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Abstract

Spinal cord injury (SCI) is a life changing evemat, as a result of paralysis, negatively
influences habitual levels of physical activity amehce cardiometabolic health.
Performing regular structured exercise therefopeaps extremely important in persons
with SCI. However, exercise options are mainly tedito the upper-body, which
involves a smaller activated muscle mass comparétetmainly leg-based activities
commonly performed by non-disabled individuals. i€at exercise guidelines for SCI
focus predominantly on relative short durationsnofderate-intensity aerobic arm
cranking exercise, yet contemporary evidence sugdgeis is not sufficient to induce
meaningful improvements in risk factors for theyenetion of cardiometabolic disease
in this population. As such, these guidelines & tphysiological basis, require
reappraisal. In this special communication, we psagpthat high-intensity interval
training (HIIT) may be a viable alternative exeecgrategy, to promote vigorous-
intensity exercise and prevent cardiometabolicatisen persons with SCI.
Supplementing the limited data from SCI cohortwibnsistent findings from studies
in non-disabled populations, we present strongesgd to suggest that HIIT is superior
to moderate-intensity aerobic exercise for imprgwardiorespiratory fitness, insulin
sensitivity and vascular function. The potentigblagation and safety of HIIT in this
population is also discussed. We conclude thatasing exercise intensity could offer
a simple, readily available, time-efficient solutito improve cardiometabolic health in
persons with SCI. We call for high-quality randoed<sontrolled trials to examine the

efficacy and safety of HIIT in this population.

Key words: Spinal cord injury, Cardiometabolic health, Higttensity interval

training, Vigorous-intensity exercise, Cardioregpry fitness
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Abbreviations:

CVD- cardiovascular disease,

FMD- flow-mediated dilation,

HbAlc- glycated haemoglobin,

HDL-C- high-density lipoprotein cholesterol
HIIT- high-intensity interval training,

HRmax- maximum heart rate,

LDL-C- low-density lipoprotein cholesterol
MICT- moderate-intensity continuous training,
OGTT- oral glucose tolerance test,

PAG-SCI- physical activity guidelines for peoplehva spinal cord injury,
RPE- rating of perceived exertion,

SCI- spinal cord injury,

SIT- sprint interval training,

T2DM- type-2 diabetes mellitus,

V Ozpea- maximal oxygen uptake.
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1 Introduction

Spinal cord injury (SCI) creates a complex pathapdlggy, characterised by paralysis,
which has wide-ranging implications for multipledyosystems. For persons with SCI,
chronic cardiometabolic diseases occur at a haightérequency and earlier in the
lifespan compared to non-disabled individualsGiven that more than 2 million people
currently live with SCI worldwide and the incidenaeSCl is highest among young
adults®, it is clear that there is an increased and pg#drdemand on medical and
support resources for persons aging with paralipaspite the known, undisputed
health benefits of physical activity in non-disabladividuals®’, research suggests

patients with SCI perform little to no physicalisity ®**

, and this is likely a key driver
of the greater prevalence of cardiometabolic disé@ashis population® 2 Therefore,
it is a priority to develop evidence-based, effeeiphysical activity recommendations

for the prevention of chronic disease in persorih 8CI.

The recently re-published Physical Activity Guidels for Spinal Cord Injury (PAG-
SCI) recommends at least 20 minutes of moderat@twous-intensity aerobic exercise
twice a week (40 min/wk}*, while a recent position statement from Exercise &ports
Science Australia recommeng$50 min/wk of moderate-intensity 860 min/wk of
vigorous-intensity exercise. Both of these guidelines also include strengitning>2
day/wk'* > Regardless of the large discrepancy between thédelines in terms of
the recommended volume of moderate-intensity eserthey remain indifferent from
theminimumamount of exercise which is promoted by reputahternational health
authorities [Centers for Disease Control (CDC) ®Whatld Health Organisation (WHO)]

in order to reduce the risk of developing cardicabetic disease in the general
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population. However, it is noteworthy that the guidelines for non-disabled
populations are based on lower-body or whole-batiyity (e.g. walking, running,
cycling), whereas exercise for persons with S@risarily restricted to the smaller
upper-body skeletal muscles [e.g. arm-crank exemmisvheelchair propulsion]. As a
result of the smaller active muscle mass and btlihé&modynamic responses with
SClI, the absolute capacity for physical exercigedsiced®® Therefore, at the same
relative intensity, the absolute energy expendijtcaediovascular strain, and whole-
body metabolic demand, will always be lower dunngderate-intensity arm-crank
exercise or wheelchair propulsion compared with enat-intensity walking or

