diameter 69 

proprioceptors are fundamentally implicated in stretch sensation, but a significant role of 70 

mechanosensitive nociceptors has also been suggested and warrants more detailed 71 

consideration.24,36-39 As initiation of stretch discomfort has been reported to occur at 85% of 72 

muscle passive torque values recorded for maximal stretch tolerance,40 direct activation of 73 

mechanosensitive nociceptors resulting from stretch-induced tensile strain, secondary 74 

compression, or a combination of the two, is probable.37-38,41  75 
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Notwithstanding likely short term modulation of stretch tolerance through an inhibitory 76 

nociceptive ‘gating’ mechanism at the spinal dorsal horn through activation of non-nociceptive 77 

afferent fibres,36,42-44 proprioceptor and mechanoreceptor discharge in the early stage of muscle 78 

stretch could sensitise mechanosensitive nociceptor discharge towards activation 79 

thresholds,38,41,46 particularly as peripheral afferent neuropeptides are largely unspecific to fibre 80 

type.38,46-47 This is likely accentuated by mechanisms such as the axon reflex and afferent 81 

convergence.38,45 Furthermore, the same afferent neuropeptides which are utilised distally are 82 

produced in dorsal root ganglia,46-47 the neuropeptides having both peripheral and central 83 

neuromodulatory effects that may outlast the duration of stretch.25,36 Moreover, the parameters 84 

and context of stretching likely affect spinal and supraspinal processing, which may also alter 85 

the diffuse noxious inhibitory system (DNIS), and has also been implicated in modulation of 86 

stretch tolerance through conditioned learning.36,44  87 

Inter-neuronal activation and recruitment of latent nociceptive circuits is considered a 88 

primary mechanism by which pain spreads segmentally, extra-segmentally and 89 

contralaterally.48-52 Given such central pain sensitisation has been considered a form of 90 

neuronal long term potentiation (LTP) and learning,42,44,53-54 it was postulated herein that the 91 

increased stretch tolerance from stretching could be a form of neuronal long term depression 92 

(LTD),43,55 and stretch tolerance may also demonstrate a similar course of segmental, extra-93 

segmental and/or contralateral effect, given the appropriate stimulus.51,56  94 

Therefore the study hypothesis was that application of a novel sciatic/tibial nerve 95 

neurodynamic tension technique, the modified long sit slump (MLSS), would increase muscle 96 

extensibility and stretch tolerance segmentally, extra-segmentally, and contra-laterally. 97 

 98 

METHODOLOGY 99 

 100 
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Study design 101 

A counterbalanced crossover experiment over two intervention sessions was utilised, with each 102 

intervention session utilising a single limb from each subject (Figure 1). In order to avoid 103 

effects of intervention order and/or limb dominance, the treatment order was counterbalanced 104 

with 7 subjects having the stance leg treated first and the remaining 6 subjects receiving 105 

treatment on the skill leg first, the skill leg defined as that which the subject reported to 106 

preferentially use to kick a ball. Previous research has not demonstrated any contralateral 107 

effects from unilateral stretching24,32,36 and a three week ‘wash out’ period was deemed 108 

sufficient for any treatment effects to wear off.28,57 The independent variables were unilateral 109 

neurodynamic intervention (MLSS) over two sessions, the dependent variables being 110 

ipsilateral and contralateral hamstring and rectus-femoris extensibility and stretch tolerance. 111 

The dependent variables were measured pre-, immediately post- and one hour post-112 

intervention. Subjects were requested not to partake in unfamiliar physical activity for three 113 

days prior to testing and strenuous physical activity on the day of testing, and not to stretch the 114 

lower limbs between intervention sessions. All testing was performed in a university 115 

laboratory. Recruitment and data collection occurred between March and April 2016. 116 

Participants 117 

A healthy and active sample of convenience was recruited from a university population. 118 

Assuming alpha = 0.05 with 80% power and utilising one degree standard error of measurement 119 

and four degree minimum detectable difference for a hand held inclinometer, a priori sample 120 

calculation was 12.58 Subjects were recruited via print poster, electronic university noticeboard, 121 

and limited e-mail recruitment. One extra subject was recruited in case of drop out, with a final 122 

sample size of 13 (9 male, 4 female, mean ± SD age 24±8 years, Body Mass Index 23.1±2.8 123 

kg·m-2). Healthy and active was defined as no history of significant medical conditions and a 124 

minimum Tegner Activity Scale59 rating of five, respectively. Further exclusion criteria were 125 
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significant neurological or orthopaedic conditions, past history of HSI, significant low back 126 

pain, and participation in a formal hamstring lengthening or strengthening program in the 127 

previous six months. Subjects with clinically ‘tight’ hamstrings were recruited, adopting values 128 

equal or lower than 75º for men and 80º for women, with potential participants with PSLR 129 

above these values excluded from the study.34,60-61 Ethics approval was obtained through the 130 

