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ABSTRACT 21 

 22 

Purpose: Recent meta-analyses indicate that sprint interval training (SIT) improves 23 

cardiorespiratory fitness (V̇O2max), but the effects of various training parameters on the 24 

magnitude of the improvement remain unknown. The present meta-analysis examined the 25 

modifying effect of the number of sprint repetitions in a SIT session on improvements in 26 

V̇O2max. 27 

Methods: The databases PubMed and Web of Science were searched for original studies 28 

that have examined pre- and post-training V̇O2max in adults following ≥2 weeks of training 29 

consisting of repeated (≥2) Wingate-type cycle sprints, published up to 1 May 2016. Articles 30 

were excluded if they were not in English, involved patients, athletes, or participants with a 31 

mean baseline V̇O2max of >55 mL·kg-1·min-1 or a mean age <18 years, and if a SIT trial was 32 

combined with another intervention or used intervals shorter than 10 s. A total of 38 SIT trials 33 

from 34 studies were included in the meta-analysis. Probabilistic magnitude-based inferences 34 

were made to interpret the outcome of the analysis.  35 

Results: The meta-analysis revealed a likely large effect of a typical SIT intervention on 36 

V̇O2max (mean ± 90 CL %: 7.8% ± 4.0%) with a possibly small modifying effect of the 37 

maximum number of sprint repetitions in a training session (-1.2 ± 0.8% decrease per 2 38 

additional sprint repetitions). Apart from possibly small effects of baseline V̇O2max and age, 39 

all other modifying effects were unclear or trivial.  40 

Conclusion: We conclude that the improvement in V̇O2max with SIT is not attenuated with 41 

fewer sprint repetitions, and possibly even enhanced. This means that SIT protocols can be 42 

made more time-efficient, which may help SIT to be developed into a viable strategy to impact 43 

public health. 44 

 45 

Key words: systematic review; cardiorespiratory fitness; aerobic capacity; sprint interval 46 

training   47 
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1 INTRODUCTION 48 

 49 

The global increase in prevalence of noncommunicable diseases over the past decades (34) 50 

can be attributed, at least in part, to the low levels of physical activity undertaken by the 51 

majority of the general population (16). In light of this, a key aim of public health organisations 52 

is to increase population physical activity levels (20). Of the health markers that can be 53 

improved by physical activity, maximal aerobic capacity (V̇O2max) is consistently shown to be 54 

the strongest prognostic marker for future cardiovascular health and premature death in cross-55 

sectional studies (38, 56). Furthermore, longitudinal studies demonstrate that improvements 56 

in V̇O2max are associated with substantial reductions in all-cause and cardiovascular mortality 57 

during follow-up (9, 43).  58 

Over the past two decades, relatively high volumes of moderate-intensity aerobic exercise 59 

(total time commitment ≥150 min per week) have consistently been recommended for 60 

improving health markers (20). However, uptake of and adherence to these recommendations 61 

remains low in the general population (25), with lack of time identified as one of the main 62 

perceived barriers to becoming and remaining physically active (39, 41, 71). Therefore, the 63 

seminal finding by Burgomaster et al. (12) that a training protocol consisting of repeated brief 64 

‘all-out’ cycle sprints (i.e. Wingate sprints) is associated with aerobic adaptations, has led to 65 

substantial interest in the use of (sub)maximal high-intensity interval training (HIIT) and 66 

supramaximal sprint interval training (SIT) as time-efficient alternative/adjunct exercise 67 

strategies for improving V̇O2max (21). The most commonly studied SIT protocol consists of 4-68 

7 repeated 30-s Wingate sprints, thus resulting in less than 4 minutes of high-intensity exercise 69 

per session (75). Over the past few years, several meta-analyses have reported the efficacy 70 

of SIT in increasing V̇O2max (24, 53, 65, 75). These have concluded that in healthy individuals, 71 

SIT improves V̇O2max to a similar (24) or greater extent (53) than traditional aerobic training, 72 

with greater benefits for individuals with lower pre-training V̇O2max (53, 75).  73 
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Although these findings provide strong support for the effectiveness of SIT in improving 74 