cycling. The ability for skeletal muscle to adapthe same stimulus will not be
reduced; however, the smaller active muscle massms#hat modest training-induced
adaptations in the arm are less likely to impaetrarkers of cardiometabolic health. As
such, to promote wer volume of exercise in this population would seem
physiologically counterintuitive, whilst promotiragsimilar volume of exercise would
likely be less effective. In accordance with tlsecent randomised controlled trial
demonstrated that performing PAG-SCI for 16 wee&s imsufficient to promote
clinically meaningful changes in both novel andlitianal biomarkers of
cardiovascular disease (CVE) Moreover, a systematic review requested by the
Consortium for Spinal Cord Medicirf€ concluded that the current evidence is
insufficient to determine whether these volumesxa@rcise are associated with positive
changes in carbohydrate and lipid metabolism (@sd@ated disorders) amongst adults
with SCI. Therefore, we contend that these gui@slimnd their physiological
justification, require reappraisal, and that thisreeed to develop more effective,

alternative approaches.
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There are numerous psychosocial and environmeatgdebs to engage in physical
activity for individuals that use wheelchaffs* Moreover, compromised venous
return in persons with SCI blunts cardiac oufpptvhich can lead to an early onset of
muscle fatigué®, thus reducing ones capacity for prolonged exerdikerefore,
promoting darger volume of moderate-intensity exercise might notdzesible in this
population. Functional electronic stimulatioft® and body weight supported treadmill
training®, have received considerable research attentidrhaue numerous practical
limitations (i.e. significant cost and specialissources required), and may have limited
application outside the laboratory. One potentigraative approach, which has
received less attention, would be to recommend-mitgnsity interval training (HIIT)
as a practical means of increasing vigorous-intgmesiercise. The benefit of vigorous-
intensity physical activity is supported by a numbkepidemiological studies, albeit in
non-disabled individuals, demonstrating superiduntions in the risk of
cardiovasculaf® **and all-cause mortali{?® in comparison to light-to-moderate
intensity physical activity. Moreover, accumulatiegjdence, from studies applying
HIIT in non-disabled populations, demonstrates Hi&T promotes superior peripheral
37 and whole-body adaptatiofs*® compared with moderate-intensity continuous
training (MICT).HIIT may therefore offer a simple, more effectiveemative to

current approaches for improving cardiometabol@lthen persons with SCin the
following sections we put forward the case for reatending HIIT in SCI, and

subsequently consider its potential practical aggion and safety in this population.



150 2 High-intensity Interval Trainingto Facilitate Vigorous-intensity Exercisein

151 Spinal Cord Injury

152

153 HIIT encompasses exercise performed above thesiyemhich elicits the maximal
154 lactate steady state. Any exercise above thishbidsesults in the progressive

155 accumulation of intramuscular and systemic metéothat are implicated in fatigue.
156 As such, exercise intensities above this thresfed0-85% \Ozpeay) Cannot be

157 maintained for a prolonged period of time. The edser must therefore be performed in
158 intervals interspersed with periods of low-inteysit resting recovery. The main

159 justification for HIIT is that it allows a greateolume of vigorous-intensity exercise to
160 be accrued in a single exercise session, and adatinguevidence suggests that this can
161 be of great physiological and clinical benéfit®

162

163 A wide range of HIIT protocols have been utilisadhe literature but with limited

164 standardisation of the terminology used to clagdiffierent protocols. Furthermore,
165 studies have prescribed exercise intensities asceptage of different maximal

166  physiological responses [e.g. maximum heart rafengelx*), heart rate resen/é, age-
167 predicted max heart ratéand peak oxygen uptake Qdeax*”)] and, for these reasons,
168 may not be directly comparable, particularly iniinduals with low baseline fitnegs.
169 Nevertheless, for the purposes of this review, dapathe terminology proposed by
170 Westonet al,®, whereby HIIT describes protocols using intensitietween 80-100%
171  of HRmax Whereas protocols using ‘all-out’ efforts, oraef6>100% VOzpeax are

172 referred to as sprint interval training (SIT) (Figu). There is good evidence that both
173 HIIT and SIT provide equal or even superior phyagital adaptations compared with

174  MICT *¢°° However, as SIT protocols may be more difficalatiapt in order to
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provide a practical intervention for persons witbl 3n this review we draw mainly on
HIIT studies to support the argument for vigorootensity exercise. Example HIIT

protocols tested in both the SCI and non-disabtethture are described in Table 1.