University of Bath Research and Ethics Approval Committee for Health (REACH; EP 14/15 131 

201) and suitable subjects were required to provide signed, informed consent. The rights of all 132 

subjects was protected. 133 

Procedures 134 

Subjects were screened for clinically ‘tight’ hamstrings by PSLR utilising a hand held 135 

inclinometer (Isomed AcuAngle).58,62 The subject lay supine with the non-tested thigh secured 136 

to the plinth with a firm adjustable strap. The base of the inclinometer was marked on the 137 

anterior distal tibia of the tested leg, corresponding to the zero value. The inclinometer was 138 

secured with Velcro straps and the subject was instructed to fully relax during testing. The 139 

examiner raised the leg slowly until the subject expressed maximal stretch tolerance was 140 

reached or firm resistance to further elevation was encountered. The subjects were given a 141 

standard set of scripted instructions for the PSLR procedure, with only one measure utilised 142 

for screening, consistent with clinical practice.  143 

Assessment 144 

PSLR was utilised as the ipsilateral and contralateral segmental muscle extensibility measure, 145 

as described above. A simple numerical rating scale (SNRS), with zero representing ‘no muscle 146 

stretch’ and ten representing ‘the worst muscle stretch imaginable’ was utilised as a subjective 147 

measure of stretch intensity.36 SNRS measures were taken at maximal PSLR ROM for pre and 148 

post intervention time points (SNRS Max), and at the pre intervention maximal PSLR ROM 149 

for the post intervention time points (SNRS Com). If post intervention PSLR was less than pre 150 
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intervention, SNRS Com was not assessed. Ipsilateral and contralateral extra-segmental 151 

extensibility of the rectus-femoris was measured utilising a prone knee bend (PKB) procedure. 152 

Subjects lay prone with a strap stabilising the pelvis applied at the level of the lower half of the 153 

sacrum. The subject’s tested hip was positioned in approximately 10º extension by placing a 154 

high density foam roll between the thigh and the plinth, immediately proximal to the superior 155 

patella. The examiner slowly flexed the knee until the subject expressed maximal stretch 156 

tolerance was reached or further ROM was blocked by the posterior thigh. The examiner then 157 

placed the inclinometer on the previously marked points on the tibia to measure ROM. PKB 158 

SNRS stretch intensity measurement procedures were as for PSLR. All measurements were 159 

repeated 5 times, the fifth of which was recorded. Subjects remained in the laboratory resting 160 

room between immediate and one hour post-intervention assessments. 161 

Warm-up 162 

A light warm-up of 10 minutes of cycling on a stationary bicycle at a minimal resistance was 163 

adopted immediately prior to intervention, with subjects instructed to maintain an intensity 164 

whereby they were not short of breath.  165 

Intervention 166 

The MLSS intervention is shown in (Figure 2): In the starting position, subjects were 167 

positioned hemi-sitting on a plinth (adjusted to height approximately 15 cm below greater 168 

trochanter), with the stretched limb resting on the plinth while the other limb rested parallel on 169 

the floor. With the knee on the plinth flexed in the starting position, the subject used their 170 

opposite hand to reach forward to hold the lateral border of the opposite foot, placing it in 171 

dorsiflexion and eversion. This action maintains trunk flexion and relative internal rotation of 172 

the tensioned leg. The subject was then instructed to straighten the knee and internally rotate 173 

the femur with overpressure on the anterolateral distal thigh with the ipsilateral hand. The 174 

therapist assisted to facilitate sciatic/tibial tract tension positions and if full neurodynamic 175 
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elongation was well tolerated the patient was asked to add further trunk and cervical flexion, 176 

but only two subjects tolerated the additional trunk and cervical MLSS component in this 177 

sample with clinically tight hamstrings. Stretch duration was 5 seconds, 5 repetitions and 3 178 

sets, paced with a mobile metronome set at 1 Hz (Android 1.2.4; 2012). Subjects were given 179 

10 seconds rest between repetitions and two to three minutes between sets. Subjects were 180 

clearly instructed before and during the intervention sessions that the stretch procedure aimed 181 

to achieve maximal stretch tolerance and may involve some discomfort, however, if the stretch 182 

became too uncomfortable they should notify the tester immediately to reduce stretch intensity. 183 

Similarly, subjects were also instructed to report symptoms such as pins and needles, numbness 184 

or discomfort proximal to the ischial tuberosity.  185 

Data analysis 186 

Data analysis was performed using SPSS for windows. Exploratory data analysis and 187 

significance testing utilising the Shapiro-Wilk test suggested the pre-intervention data was 188 

normally distributed. Comparison of mean pre- to post-intervention PSLR and PKB ROM and 189 

SNRS ratings was carried out utilising 3-way repeated measures analysis of variance 190 