V̇O2max, surprisingly few efforts have been made to identify ‘optimal’ SIT protocols, e.g. 75 

protocols which will either provide the greatest increase in V̇O2max, or a set increase with the 76 

lowest total training volume or time commitment. Weston et al. (75) reported a likely small 77 

effect of increasing the intervention duration and a possibly moderate effect of increasing the 78 

work-to-rest ratio, but no studies have meta-analysed or directly investigated the potential 79 

effects of the number of sprint repetitions in a SIT session. This parameter is particularly 80 

important as it has a large influence on the total duration of a training session, as well as the 81 

level of fatigue (44) and affective responses (19) experienced by the participant, thus 82 

influencing the likelihood of individuals taking up and adhering to a specific SIT intervention 83 

(26). As the main aim of investigating SIT protocols is generally to identify a time-efficient 84 

alternative to aerobic exercise, there is a need to identify the effect of this training parameter 85 

on the associated increase in V̇O2max. Recent evidence suggests that the positive effects of 86 

SIT on V̇O2max can be attained with fewer sprints (22, 23, 35, 50), and therefore the aim of 87 

the present study was to perform a meta-analysis to provide estimates of the modifying effect 88 

of the number of sprint repetitions in SIT protocols on the increase in V̇O2max in untrained 89 

adult participants following training.   90 
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2 METHODS 91 

 92 

2.1  Literature Search Criteria and Study Selection 93 

This study was undertaken in accordance with the Preferred Reporting Items for Systematic 94 

Reviews and Meta-Analyses (PRISMA) statement guidelines (54). We aimed to identify all 95 

studies that have examined pre- and post-training V̇O2max following a period of at least 2 96 

weeks of training consisting of repeated (≥2) ‘all-out’ Wingate cycle sprints or modifications 97 

thereof (e.g. studies using 10-s, 15-s, or 20-s ‘all-out’ sprints instead of 30-s Wingate sprints). 98 

For this purpose, the electronic databases PubMed and Web of Science were searched for 99 

relevant available records up to 1 May 2016, using the 28 possible combinations of the 100 

independent variable search terms ‘Wingate’, ‘all-out’, ‘sprint’, and ‘interval training’, and the 101 

dependent variable search terms ‘fitness’, ‘aerobic capacity’, ‘aerobic power’, ‘V̇O2max’, 102 

‘V̇O2peak’, ‘oxygen uptake’, and ‘oxygen consumption’. Relevant studies cited in recent meta-103 

analyses were also used (24, 53, 65, 75), as well as our own recent work (52). The following 104 

articles were excluded: 1) review articles / commentaries, 2) articles not written in English, 3) 105 

studies concerning patients, athletes, or participants with a mean baseline V̇O2max of >55 106 

mL·kg-1·min-1 or a mean age <18 years, 4) animal studies, 5) study-trials in which SIT was 107 

combined with another intervention; and 6) SIT studies using non-cycling exercise, intervals 108 

shorter than 10 s, or intervals that were not ‘all-out’. Two authors (NBJV and RSM) 109 

independently conducted the literature search and data extraction, and any discrepancies 110 

were resolved by consensus. The reviewers were not blinded to manuscript journals or 111 

authors. After removal of duplicate records, the titles and abstracts of all identified articles 112 

were screened for records that were clearly not relevant. These articles were omitted before 113 

assessing the full-text versions of the remaining articles for eligibility to be included in the 114 

meta-analysis. If more than one article reported data for the same experiment, duplicate data 115 

for these participants were only included once. The final dataset included the results of 38 116 

trials from 34 studies (Figure 1).  117 



6 
 

 118 

2.2  Data Extraction 119 

Full papers were assessed for mean absolute pre- and post-training V̇O2max. Absolute 120 

V̇O2max (L·min-1) was used rather than relative V̇O2max (mL·kg-1·min-1) as this provides an 121 

estimate of true changes in the ability to take up and use oxygen, independent of possible 122 

concomitant changes in body mass. Relative V̇O2max was used for the five studies for which 123 

absolute V̇O2max data were not available (8, 42, 48, 57, 68). Any data for V̇O2max obtained 124 

at intermediate time-points during the intervention were excluded. The corresponding authors 125 

of papers without the required data were contacted by email; authors from 23 studies were 126 

contacted (1, 2, 5, 6, 10-13, 22, 23, 27, 28, 31, 32, 35, 40, 49, 57, 62-64, 68, 70, 77) and we 127 

received raw data from 17 studies (5, 10-13, 22, 23, 27, 28, 31, 40, 49, 57, 62-64, 77). Graph 128 

digitizer software (DigitizeIt, Braunschweig, Germany) was used to obtain the data from one 129 

study for which absolute pre- and post-training V̇O2max data were only available in a figure 130 