[INSERT FIGURE 1 ABOUT HERE]

[INSERT TABLE 1 ABOUT HERE]

3 Moderate vs Vigorous-intensity Exercisefor Cardiometabolic Health

3.1 Cardiorespiratory Fithess and Skeletal Muscle Oxidative Capacity

Poor cardiorespiratory fitness has been widelytepidn individuals with SC1* 3
Although just ~90 min/wk* >*of MICT is sufficient to promote modest improverten
(~10%) in VO2peax @ substantially larger volume (180 min/wk) is eezary for greater
improvements (~19965. Vigorous-intensity exercise offers superior bésefnd is
more time efficient. Of the two studies which hasged time-matched training
protocols in SCI (Table 2) there are negligible%il@s. 10%})* and considerable (50%
vs. 17%Y° improvements in Dzpeaith vigorous-intensity compared to moderate-

intensity exercise, respectively. The larger inweroent in the De Groeit al,*®

study
could be due to participants having acute (< 23&mjuries or the greater volume of
accumulated vigorous-intensity activity (additiod8l min/wk). More recently,
unpublished data from Saetérwhich adopted a more robust isocaloric studygfesi

demonstrated a superior stimulus f@@eacand PPO with vigorous-intensity exercise



200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

compared to MICT. Furthermore, a case-study dematest a 52% increase irOdpeak

in a 42 year old man with SCI following just 6 wee HIIT >%,

Several studies have directly compared the eftdotmergy-matched HIIT and MICT
on VOzpeakin deconditioned (non-disabled) individuals witleq@xisting
cardiometabolic disease and these have clearly asimaded that HIIT results in
superior improvements. These studies were sumndanse recent meta-analysis
which, using data from 10 studies and 273 partidgashowed that the increase in

V Ogzpeaxfollowing HIIT was approximately twice (~3 ml/kgin) that observed
following MICT 22, This finding has been reproduced in various nisatled
populations including healthy young and middle-agedentary met" °° overweight
and obese men and wom®nand in individuals with type-2 diabetes melli{G2DM)

®2. A 3 ml/kg/min improvement in cardiorespiratorinfiss is associated with a 15% and
19% reduction in all-cause and CVD mortality, retpely, and is on par with a &n
reduction in waist circumference, a 5 mmHg redurctiosystolic blood pressure, or a 1
mmol/L drop in fasting plasma gluco%e® Given that cardiorespiratory fitness
consistently manifests as the strongest predidtoamiometabolic disease risk and
longevity in epidemiological studié3®® these findings are an important point of
reference in the argument for applying HIIT, as@lal to increase vigorous-intensity

physical activity, in individuals with SCI.

Although still a subject of debat&’*, recent evidence supports, at least partially, the
role of peripheral muscle characteristics, in pattir absolute mitochondrial capacity
(i.e. maximal mitochondrial oxygen utilization), limiting VOzpeax and hence

underpinning changes inGpeakWith exercise training® ’ It is noteworthy then that a
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recent study convincingly demonstrated that cychaged HIIT induced superior
mitochondrial adaptations compared with MICT, ingtle taken from the lower limb

37 Arm exercise training may not be sufficient tdiice central hemodynamic
adaptationg?, but can be expected to induce peripheral mitogtiahadaptations.

Thus, if the superior effects observed with HIlTrqmared with moderate-intensity
cycling and walking/running in non-disabled indivals are translatable to arm exercise
training in persons with SCI, then HIIT may provaenore effective intervention for
improving VOpeadn persons with SCI. Moreover, the superior chariges

mitochondrial oxidative capacity with HIIT may haweplications for other

cardiometabolic risk factors such as insulin sérisitand glycaemic contrdf.

[INSERT TABLE 2 ABOUT HERE]

3.2 Insulin Action and Glycaemic Control

Insulin resistance is a pre-requisite to T2DMsltharacterised by the failure of insulin
to exert the normal cellular effects on varioususs, leading to the impairment of
insulin mediated glucose disposal. Fasting hypeegynia can persist due to the
insensitivity of the liver to the suppressive efgeof insulin on gluconeogenesis and
reduced glycogenolysi§. Consequently fasting plasma glucose concentstiane
been shown to correlate with basal rates of hegdiizose output’. Therefore, as
fasting plasma glucose concentrations tend to beroiidly elevated in individuals

with SCI7® it is most likely that peripheral insulin resiste is the major driver behind
impaired glycaemic control in this population. Thaek of stimulation and disuse

because of paralysis can have a profound impaskeletal muscle below the level of

10
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injury, including i) atrophy of lean ma$%®, which diminishes the tissue available for

glucose disposal (Figure 28)®* and ii) accumulation of intramuscular fat®

[INSERT FIGURE 2 ABOUT HERE]