(ANOVA) with the factors session (1 / 2), side (ipsilateral / contralateral) and time (pre / post 191 

/ post 1 hour). Post hoc analysis using Bonferroni correction was performed to determine 192 

differences between time points for analyses with a significant main effect of time. If 193 

assumption of sphericity was violated utilising Mauchley’s test, the data was corrected with 194 

the Greenhous-Geisser equation. Post hoc correlation analysis was also performed utilising 195 

Pearson’s correlation coefficient. Significance was set at alpha = 0.05 for all statistical tests.  196 

 197 

RESULTS 198 

 199 
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Figure 3A shows the changes in PSLR following MLSS. MLSS significantly increased PSLR 200 

directly after the intervention, with no further increase 1 hr later (main effect of time: p<0.001). 201 

The effect of the unilateral MLSS intervention was evident in both legs, but greater in the 202 

ipsilateral leg compared to the contralateral leg (baseline to one hour post: +9±6°and +5±5° 203 

respectively, main effect of side: p<0.001). PSLR increased to a similar extent in both sessions 204 

(no significant session x time interaction effect), despite the fact that the effect of the first 205 

session was retained at the start of the second session 3 weeks later (main effect of session: 206 

p<0.001).  207 

The effects of the MLSS intervention on PKB were mostly similar (Figure 3B), with 208 

significant main effects of time (p<0.001) and session (p<0.001). PKB increased from baseline 209 

to directly post (p<0.001), but there was no further significant increase one hour following the 210 

intervention. There was no significant effect of side, with similar effects on the ipsilateral leg 211 

and the contralateral leg (baseline to one hour post: +5±5° and +5±4° respectively). Post-hoc 212 

analysis also revealed moderate to strong negative correlation between pre-intervention ROM 213 

and the size of the ROM treatment effect for both PSLR (r=-0.32; p<0.05) and PKB 214 

immediately (r=-0.56; p<0.001), and one hour post intervention (r=-0.53; p<0.001; r=-0.68, 215 

p<0.001). 216 

 217 

Subjective stretch intensity ratings were consistent with increased stretch tolerance 218 

following the MLSS intervention (Table 1). Post-intervention ratings taken at the pre-219 

intervention maximal joint angle decreased for the PSLR (main effect of time: p<0.001), with 220 

a greater decrease in the ipsilateral side (main effect of side: p<0.001; time x side interaction 221 

effect: p<0.05). Conversely, ratings at the maximal joint angle achieved at each time point 222 

increased (main effect of time: p<0.01), again with a greater change in the ipsilateral side (main 223 
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effect of side: NS; time x side interaction effect: p<0.001). PSLR stretch intensity ratings were 224 

higher in the second session compared to the first session (main effect of session: p<0.001).  225 

PKB stretch intensity ratings at the pre-intervention joint angle followed a pattern 226 

similar to the PSLR ratings, with a significant decrease following the intervention (main effect 227 

of time: p<0.001), and higher ratings during the second session (main effect of session: 228 

p<0.05), but no significant main effect of side or time x side interaction effect (Table 1). No 229 

significant main effects of time, session, or side, and no interaction effects were observed for 230 

PKB stretch intensity ratings at the maximal joint angle achieved at each time point. No 231 

differences were observed in the responses for any parameters between participants who 232 

received the initial treatment on their skill leg or stance leg.  233 

 234 

DISCUSSION 235 

 236 

The purpose of the study was to assess potential segmental, extra-segmental and contra-lateral 237 

effects of applying a novel sciatic nerve neurodynamic tension technique, the MLSS, in healthy 238 

and active adults. We observed significant mean increases in ipsilateral and contralateral PSLR 239 

and PKB immediately and one hour post intervention, which is consistent with neurodynamic 240 

tension being an important neuro-modulator of muscle extensibility, and is further supported 241 

by the finding that these effects were significant after the first intervention session and 242 

maintained for three weeks. As to the authors’ knowledge lasting extra-segmental and 243 

contralateral muscle extensibility gains from unilateral intervention have not previously been 244 

reported,24,32,36 these results require verification through additional studies.  245 

The pooled mean increase in PSLR from pre first intervention to one hour post second 246 

intervention of 15±6º represents a relative increase of 19±8%, utilising a total stretch time of 247 

75 seconds per leg. This may be considered above average for PSLR gain in a hamstring 248 
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extensibility study,35 but achieved with considerably less total stretch time than previously 249 

reported.28,34 For example, Ayala and colleagues34 demonstrated a mean increase of 14º in 250 