(70). The effect of training was expressed as a percentage change-score. Percentage effects 131 

of SIT on V̇O2max were converted to factors (= 1 + effect / 100), log transformed for the 132 

analysis, and then back transformed to percentages. Effects were weighted using percentage 133 

standard errors derived from exact p-values, or from estimated errors of measurement as 134 

recommended by Weston et al. (75). Under the assumption that studies with similar test 135 

protocols and subject characteristics would have similar typical errors of measurement, the 136 

typical errors from these studies were averaged (via the weighted mean variance) and 137 

assigned to the studies that did not report an exact p value (1, 2, 6, 35, 46, 68, 70). The SE 138 

was then calculated via the relationship between typical error and SE (72). Finally, data for 139 

the following potential moderators were extracted for each study: participant characteristics 140 

(sex, age, body mass index (BMI), baseline V̇O2max), training parameters (intervention 141 

duration, total number of training sessions, maximal number of sprint repetitions per training 142 

session, sprint duration, sprint/recovery ratio, sprint resistance), and study-type (controlled / 143 

uncontrolled; dummy variable). For trials with a no-exercise control group, the effect entered 144 
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into the meta-analysis was intervention minus control. Data for aerobic exercise comparator 145 

groups were not included in the meta-analysis. 146 

 147 

2.3  Statistical Analysis 148 

To evaluate the extent of publication bias, a funnel plot of model residuals versus their 149 

corresponding standard errors was inspected for evidence of asymmetrical scatter (75). This 150 

approach takes into account any heterogeneity explained by the meta-regression, which is not 151 

accounted for in standard funnel plots of observed effects vs. their standard errors. No 152 

evidence of asymmetrical scatter was apparent (Figure 2).  153 

A mixed effects meta-regression model was conducted using the ‘metafor’ package in R 154 

(version 3.2.4, R Foundation for Statistical Computing, Vienna, Austria) (73). The overall effect 155 

of SIT on V̇O2max was evaluated using the mean values of the covariates. The modifying 156 

effects of covariates were evaluated as the difference between levels (e.g. male/female) for 157 

nominal variables. For numeric variables, effects were evaluated as the change in V̇O2max 158 

associated with a two standard deviation (SD) change in the predictor (i.e. a typically low vs. 159 

a typically high value (33)), or a practically relevant value (e.g. three additional SIT sessions 160 

would typically constitute an additional week of training). The random effects in the model 161 

specified a between-study SD, representing the typical difference in the true value of the effect 162 

in different study settings, plus a within-study random effect to account for within-study 163 

repeated measurements (a control treatment and/or more than one training treatment) (75). 164 

The SD was doubled before interpreting its magnitude with the scale used to interpret fixed 165 

effects (66), for the same reason that the magnitude of the effect of a linear covariate is 166 

evaluated with two SD of the covariate (33). We performed a sensitivity analysis to determine 167 

whether the inference relating to the modifying effect of maximum number of sprints was 168 

substantially altered when two potentially influential studies (with 12 and 15 maximum sprints, 169 

respectively (32, 64)) were removed from the analysis. 170 
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We used magnitude-based inferences to provide an interpretation of the real-world relevance 171 

of the outcomes. Uncertainty in effect estimates was expressed as ± 90% confidence limits, 172 

and as the likelihood that the true value was beneficial, trivial, or harmful in relation to threshold 173 

values for benefit (improved fitness) and harm (reduced fitness) (33). The overall effect of SIT 174 

on V̇O2max was interpreted as a clinical outcome, whereby an effect was deemed unclear if 175 

the chance that the true value was beneficial was >25%, with odds of benefit relative to odds 176 

of harm (odds ratio) of <66. Modifying effects were evaluated mechanistically and deemed 177 

unclear if the likelihood that the true value was beneficial and harmful were both >5%. 178 