Recent publications have demonstrated that modariaesity arm-crank ergometry
improves insulin resistance, as determined by HORAL 8 Although this is
promising, HOMA-IR reflects hepatic insulin sengity, whereas indices derived

during postprandial oral glucose tolerance testSTD), such as the I§ksuda represent
predominantly peripheral insulin sensitivify® Data from the HOMEX-SCI trial
including both fasting and provocative dynamicitestwould suggest arm-crank MICT
(60 — 65% \D2peak 180 min/wk) in persons with chronic paraplegia ioyas hepatic

but not whole-body insulin sensitivity. Therefore, moderate-intensity arm-crank
exercise might not be sufficient to overcome insudisistance in peripheral tissues.
There is a paucity of research comparing bothrigsgihd dynamic glucose and insulin
responses to HIIT or MICT in the context of armrdtaxercise in the SCI population.
Insulin sensitivity data from De Groet al*® is counter-intuitive, in that it demonstrates
non-significant improvements in the moderate-initgrgroup and reduced insulin
sensitivity in the high-intensity group. This mag &xplained by a natural regression to
the mean effect (i.e. greater proportion of insudisistant individuals in the low-
intensity group at baseline). These results shbeldiewed with caution due to the, (i)
small sample size (h=3 per group) and, (ii) thekedrage and sex differences between

the two groups, which could impact exercise respsns

11
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The impact of HIIT on insulin action and glycaemantrol in non-disabled populations
has recently been summarised by Jelleyetaad, *° in a meta-analysis of 50 training
studies. Their analyses demonstrated that HIIT agasciated with improved insulin
sensitivity (estimated via fasting or OGTT-derivadices) and reduced fasting glucose
when compared to both baseline and/or changesiirexercise control grouf. The
magnitude of change appeared to be greater in atigos with insulin resistance (e.qg.
T2DM or metabolic syndrome) with reductions in glied haemoglobin (HbA1c) also
observed in this groufS. When compared with MICT there appeared to betgrea
improvements in markers of insulin sensitivity wHlli T (both fasting and dynamic
combined), but no difference in the change in fasglucose, insulin or HbAlc in
isolation®’. These differences were apparent despite theéHatthe methods varied
considerably between studies. This included vanetin the HIIT protocols utilised
(e.g. SIT vs HIIT, cycling vs running), the technés used to assess insulin sensitivity
(e.g. fasting vs OGTT vs clamp) and the duratidgarahe final training session in
which the insulin sensitivity data was captured.ré&twer, studies had been performed
in a wide variety of populations. As such, thersufficient evidence that in non-
disabled populations with insulin resistance HETassociated with superior changes in

markers of insulin sensitivity compared to MIET

It is also important to consider the acute effe¢ts1ICT and HIIT on glycaemic

control, although this has received less resedtehtaon, especially in SCI individuals.
Two studies have examined the acute effects if M MICT on glycaemic control,
using continuous glucose monitors to capture 24-gtucose profiles, and have shown
superior effects with HIIT in both obese m&mand individuals with T2DM”. These

effects are underpinned by a plausible mechanisenghat high-intensity exercise is

12
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associated with greater muscle glycogen utilisatiand muscle glycogen
concentrations are an important driver of acutengba in insulin sensitivity with
exercis€” % Clearly, the acute effects of exercise, as wett@mparisons of HIIT and

MICT, on glycaemic control in SCI individuals, i anportant area of future research.

3.3 Vascular Function and Blood Pressure

Arterial stiffness®? and endothelial functiotf® ***are important predictors of future
cardiovascular health. Individuals with SCI arereleterised by severe deterioration of
structure and function of vessels below the le¥éhjory 1°° but evidence also suggests
increased stiffness and impaired endothelial fumctvithin central and regional upper
body arteries in SCI relative to non-disabled aoisti®®. Recent evidence suggests that
achieving the PAG-SCI for 16-weeks is insufficiemimprove the health of both lower

and upper-limb, as well as central blood vesSels

A recent meta-analysis, including 182 participdrdsn 7 studies, demonstrated that
HIIT was superior to MICT for improving markers efidothelial functiori®. Within

the meta-analysis, studies that had utilised a weakched HIIT protocol, consisting of
4 x 4 min at 85-90% HR.x appeared to show the most consistent benefitllat éver
and above improvements observed with MRETP 19718 A 104 increase in FMD
(flow-mediated dilation) is associated with a 138duction in the risk of cardiovascular
events'®, Therefore the 2.6% magnitude of difference inchange in FMD observed
between HIIT and MICT in this meta-analysis woutldxpected to result in clinically

meaningful risk reductiof.
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Individuals with lower-level spinal cord lesionspexience similar hypertension issues
as the general populatidff, whereas individuals with higher-level lesiorsT) often
suffer from hypotensioh'®. A direct comparison of moderate and high-intgnsit
exercise training on blood pressure is not avalabISCI. However, in non-disabled
individuals, evidence suggests that several marithHIT or MICT are able to induce
comparable changes in both systolic and diastddiedopressure in a variety of

populationg® 6191 111

3.4 Body Composition

Individuals with SCI demonstrate a greater proggnsiaccumulate excess body fat
compared to non-disabled populatidits ™2 Furthermore, due to the accelerated loss
of lean mass, the distribution of adipose tissu8@ also appears to be alteréd