PSLR utilising 540 seconds total weekly stretching over 12 weeks. Therefore the results of the 251 

current study provide a novel finding in that neurodynamic tension and stretch intensity appear 252 

to have a highly significant role in muscle extensibility,18,30 compared to previous research 253 

which has purported total weekly stretch time as the most important parameter.27-29 Thus MLSS 254 

intervention could potentially be utilised to make stretching practices more efficient in 255 

increasing hamstring extensibility by reducing total stretch time. However, further research is 256 

required as the current study utilised a narrow sample of young and healthy adults, whereas 257 

less robust populations, such as the elderly or those with irritable musculoskeletal conditions, 258 

may not tolerate application of higher levels of stretch intensity and neurodynamic tension, and 259 

thus be inappropriate for MLSS intervention.26,36 Moreover, given the lack of blinding and 260 

cross-over design of the current study, a follow-up investigation to verify and compare the 261 

effects of MLSS intervention utilising single blinded RCT design is indicated. 262 

Increased stretch tolerance from stretching is considered to occur through decreases in 263 

perception of stretch intensity for a common joint angle (SNRS Com) and potentially through 264 

increased tolerance to higher intensity stretch sensation (SNRS Max).25,36 Consonant with the 265 

post intervention ROM changes, significant mean decreases in SNRS Com for ipsilateral and 266 

contralateral PSLR and PKB are consistent with modulation of stretch tolerance through 267 

neuronal desensitisation. Interestingly, PSLR but not PKB outcome measures demonstrated 268 

small but significant concomitant increase in SNRS Max, suggesting modulation of muscle 269 

extensibility by both neuronal desensitisation and increased tolerance of higher stretch intensity 270 

segmentally, but not extra-segmentally. This may also be a novel finding, as previous research 271 

has largely demonstrated constant maximal stretch intensity ratings pre-post stretching 272 

intervention.31,36,57 The contrasting result of the present study may be due to the MLSS being 273 
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a therapist-assisted technique eliciting greater amounts of neurodynamic elongation and stretch 274 

intensity.16,17,31,63 275 

Previous investigations of neurodynamics and muscle extensibility have reported 276 

varying results. For example, Sullivan and colleagues64 demonstrated focused hamstring 277 

muscle stretches were more effective than hamstring stretches in a stooped position that was 278 

consistent with elongation of the neuraxis.16,63 However, the study by Sullivan and colleagues64 279 

reported maintenance of ankle plantar flexion and adoption of a low to moderate stretch 280 

intensity protocol, which may have elicited only neural unfolding, rather than nerve excursion, 281 

tension or strain,16,63 with the stooped stretch, and subsequently provided relatively less 282 

stimulus to modulate stretch tolerance.18,32 Nevertheless, the current study adds to more recent 283 

reports demonstrating efficacy of neurodynamic interventions in producing lasting increases of 284 

hamstring extensibility and stretch tolerance.18,32-33  285 

The MLSS produces elongation of the sciatic/tibial nerve tract through a combination 286 

of ankle dorsiflexion and eversion, knee extension, hip internal rotation and trunk flexion, with 287 

likely resultant increases in nerve tension and strain.16-17,63,65 Its potential advantage over other 288 

sciatic/tibial neurodynamic tension techniques, such as the slump21 and long sit slump,14,19 is 289 

that it is postulated to produce maximal tolerated sciatic/tibial nerve tract elongation, with 290 

relatively less flexion stress on lower lumbar spinal segments66 through antagonistic rotation 291 

of the ilia around the sacrum in the hemi-sitting position.67 Given unilateral sciatic-tibial sliding 292 

has previously demonstrated not to produce contralateral hamstring extensibility effects,32 293 

while comparison between a bilateral glider and unilateral tensioner was statistically non-294 

significant,18 further comparative studies of neurodynamic techniques, including the MLSS, on 295 

muscle extensibility and stretch tolerance is indicated.33  296 

An interesting post-hoc finding of the current study was the significant moderate to 297 

strong inverse correlation between pre-intervention PSLR ROM and the magnitude of the 298 
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ROM increase immediately (r = -0.318; p < 0.05) and one hour ( r = -0.526; p < 0.001) post 299 

intervention, suggesting a potential ‘diminishing returns’ effect of the MLSS with respect to 300 

muscle extensibility. This is in contrast to the findings by Ayala and colleagues34 who 301 

demonstrated no significant difference between subjects with and without tight hamstring 302 

tightness in response to 12 weeks of muscle stretching. Notwithstanding the large difference in 303 

total stretch time, a possible explanation of these seemingly differing results, is that the 304 

stretching protocol utilised by Ayala and colleagues,34 through adoption of ankle dorsiflexion 305 

in two out of the four techniques, appear a combination of stretches which preferentially target 306 

muscle and neural tissue at moderate levels of stretch intensity whereas the MLSS 307 

preferentially targets the neural tissue at high stretch intensity.16,28,30,63 Although the PKB 308 

measures in the current study were also significantly inversely correlated to pre-intervention 309 