Otherwise, the effect was deemed clear, and was qualified with a probabilistic term using the 179 

following scale: <0.5%, most unlikely; 0.5-5%, very unlikely; 5-25%, unlikely; 25-75%, 180 

possible; 75-95%, likely; 95-99.5%, very likely; >99.5%, most likely. As robust anchors for the 181 

smallest worthwhile clinical and practical effects relating to V̇O2max were not available, 182 

standardised effect thresholds of 0.2, 0.6 and 1.2 SD were adopted for small, moderate and 183 

large effects, respectively (75). Here, the SD related to the average between-subject variances 184 

for baseline V̇O2max; these corresponded to magnitude thresholds of 1.0%, 2.9% and 5.8%.   185 
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3 RESULTS 186 

 187 

Data available for the 34 studies and 38 trials included in the meta-analysis are shown in Table 188 

1 and Figure 3. The meta-analysis indicated an overall likely large effect of an ‘average’ SIT 189 

protocol on V̇O2max (mean ± 90 CL % effect on the increase in V̇O2max: 7.8 ± 4.0%; Table 190 

2). A possibly small effect was evident for the modifying effect of the maximum number of 191 

sprint repetitions in a training session (-1.2 ± 0.8% decrease per 2 additional sprint repetitions; 192 

Figure 4a). The percentage chances that the modifying effect was negative, trivial or positive 193 

were calculated to be 62.7%, 37.3% and 0.0% respectively. There were possibly small effects 194 

of baseline V̇O2max (-1.5 ± 1.9% decrease per 10 mL·kg-1·min-1 higher baseline V̇O2max; 195 

Figure 4b) and age (-1.1 ± 1.2% decrease per 7 y increase; Figure 4c). All other modifying 196 

effects (intervention duration, number of sessions, sprint duration, recovery time, sprint 197 

resistance, BMI, sex, and study type) were unclear or trivial (Table 2). Unexplained variance 198 

between studies was 2.2 ± 0.8% (likely moderate). The inference relating to the effect of 199 

maximum number of sprint repetitions was not altered when the two studies with the highest 200 

number of sprint repetitions (32, 64) were removed from the analysis (-1.0 ± 1.1%; possibly 201 

small decrease; chances that the modifying effect was negative, trivial or positive of 51.6%, 202 

48.2% and 0.0% respectively).   203 
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4 DISCUSSION 204 

 205 

The main aim of the present meta-analysis was to examine the modifying effect of the number 206 

of sprint repetitions in a SIT session on the increase in V̇O2max following training. Using data 207 

from 34 training studies and 418 participants we demonstrate that the improvement in V̇O2max 208 

with SIT is not attenuated with fewer sprint repetitions, and possibly even enhanced. 209 

Considering the low physical activity levels in the general population (25), and the fact that 210 

lack of time is consistently identified as one of the main perceived barriers to becoming and 211 

remaining physically active (39, 41, 71), this finding has implications for the design of practical 212 

SIT interventions for improving general health. SIT protocols have the potential to be the most 213 

time-efficient interventions that are associated with improvements in key health markers, but 214 

due to the need for recovery intervals following sprints, this potential can only truly be achieved 215 

if the number of sprint repetitions is low. Therefore, our observation that reducing the number 216 

of sprint repetitions will not attenuate the increase in V̇O2max associated with SIT, and in fact 217 

may possibly improve the effect, is an important novel finding. 218 

Based predominantly on the results of studies investigating the dose-response relationship 219 

between regular aerobic exercise and improvements in health markers, it has generally been 220 

accepted that at a given exercise intensity a greater volume of exercise training (in terms of 221 

training duration and frequency) is associated with greater improvements in V̇O2max (20). For 222 

example, in a clinical trial comparing low or high-intensity aerobic training protocols with 223 

matched energy expenditure (Studies of a Targeted Risk Reduction Intervention through 224 

Defined Exercise (STRRIDE I)) the magnitude of change in V̇O2max was greater in the group 225 

exercising at a higher intensity (15). Although the volume of exercise used in HIIT and SIT 226 

protocols is generally reduced compared to aerobic exercise programmes (11, 47, 63), the 227 

principle of a dose-response relationship has not been challenged in these studies directly; it 228 

is the interaction between training volume and intensity that is used to justify the lower volume. 229 