which would be expected to exert detrimental metatedfects*>**2 It is therefore
important to consider the role physical activitgyd in maintaining body composition
and the potential contribution towards a sustaereelgy deficit to reduce adiposity.
Yet, large additions to weekly total energy expamei (TEE) through structured
exercise (i.e. on top of baseline physical actjvése required to induce meaningful

reductions in body fat*®. For example, Donnellgt al, *?°

suggested that a meaningful
body mass reduction requires an exercise energgnelqoire in excess of 2000 kcal/wk.
If we extrapolate from exercise data for inactiv@ $articipants in the HOMEX-SCI

|55

trial >, achieving this would require approximately 448wk of moderate-intensity

arm-crank exercise. Therefore, it is perhaps nqgirsing that following PAG-SCI for

14
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16 weeks does not induce significant reductiortetal and visceral fat mass, although

it may be sufficient to reduce the rate of increasadiposity'®.

There is good evidence from non-disabled studigsHiT can be an effective
intervention for promoting positive changes in be@dynposition, including reductions
in total body masg” % *21123otal fat percentagé®** total abdominal fat mass *?*
124and waist circumferencé *?* 12° However, perhaps as expected, studies that have
compared energy-matched HIIT and MICT interventifres both interventions would
increase TEE to a similar extent) over several mohtive demonstrated comparable
changes in body compositiéh **' **! Interestingly, it also appears that HIIT protacol
requiring lower exercise volumes (e.g. low-volumi@ ldr SIT) are associated with
similar increases in total 24-hour energy expemeita 30-50 min of MICT?" *?8and

can also induce meaningful reductions in total aipdominal fat?* **° which are
comparable to 30-45 min of MICT in overweight/obesdividuals'*. Increases in leg
lean mass have also been observed with cyclingltds& > ' and this has the
potential to also translate to the upper-body miasare in patients with SCI. While

HIIT does not appear to induce a greater redudti@diposity than MICT, the

reviewed evidence would suggest it is equally &éecefe, but with a reduction in

exercise time commitment.

3.5 Fasting and Postprandial Dyslipidaemia

A recent meta-analystg° highlighted that persons with SCI have a unigpigl lprofile,
primarily characterised by depressed high-dengtprotein cholesterol (HDL-C).
Hooker & Wells** showed a trend for increased (21%) HDL-C and rede15%)

15
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low-density lipoprotein cholesterol (LDL-C) withgarous but not moderate-intensity
exercise over 8 weeks. Other trials specificallpénsons with SCI demonstrated no
impact of exercise-intensity on lipid profiles. @Gter or similar improvements in HDL-
C with HIIT compared to MICT have been shown in plagions with cardiometabolic
diseas€® and obese young métt, respectively. Currently the non-disabled literatis
unclear as to whether HIIT offers superior adaptatithan MICT for lipid profileg®

132 However, over 24 weeks O’Donovanal, *** demonstrated high-intensity exercise
was more effective in improving lipid profiles thsiCT of equal energy cost. It is
possible interventions of longer durations are meguto determine the true-impact of

exercise intensity on lipid profiles.

The two studies which have used time-matched trgiprotocols in SCI demonstrated
a decrease in fasting triglyceride concentratioh8%** and -3196°) pre-post with
vigorous-intensity exercise, but no change with erate-intensity exercise training.
Elevated fasting triglyceride concentrations hareylbeen associated with C\/Ef 2
Despite observing unremarkable concentrationsstinfg triglycerides, participants
with chronic paraplegia have shown exaggeratedpparstial lipaemia>® 3’ This
exaggerated postprandial lipaemia is an importamiutus for the development of
atherosclerosi§® and non-fasting triglyceride concentrations lea®aled a stronger
association with CVD than fastifd’. As a result of a more sedentary lifestyle, reduce
lipoprotein lipase slows postprandial triglycergdraction from the systemic
circulation and the atrophy of leg lean mass lirthiss ability to metabolise postprandial
triglycerides as a fuel sourt®. To our knowledge, no studies have been conducted
looking at the impact of upper-body exercise onpasdial lipaemia in persons with

SCI. However, several studies have examined tleetwdf an acute bout of HIIT on the
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postprandial triglyceride response to a high-fatedimeal in able-bodied individuals.
These were summarised in a systematic review wtoakluded that an acute bout of

HIIT is similarly effective to MICT for reducing mtprandial lipaemi&*.