ROM, tight rectus-femoris was not an inclusion criterion so this effect may have been due some 310 

subjects achieving full PKB ROM. 311 

The specific neuronal mechanisms responsible for modulating stretch tolerance are yet 312 

to be fully elucidated. Large diameter proprioceptors have been implicated in modulating 313 

stretch tolerance through spinal gating,24,36 but this mechanism may not have a significant 314 

lasting effect.42-43 Furthermore, as muscle spindle and golgi organ receptors are considered 315 

absent outside the musculotendinous tissues,38  and muscle stretching protocols have 316 

previously not demonstrated lasting extra-segmental nor contralateral effects, 24,32,36 this 317 

suggests the effects of the MLSS were probably not modulated primarily by 318 

proprioceptors.25,68,69 However, this postulation is not inconsistent with the possibility that 319 

during stretching, low threshold  proprioceptors and mechanoreceptors may sensitise high 320 

threshold receptors, such as mechanosensitive nociceptors, towards activation thresholds38,41,46 321 

through mechanisms such as the axon reflex and afferent convergence, as well as non-322 

specificity of peripheral afferent neuropeptides to fibre type.45,47 Conditioned learning and 323 
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increased activation of the DNIS have also previously been implicated in increases of muscle 324 

stretch tolerance,36 and is not inconsistent with the results the current study. Compared to 325 

previous muscle stretching research, the relatively higher levels of neurodynamic tension and 326 

stretch intensity with MLSS intervention may have acted as a stronger neural stimulus for 327 

subjects’ learning to tolerate muscle stretch, which could explain the novel extra-segmental 328 

and contralateral effects. A future study utilising the MLSS which includes a muscle 329 

extensibility and stretch tolerance outcome measure proximal to the lumbar and lumbosacral 330 

plexus may provide further insights into the role of conditioned learning and DNIS activation, 331 

versus more local neuronal signalling at the spinal level, but fully elucidating these mechanisms 332 

may require corroboration with direct neurophysiological measures.  333 

Desensitisation of mechanosensitive nociceptors has previously been implicated in 334 

modulation of muscle stretch tolerance and is also consistent with the results of the current 335 

study.24,36 The extra-segmental and contralateral effects induced by the MLSS are also 336 

consonant with the proposition that increased stretch tolerance may be a form of nociceptive 337 

LTD,43,55 akin to sensitisation as a form of LTP,42,44,53 through recruitment of latent neuronal 338 

circuits.48,51,54 Interestingly, A-delta but not A-beta afferent stimulation has been demonstrated 339 

to induce C-fibre LTD and de-potentiate LTP in the rat spinal dorsal horn, which provides a 340 

plausible mechanism for future investigations of stretch tolerance modulation in humans.43  341 

Additionally, the sympathetic nervous system (SNS) and autonomic balance may also 342 

have a significant role in modulating stretch tolerance as sympathetic efferent and afferent 343 

fibres are considered to constitute a substantial proportion of lower limb peripheral nerve70-72 344 

and co-utilise noradrenaline and substance P, which are strongly implicated in nociceptor 345 

sensitivity and neuronal recruitment.38,42,48,53,73 Moreover, SNS tracts possess complex 346 

anatomical and physiological configurations including multiple segments and bilateral midline 347 

crossing spinally. multi-segmental serial and parallel processing supra-spinally, and likely 348 
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rapid autocrine and paracrine autonomic signalling.74-77 Notwithstanding the aforementioned 349 

potential role of the SNS modulating stretch tolerance through neuronal desensitisation, 350 

significantly higher SNRS ratings in session two compared to session one for most of the 351 

outcome measures could be due to autonomic modulation of stretch tolerance through 352 

attenuation  of ‘threat’ perception during stretch.78 However, some contrasting findings, 353 

predominantly for the PKB data, further supports a difference between segmental and extra-354 

segmental stretch tolerance modulation, but the potential of type 2 error, due to small sample 355 

sizes, should also be considered. Moreover, given modulation of autonomic balance is a 356 

primary mechanism proposed to underlie yoga efficacy79 and the likely overlap between yoga 357 

postures and neurodynamic tension positions,80  further investigation of the role of the 358 

autonomic nervous system and its role in muscle  extensibility, neurodynamics and HSI, is 359 

warranted.81 360 

There were several limitations to the current study. Although there is in-vivo evidence 361 

demonstrating validity in administering targeted nerve excursion and strain through  362 

neurodynamics,16,82 there is an absence of studies which  demonstrate   differentiation between 363 

muscle and nerve biomechanics with neurodynamic intervention, obviating a need for further 364 

research to improve content and construct validity.83 Another major limitation of the current 365 

study, due to resource limitations at MSc study level, was that all measurements and 366 

intervention were performed by the same experienced musculoskeletal physiotherapist, raising 367 

the internal bias of the study.84 Therefore verification of the study’s results in a single blinded 368 