Thus, HIIT and SIT studies investigating the effects of protocols with a lower intensity or a 230 
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shorter sprint duration tend to increase the number of sprint repetitions (45, 69). Apart from 231 

two studies that demonstrated that reducing sprint duration from 30 s to either 15 s (77) or 10 232 

s (31) does not attenuate the improvement in V̇O2max with SIT, there have been no HIIT or 233 

SIT studies that have specifically investigated the dose-response relationship between the 234 

volume of high-intensity exercise and health outcomes. Our meta-analysis provides the first 235 

evidence that at ‘all-out’ supramaximal exercise intensities the generally accepted positive 236 

association between volume of training and magnitude of training adaptations does not hold 237 

true. Thus, research into the health benefits of SIT should increase the focus on protocols with 238 

fewer sprints.  239 

Due to the relatively low number of studies examining the effects of SIT protocols with fewer 240 

than six sprint repetitions, the present meta-analysis was not powerful enough to make 241 

conclusions on the optimal number of all-out sprint repetitions. Only two studies have 242 

investigated the effects of a SIT protocol incorporating just two sprints (50, 52). As one of 243 

these used the largest sample size of all the studies included in the review (n=34 (52)), the 244 

mean 10% increase in V̇O2max observed with this protocol (termed reduced-exertion high-245 

intensity interval training, REHIT) appears to be robust. The greatest improvement in absolute 246 

V̇O2max (17%) was reported by Gibala’s group (22), who modified the original REHIT protocol 247 

to include a third sprint. However, the total duration of this intervention was 12 weeks, whereas 248 

at an intermediate measurement-point after 6 weeks the increase in V̇O2max was 12%, very 249 

similar to the 10% and 14% improvements observed with the original REHIT protocol (50, 52). 250 

Although future studies should determine whether the magnitude of the response for V̇O2max 251 

is different between SIT protocols incorporating 2-4 sprints, the data presented in the present 252 

manuscript suggest that this difference will be small. If this is indeed the case, then a number 253 

of considerations support the use of the smallest number of sprints, i.e. the two sprints used 254 

in the REHIT protocol. Firstly, including a warm-up, recovery, and cool-down, this protocol has 255 

the potential to be the most time-efficient protocol. Furthermore, a drawback of the use of SIT 256 

as a public health intervention is the potential for high associated perceived exertion and 257 
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negative affective responses (8, 21). In this light it is important to point out that the number of 258 

sprint repetitions has been shown to negatively affect both of these parameters (19, 44). 259 

Therefore, effective SIT protocols with fewer sprint repetitions will likely offer the best chance 260 

of sedentary target populations taking up and adhering to a SIT intervention for improving 261 

health (18). With this in mind, the available evidence suggests that two sprints can be 262 

recommended as effective at improving the important health marker of V̇O2max. It could be 263 

argued that considering the apparent linear association between the number of sprint 264 

repetitions and improvement in V̇O2max (Figure 4a), a single sprint could be expected to 265 

produce similar improvements with a lower time-commitment. However, we have recently 266 

performed the first study to investigate the effects of a single supramaximal sprint on V̇O2max, 267 

and observed no significant increase compared to a no-exercise control condition in response 268 

to 4 weeks of training with a sample size of n=15 (67). Further studies are required to confirm 269 

whether supramaximal sprints only improve V̇O2max if they are repeated. Furthermore, in light 270 

of the fact that the majority of studies that have studied the effects of SIT protocols 271 

incorporating 2 or 3 sprint repetitions have used 20-s sprints rather than the more commonly 272 

used 30-s sprints (22, 23, 50, 52), further studies are required to investigate the shortest sprint 273 

duration that can be used without attenuating the adaptations to V̇O2max. 274 

Our present analysis does not provide an explanation for the possibly negative effect of 275 

reducing the maximal number of sprint repetitions on improvements in V̇O2max, but a 276 

discussion of possible mechanisms is warranted. The main limiting factor of V̇O2max is 277 

generally assumed to be maximal cardiac output, possibly through increased blood volume 278 

(7, 55). To date no studies have examined the effect of SIT on blood volume, but there is 279 

evidence in favour (17, 74) and against (36) increases in blood volume in response to HIIT. 280 

Similarly, there is evidence in favour (3) and against (47) increased maximal cardiac output 281 

with SIT, with the latter finding suggesting that the adaptations to SIT for V̇O2max may be 282 

peripheral in origin. Indeed, several authors have proposed that improvements in V̇O2max with 283 