4 Cardiovascular Safety of HIIT

Concerns have been raised over the safety of HiIfdopulations at risk of
cardiometabolic disease and this should be spaltificonsidered with reference to
SCI. Evidence from one recent non-disabled studiychvincluded 5000 patients
undergoing supervised cardiovascular rehabilitabioer a 7-year period, suggested that
the rate of adverse cardiovascular events was litvbhoth HIIT and MICT, although
the event rate was higher with HIt%®. Specifically, the study reported an adverse
cardiovascular event rate of 1 per ~23,000 exetwses during HIIT (2 non-fatal
cardiac arrests) compared with 1 per 129,000 exetwours during MICT (1 fatal
cardiac arrest)’®. However, various HIIT protocols have been usdelgan patients
with post infarction heart failuré’® 4 diastolic dysfunctiori*, coronary artery disease
145 and atrial fibrillation™*°, while also improving clinical symptoms. A systeina
review of laboratory/hospital based exercise tragrstudies in persons with SCI found
that adverse events were not common and thosecbatred were not serioti¥. It
should be noted that the individuals in this reveaewd within the studies mentioned
above were subject to extensive screening, andattkovascular safety of HIIT in this
population therefore requires further scientifipiegsal. However, when appropriate
pre-participation screening is adopted the riskadverse events are relatively low and
as previously suggested alikely comparable with the variant risks observedhe

general population**® SClI-specific special considerations for exerdiseluding the
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426 management of autonomic dysreflexia, have beemtigyly addressed elsewhére
427 ' 1tis noteworthy that patients with SCI are uualell-educated regarding the

428 symptoms and management of autonomic dysreflexddtare is no reason to speculate
429 that the occurrence of this will be increased WtHT. As with any exercise

430 prescription, it would be recommended that indigiduconsult their clinician prior to
431 engaging in such exercise training programmes.

432

433

434 5 Considerationsfor the application of HIIT to SCI populations

435

436 Individuals with SCE T6 exhibit a blunted cardiovascular response duwntabsence
437  of cardiac sympathetic innervatidrf and a reduced catecholamine response during
438 exercise™’. As a result of autonomic dysregulation, ddRcan be as low as 120 b/min
439 Consequently in these individuals it would be diift to prescribe an appropriate

440 exercise intensity using heart rate data. Evidenggests that ratings of perceived
441 exertion (RPE}*?and a talk test® can be effectively used to control exercise iritgns
442 in persons with paraplegia. Consequently we aduisBRPE>16 and ‘speaking is not
443 comfortable’ as appropriate markers of ‘vigoroutemsity’ when performing upper-
444  body exercise.

445

446 The advantage of HIIT is that it enables decondéobindividuals to do a substantial
447 amount of work at a relatively high-intensity byamporating rest periods, which

448 reduce local muscular fatigue. Fatigue followingaaate 20 minute bout of HIIT in
449 patients with chronic fatigue syndrome was noticéilly different to moderate-intensity

450  continuous exercise of a comparable workl54d Sensory impairment below the level
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of injury can increase the risk of pressure soreemperforming new activities for
prolonged periods in the same position. ConsequestHIIT can be more time
efficient and incorporates rest periods (idealgerforming regular pressure release)

this could mitigate this risk and prevent skin lxa@wvn.

Due to a reduced sweating capacity and inabilityilate superficial vasculaturé”
persons with higher-level injuries have an impainedt loss during exerci®. While
workload is increased with HIIT, possibly resultimggreater heat production, the total
exercise time is less than MICT with recovery pasicnterspersed throughout.
Therefore we have no reason to believe that HIlTld«ampact core body temperature
more than MICT. Still precautions should be takdremwpersons with SCI exercise in
hot environments, as they have impaired thermosgany function™’. Furthermore, to
overcome blood pooling in lower extremities, asatex with impaired venous return,
an adequate cool down should be performed to ptgest-exercise hypotension.
Shoulder overuse injuries and musculoskeletal pagralso common in persons with
SCI*8 % while the higher workloads necessary to achiégereus-intensity might
further contribute to these conditions, exercise lteen proposed as a feasible,

conservative, therapeutic treatment for shouldér jpapersons with SC°.

Discussions regarding behaviour change and/or eraanice are outside the scope of
this review. However, preliminary evidence woul@gest that individuals with pre-
diabetic conditions can adhere to HIIT over thersterm (4 weeks) and do so at a

greater level than MICT?3 16!

Questions have been raised regarding the adlestenc
HIIT over the long-termt®* *®3*put we encourage researchers and practitioners to

develop and evaluate strategies to incorporate itidthe everyday lives of persons
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with SCI. We believe this is possible considering ¢vidence that non-disabled
participants enjoyed HIIT more and were equallg@sfident to engage in HIIT as they
were MICT*®% Reassuringly, unpublished data has also demoegtpersons with SCI
experienced greater enjoyment with HIIT and SITtgcols compared to MICT®.
However, medical over protection may limit the prggion of vigorous-intensity
exercise rehabilitation in this population. To heifercome this, the safety and efficacy
of HIIT, particularly for persons with acute (<laygand higher leveT6) SCI would
need to be demonstrated by well-controlled longitaidtraining studies. This is
imperative when vigorous-intensity exercise haspitential to offer significantly
greater improvements in certain cardiometabolicomes than MICT in a population

at increased risk of chronic disease.