RCT is indicated. Another limitation was that the PKB procedure utilised has not been 369 

validated for rectus-femoris muscle extensibility, despite common clinical utilisation. 370 

Nevertheless, the high consonance between mean PKB ROM and SNRS changes suggests high 371 

measurement error was probably not a significant factor. Given the PKB procedure is simple 372 

and efficient for a single examiner, future investigation of its validity is warranted. An 373 
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additional potential source of bias was not testing SNRS Com measures when post intervention 374 

ROM was less than pre-intervention, which avoided moving the limb beyond the maximally 375 

tolerated point. However, this only occurred with PSLR measures in one subject in the first 376 

intervention session, and with several PKB measures in subjects who had full PKB ROM, and 377 

is not considered to have significantly affected the results. Lastly, the study was limited to 378 

healthy and active adults with clinically tight hamstrings recruited from a university population, 379 

resulting in a relatively young and robust sample. Notwithstanding due care required in 380 

applying neurodynamic tension techniques in less robust populations, investigation of the 381 

effects of the MLSS in a slightly older sample, or those with past HSI, is indicated.16 382 

 383 

CONCLUSIONS 384 

 385 

Application of a novel sciatic-tibial neurodynamic tension technique, the MLSS, produced 386 

significant and lasting segmental, extra-segmental and contralateral increases of muscle 387 

extensibility and stretch tolerance in a healthy, active  sample with clinically tight hamstrings. 388 

Additional studies are indicated to verify the findings and further investigate potential MLSS 389 

effects in different samples. 390 
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TABLE 1. Mean stretch intensity ratings on a simple numerical rating scale (SNRS) from 0 642 

(‘no muscle stretch’) to 10 (‘the worst muscle stretch imaginable’). ‘Com’ represents the score 643 

taken at the pre-intervention joint angle for that session, whereas ‘Max’ represents the score at 644 

maximal stretch tolerance for each time-point. Effect of time: * p<0.05, ** p<0.01, *** 645 

p<0.001 compared to pre within the session; effect of side: †† p<0.01 compared to ipsilateral 646 

side; effect of session: # p<0.05, ### p<0.001 compared to session 1. Values shown are 647 

mean±SD. 648 

 649 

 
 Session 1 Session 2 

 
 Pre Post Post 1 hour Pre Post Post 1 hour 

Ipsilateral PSLR  

Com 

7.4±0.8 

5.1±1.4*** 5.4±1.5*** 

8.1±0.9### 

6.2±1.0***### 6.9±1.3***### 

Max 7.9±1.0** 8.0±1.2** 8.7±0.6**### 9.0±0.8**### 

Contralateral PSLR 

Com 

7.8±0.8† 

6.3±0.9**†† 5.4±1.4**†† 

8.4±1.1†### 

7.1±0.9**†† 7.3±1.1**†† 

Max 7.5±0.7 8.0±0.9 8.6±0.7### 8.7±0.9### 

Ipsilateral PKB 

Com 

7.2±1.1 

5.8±1.8*** 5.6±1.7*** 

7.6±1.2 

5.6±1.8***# 6.4±1.6***# 

Max 7.2±1.4 7.4±1.4 7.2±1.5 7.6±1.3 

Contralateral PKB 

Com 

7.1±1.6 

6.0±1.7*** 5.4±1.6*** 

7.8±1.0 

6.6±1.4***# 6.5±1.7***# 

Max 7.3±1.4 7.2±1.6 7.7±1.4 7.6±1.7 

650 
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Figure 1. During session 1, half the subjects received the MLSS intervention on the stance leg 651 

and the other half of the subjects received the intervention on the skill leg. Measurements were 652 

taken pre-, directly post, and one hour post-intervention. Following a 3-week washout period 653 

the intervention was repeated on the other leg.  654 
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 658 

Figure 2. Modified long sit slump (MLSS). Start position (top row) and end position (bottom 659 

row). The subject starts hemi-sitting with the stretched limb on the plinth and the knee flexed. 660 

The subject uses their opposite hand to reach forward and hold the lateral border of the foot, 661 

placing it in dorsiflexion and eversion. They are then instructed to extend the knee and 662 

internally rotate the femur. The therapist assists to facilitate neurodynamic tension positions, 663 

and if the position is well tolerated, the subject is facilitated to add further trunk and cervical 664 

flexion. 665 

 666 

 667 

 668 
  669 



 

32 

 

Figure 3: Effect of the MLSS intervention on: A) passive straight leg raise (PSLR), and B) 670 

prone knee bend (PKB). The intervention was performed on either the stance leg (n=6) or skill 671 

leg (n=7) in session 1, and on the other leg 3 weeks later in a counterbalanced manner. Main 672 

effects for PSLR: time p<0.001, side p<0.001, session p<0.001. Main effects for PKB: time 673 

p<0.001, side NS, session p<0.001. 674 
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CONSORT 2010 checklist of information to include when reporting a randomised trial* 
 