6 Conclusions

This special communication presents a case foutihigy of HIIT as a strategy to
promote vigorous-intensity physical activity anduee cardiometabolic disease in
persons with SCI. Data from SCI cohort studiesgiddollected using suboptimal
research designs, seem to agree with consistelmds from studies in the general
population that vigorous-intensity is superior todarate-intensity exercise in
improving a variety of cardiometabolic health outss. Importantly, these findings can
be explained and supported by plausible physio&gmechanisms. High—intensity
virtual reality arm-exercise is already being irtigegted in persons with S&i®and the
National Centre on Health, Physical Activity & Diskty (NCHPAD) promote a

selection of adapted vigorous-intensity exercis®op (e.g. wheelchair burpees).
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501 Increasing exercise-intensity could offer a simpbadily available, time-efficient

502 solution to improve cardiometabolic health in paswith SCI. However, until stronger
503 evidence has been collated concerning the safetgfficacy of HIIT in this population
504 this is merely a call to action for researcherthanfield and not necessarily an exercise

505 guideline to be prescribed by clinicians.
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Table 1 High-intensity interval training (HIIT) protocolssad in non-disabled and SCI
research studies.

Table 2: Description of exercise training studies that haeenpared the impact of

exercise intensity on cardiometabolic health markepersons with SCI.

Figure 1. Schematic of sprint-interval training (SIT), higitensity interval training
(HIIT) and moderate-intensity continuous trainifnglCT) protocols (Adapted from
Gibalaet al,! with permission).

Figure 2: Whole body Dual-energy X-ray absorptiometry (DEX&&Rn of a female
with neurological complete T7 injury sustained @ngepreviously (a) and non-disabled
female for comparative purposes (b). This figusially highlights the drastic atrophy
of lean mass and accumulation of intramusculainféte lower extremities of
individuals with SCI.
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Tablel

ExerciseIntervals

Recovery Intervals

Authors - - - - Total Session Time
Intensity Duration Intensity Duration
. 167 90-110% Wmax
F%giheiser;[ei‘léll 58NS-2| >85% HRmax 1-min 20-25% Wmax 1-2 min ~25 min
’ RPE>19
. 91 ~85% Wmax
Tignnaet a}  N-D 85-05% HRmax  2.5-4 min 20-25% Wmax 3-5 min ~30 min
Seeter’ 'SCI
RPE>17
. 37 _ "‘"70% WmaX
Macln_mset al’sg N-D 80-85% HRmax 4-5 min 20-25% Wmax 3-5 min ~30 min
Harnishet al,>® SCI RPE> 16

Table 1 LegenddRmaxmaximum heart raté\-D non-disabledRPEratings of perceived exertioBCI spinal cord injuryWmax peak power output (Watts), achieved

during an incremental test to fatigue

Suggested frequency for training interventions s&8sions/week. Low-intensity warm-up and exteroded-down are not included in the table, but shdgdncorporated
into any applied protocol to optimise circulatiamdgprevent post-exercise hypotension (Evetra, ). We have suggested appropriate RPE values sthitsgt protocols
can be followed in patients with blunted cardiowdacresponses to exercise (spinal cord injurylestT6). There is scope for variation in the above Hifbtocols, as the
frequency, intensity and the duration of the higtensity intervals, as well as the characteristios duration of the recovery periods, may all baipaated to change the
nature of the exercise stimulus and thus poteptia# physiological adaptations associated witimitng % 1°°

" Unpublished data
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Table?2

ici Outcome M easures
Authors Study Design Par“c'p‘?‘”F I ntervention
Characteristics Change No Change
6 (3F), 5 PARA, 1
Moderate- .
TETRA, : . 1 VO, peak (10%), 1 PPO (24%) TC, TAG, LDL-C,
. intensity (50 -
TSI;4 mo - 19 yr HDL-C
Age: 26 - 36 60% HRR)
Pre-post ge;26 - 36 yr Frequencyg X wk
Hooker & Time 20 min
Wells*" parallel group continuous .
WERG INT 5 (2F), 3 PARA, 2 Duration: 8 wks ™ VO, peak (12%),1 PPO (13%)
TETRA, ) High-intensity (70 4 TAG (96 + 28 to 78 + 18 mg/dL; £0.10), TC
TSI;2-19 yr - 80% HRR) ™ HDL-C (39 £ 11 to 47 + 8 mg/dL; R 0.10),
Age;23 - 36 yr 4 LDL-C (137 + 26 to 116 + 5 mg/dL; £0.10)
TC, HDL-C, LDL-C, TAG.
3 (Z.F)’ All PARA . Modgrate- 1 VO, peak (17%),4 PPO (24%) Non-significant improvement
TSI; 61 - 225 days Frequency 3 x wk, intensity (40 - ; o )
. . . o in IS (56%, measured via
Age;50 - 54 yr Time 60 min (3 & 2 50% HRR)
- HOMA-CIGMA)
De grootet Pre-post minute work and rest
4l 567 parallel group intervals, respectively:
' ACE INT 3 2 PARA. 1 Accumulated activity
TETRA = 36 minutes) High-intensity (70 P VO, peak (50%),1 PPO (59%)
Duration; 8 wk y -319 -339 i - - -
TSI 43 - 175 days uration: 8 wks Z80 % HRR) JTAG (-31%),4 ISc(léilav'/Z: measured via HOMA TC, HDL-C, LDL-C
Age;20 - 38 yrs )
Frequency: 3 x wk .
5, All PARA Time: ~ 49 min (373 kcal) VO, peak, PPO, TC,
TSI; 15+ 11 yrs a A HDL-C, LDL-C, TAG,
Age; 43 + 14 yrs Dgratlor!. 8 wks glucose
YT Moderate-intensity: 70% peak HR
) Pre-post
SeeteP’ llel
ete pﬂgé ”(‘\]Ir-l(-)Up Frequency: 3 x wk
5, All PARA (1F) Time: 28 min (including 12 min active . TC
- recovery) M VO, peak (9%, trend for an interaction effect ’
TSI 15 + 14 yrs Duration: 8 wks betw P = 0.051),PPO (28% HDL-C, LDL-C, TAG,
Age; 46 + 6 yrs ' etween groups, P = 0.053, (28%) glucose

High-intensity: 85 — 95% peak HR (4 x 4
min intervals)

35



Table 1 LegendACE arm crank exercis¢DL-C high density lipoprotein cholesteréiR heart rateHRRheart rate reserve\T intervention|S insulin sensitivityl DL-C
low-density lipoprotein cholesterd?ARAparaplegicPPO peak power outpuf,AG triglyceride, TC total cholesterolf ETRAtetraplegic,TSItime since injuryVO, peak
peak oxygen uptak&yC waist circumference)ERGwheelchair ergometry.

" Note, authors refer to 70-80% HRR between studigsaderaté? and high-intensity® , respectively. The terminology to describe exsrdntensity has been reclassified
into moderate (40-60% HRR) and high-intensity (D848HRR).

" Unpublished data
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Warm Up (10 minutes)

Cardiovascular exercises (moving around independently in multi-directions)
* Marching with arm swings
* Walking backwards with knees straight
»  Walking with leg curls
» Jogging
e Skipping
e Walking in slow motion (stepping with a one second pause before heel strike)
* Walking with longer strides
* Walking on heels
* Walking on toes

Upper body stretches
» Cervical rotation and side flexion (2 reps x 10 second hold bilaterally)
e Shoulder raises (2 reps x 5 second hold)
»  Shoulder rolls (10 reps bilaterally)

Trunk stretches (with agua noodle)
e Trunk rotation with arms abducted and externally rotated holding the aqua noodle (5 reps bilaterally)

» Arm raises reaching both arms overhead holding the noodle (5 reps bilaterally)
» Side bends pressing the aqua noodle into the water (5 reps x 5 second hold bilaterally)

Gait re-education (20 minutes)

Water Depth

1.1 meters Activity
e Continuous walking
e  Stepping up and down off the
Rt S E steps

Progression

« Increase walking speed
STV M «  Stepping over steps
@ e Change of direction (turning)

* Walking with fins (as tolerated)

1.8 meters

\ 4

Strength exercises (10 minutes)
(2 minutes per exercise; 3 exercises selected per class with as many repetitions carried out as possible within the
time)
Circuits

» Sit to stand (using pool chair)

e Step ups (progression: raising arms up and down holding the aqua noodle)

e Side step ups

e Trunk rotation (performed standing back to back with a partner, passing ball x 10 reps bilaterally)

e Squats with aqua noodle

e Lunges

Group
» Single leg stand (light finger hold at baseline progressed to 10 seconds with no hand support by session12)
e Calf raises (10 reps at baseline progressed to 2 sets x 15 reps by session 12)
» Single leg calf raises (5 reps at baseline progressed to 15 reps by session 12)
e Push downs with aqua noodle (15 reps at baseline progressed to 30 reps by session 12)

Cool Down (5 minutes)
(Performed standing by pool wall at water depth level T8 (8™ thoracic vertebrae), 30 second hold x 3 reps)

* Quadriceps, hamstring and calf stretches performed using aqua noodle