Section/Topic 
Item 
No Checklist item 

Reported 
on page No 

Title and abstract 

 1a Identification as a randomised trial in the title 1 

1b Structured summary of trial design, methods, results, and conclusions (for specific guidance see CONSORT for abstracts) 3-4 

Introduction 

Background and 

objectives 

2a Scientific background and explanation of rationale 5=7, 

2b Specific objectives or hypotheses  

8 

Methods 

Trial design 3a Description of trial design (such as parallel, factorial) including allocation ratio 8 

3b Important changes to methods after trial commencement (such as eligibility criteria), with reasons N/A 

Participants 4a Eligibility criteria for participants 8-9 

4b Settings and locations where the data were collected 8-9 

Interventions 5 The interventions for each group with sufficient details to allow replication, including how and when they were 

actually administered 

 

11, Figure 2 

Outcomes 6a Completely defined pre-specified primary and secondary outcome measures, including how and when they 

were assessed 

 

9-10 

6b Any changes to trial outcomes after the trial commenced, with reasons N/A 

Sample size 7a How sample size was determined 8 

7b When applicable, explanation of any interim analyses and stopping guidelines N/A 

Randomisation:    

 Sequence 

generation 

8a Method used to generate the random allocation sequence N/A 8 

(counterbalan

ced) 
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8b Type of randomisation; details of any restriction (such as blocking and block size) N/A 8 

(counterbalan

ced) 

 Allocation 

concealment 

mechanism 

9 Mechanism used to implement the random allocation sequence (such as sequentially numbered containers), 

describing any steps taken to conceal the sequence until interventions were assigned 

 

N/A 8 

counterbalanc

ed 

N/A  

 Implementation 10 Who generated the random allocation sequence, who enrolled participants, and who assigned participants to 

interventions 

 

N/A 

Blinding 11a If done, who was blinded after assignment to interventions (for example, participants, care providers, those 

assessing outcomes) and how 

N/A 

11b If relevant, description of the similarity of interventions N/A 

Statistical methods 12a Statistical methods used to compare groups for primary and secondary outcomes 11=12 

12b Methods for additional analyses, such as subgroup analyses and adjusted analyses 11=12 

Results 

Participant flow (a 

diagram is strongly 

recommended) 

13a For each group, the numbers of participants who were randomly assigned, received intended treatment, and 

were analysed for the primary outcome 

 

Figure 1, 35 

13b For each group, losses and exclusions after randomisation, together with reasons 35 

Recruitment 14a Dates defining the periods of recruitment and follow-up 8 

14b Why the trial ended or was stopped N/A 

Baseline data 15 A table showing baseline demographic and clinical characteristics for each group 8-9 

(Participants 

section in 

text) 

Numbers analysed 16 For each group, number of participants (denominator) included in each analysis and whether the analysis was 

by original assigned groups 

 

Figure 1, 35 

Outcomes and 

estimation 

17a For each primary and secondary outcome, results for each group, and the estimated effect size and its 

precision (such as 95% confidence interval) 

8,12-13, 

Figure3 

17b For binary outcomes, presentation of both absolute and relative effect sizes is recommended N/A 
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Ancillary analyses 18 Results of any other analyses performed, including subgroup analyses and adjusted analyses, distinguishing 

pre-specified from exploratory 

 

12-13 

Harms 19 All important harms or unintended effects in each group (for specific guidance see CONSORT for harms) N/A 35 (see 

flowchart) 

Discussion 

Limitations 20 Trial limitations, addressing sources of potential bias, imprecision, and, if relevant, multiplicity of analyses 18 

Generalisability 21 Generalisability (external validity, applicability) of the trial findings 18 

Interpretation 22 Interpretation consistent with results, balancing benefits and harms, and considering other relevant evidence 13-18 

Other information  

Registration 23 Registration number and name of trial registry N/A Not a 

clinical trial 

Protocol 24 Where the full trial protocol can be accessed, if available N/A 

Funding 25 Sources of funding and other support (such as supply of drugs), role of funders N/A page 

1disclosure 

 

*We strongly recommend reading this statement in conjunction with the CONSORT 2010 Explanation and Elaboration for important clarifications on all the items. If relevant, we also 

recommend reading CONSORT extensions for cluster randomised trials, non-inferiority and equivalence trials, non-pharmacological treatments, herbal interventions, and pragmatic trials. 

Additional extensions are forthcoming: for those and for up to date references relevant to this checklist, see www.consort-statement.org. 

 

The TIDieR (Template for Intervention Description and Replication) Checklist*: 

 Information to include when describing an intervention and the location of the information 

Item 

number 

Item  Where located ** 

 Primary paper 

(page or appendix 

number) 

Other † (details) 

 
BRIEF NAME 

  

1. Provide the name or a phrase that describes the intervention. _1,3_______ ______________ 

http://www.consort-statement.org/
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 WHY   

2. Describe any rationale, theory, or goal of the elements essential to the intervention. _3-7________ _____________ 

 WHAT   

3. Materials: Describe any physical or informational materials used in the intervention, including those provided 

to participants or used in intervention delivery or in training of intervention providers. Provide information on 

where the materials can be accessed (e.g. online appendix, URL). 

N/A__________ 

 

 

_____________ 

4. Procedures: Describe each of the procedures, activities, and/or processes used in the intervention, including any 

enabling or support activities. 

9-11________ _____________ 

 WHO PROVIDED   

5. For each category of intervention provider (e.g. psychologist, nursing assistant), describe their expertise, 

background and any specific training given. 

_18_________ _____________ 

 HOW   

6. Describe the modes of delivery (e.g. face-to-face or by some other mechanism, such as internet or telephone) of 

the intervention and whether it was provided individually or in a group. 

__8-11_______ _____________ 

 WHERE   

7. Describe the type(s) of location(s) where the intervention occurred, including any necessary infrastructure or 

relevant features. 

___8-11_____ _____________ 

 
WHEN and HOW MUCH 

  

8. Describe the number of times the intervention was delivered and over what period of time including the 

number of sessions, their schedule, and their duration, intensity or dose. 

_8-11_______ _____________ 

 TAILORING   

9. If the intervention was planned to be personalised, titrated or adapted, then describe what, why, when, and how. _8-11________ _____________ 

 MODIFICATIONS   
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10.ǂ If the intervention was modified during the course of the study, describe the changes (what, why, when, and 

how). 

N/A 8-11_ _____________ 

 HOW WELL   

11. Planned: If intervention adherence or fidelity was assessed, describe how and by whom, and if any strategies 

were used to maintain or improve fidelity, describe them. 

__35____ _____________ 

12.ǂ 

 

Actual: If intervention adherence or fidelity was assessed, describe the extent to which the intervention was 

delivered as planned. 

__35_________ _____________ 

** Authors - use N/A if an item is not applicable for the intervention being described. Reviewers – use ‘?’ if information about the element is not reported/not sufficiently reported.  

† If the information is not provided in the primary paper, give details of where this information is available. This may include locations such as a published protocol or other published 

papers (provide citation details) or a website (provide the URL). 

ǂ If completing the TIDieR checklist for a protocol, these items are not relevant to the protocol and cannot be described until the study is complete. 

* We strongly recommend using this checklist in conjunction with the TIDieR guide (see BMJ 2014;348:g1687) which contains an explanation and elaboration for each item. 

* The focus of TIDieR is on reporting details of the intervention elements (and where relevant, comparison elements) of a study. Other elements and methodological features of 

studies are covered by other reporting statements and checklists and have not been duplicated as part of the TIDieR checklist. When a randomised trial is being reported, the 

TIDieR checklist should be used in conjunction with the CONSORT statement (see www.consort-statement.org) as an extension of Item 5 of the CONSORT 2010 Statement. When 

a clinical trial protocol is being reported, the TIDieR checklist should be used in conjunction with the SPIRIT statement as an extension of Item 11 of the SPIRIT 2013 Statement 

(see www.spirit-statement.org). For alternate study designs, TIDieR can be used in conjunction with the appropriate checklist for that study design (see www.equator-

network.org).  

http://www.consort-statement.org/
http://www.spirit-statement.org/
http://www.equator-network.org/
http://www.equator-network.org/
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CONSORT 2010 Flow Diagram –adapted for a within subjects experiment over 

two intervention sessions with a 3 week washout period 

 

Assessed for eligibility (n=46 ) 

Excluded (n=33 ) 
 Not meeting inclusion criteria (n=23 ) 
 Declined to participate (n= 3 ) 
 Other reasons (n=7) 

Analysed (n= 13 ) 

 Excluded from analysis (give reasons) (n=0 ) 

Lost to follow-up (give reasons) (n= 0 ) 
Discontinued intervention (give reasons) (n= 0 
) 

Allocated to intervention session 1 (n= 13 ) 

 Received allocated intervention (n= 13 ) 

 Did not receive allocated intervention (give 

reasons) (n=0 ) 

Lost to follow-up (give reasons) (n= 0 ) 
Discontinued intervention (give reasons) (n=0 ) 

Allocated to intervention session 2 (n=13 ) 

 Received allocated intervention (n=13 ) 

 Did not receive allocated intervention (give 

reasons) (n= 0 ) 

Analysed (n=13 ) 

 Excluded from analysis (give reasons) (n=0 ) 

 

Allocation 

Analysis 

Follow-Up 

Treatment and limb 
order counterbalanced 

Enrollment 