SIT are caused by improved skeletal muscle oxygen extraction due to increased mitochondrial 284 
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density (22, 36, 57, 65, 77). Although it remains unclear whether the improvement in V̇O2max 285 

with SIT is due to central or peripheral adaptations, we propose that both increased blood 286 

volume and increased mitochondrial density could plausibly be explained by the rapid 287 

glycogen depletion associated with supramaximal exercise (51). Firstly, maximal rates of 288 

glycogenolysis in the initial 15 seconds of a supramaximal sprint (58) are associated with the 289 

accumulation of metabolic derivatives, resulting in a hypertonic intramyocellular environment, 290 

influx of water, and a transient ~15-20% drop in plasma volume within a timespan of just a few 291 

minutes (51). This severe disturbance of circulatory homeostasis could be a stimulus for the 292 

body to increase blood volume in response to repeated SIT sessions. Secondly, 293 

glycogenolysis is associated with the release and activation of glycogen-bound 5' AMP-294 

activated protein kinase (AMPK) (59), which through downstream signalling pathways 295 

involving peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α, a 296 

proposed master regulator of aerobic adaptations), could be a mechanism leading to 297 

increased mitochondrial density (30). Glycogen breakdown during repeated supramaximal 298 

sprints has been shown to be completely attenuated by the time of the third sprint (58), and it 299 

is therefore plausible, for both of these speculated mechanisms, that performing just two 300 

repeated supramaximal sprints is sufficient to ‘saturate’ (i.e. maximally activate) the adaptive 301 

response. In other words, if either increased blood volume or mitochondrial density underpins 302 

the changes in V̇O2max with SIT, and if rapid glycogen breakdown regulates those 303 

adaptations, then no additional improvements would be expected if more than 2-3 sprints are 304 

performed in a training session.  305 

Apart from this hypothesis it is also possible that increasing the number of sprint repetitions 306 

will result in ‘pacing’ strategies that affect the ‘all-out’ nature of the sprints (e.g. reduction of 307 

peak and mean power output in initial sprints), or that accumulated fatigue may reduce the 308 

effectiveness of later sprints. Furthermore, the fact that increasing the number of sprint 309 

repetitions does not enhance the improvement in V̇O2max with SIT provides strong evidence 310 

against a role for the magnitude of the acute effects of supramaximal sprints on oxygen 311 
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transfer, energy turnover, or total energy use, as part of the stimulus for improving V̇O2max 312 

with SIT, because for each of these factors the stimulus should be greater with more sprint 313 

repetitions. 314 

A number of limitations to the present meta-analysis should be noted. Firstly, in order to be of 315 

use as a practical intervention for preventing and/or treating inactivity-related chronic disease, 316 

SIT interventions should also be effective at improving for example insulin sensitivity and 317 

glycaemic control, blood pressure, blood lipid profile, and body composition. Therefore, one 318 

limitation is that only V̇O2max was included as an outcome measure in the present analysis. 319 

Whereas insufficient data for a meta-analysis is available for the effects of SIT on blood 320 

pressure (14, 23, 76), blood lipid profile (4, 76), and body composition (69, 76), the effect of 321 

SIT on insulin sensitivity and glycaemic control has received more attention (4, 22, 23, 50, 52, 322 

60, 76). However, the methods used to assess the effects of SIT on these parameters have 323 

varied, with different studies using oral glucose tolerance tests (4, 50, 52, 76), intravenous 324 

glucose tolerance tests (22), euglycemic hyperinsulinemic clamps (60), or continuous glucose 325 

monitoring (23). This means that a meta-analysis of the effects of the number of sprint 326 

repetitions in a SIT protocol on insulin sensitivity and glycaemic control is also currently not 327 

feasible. Nonetheless, the improvements in insulin sensitivity and glycaemic control observed 328 

to date with SIT protocols incorporating two (50) or three sprints (22, 23) are encouraging.  329 

Secondly, due to the number of available SIT studies the power of our meta-analysis is 330 

insufficient to conclude with certainty that the modifying effect of the number of sprint 331 

repetitions is negative; i.e. it remains possible that in reality performing more sprints will result 332 

in the same improvements in V̇O2max (a chance of approximately 1 in 3). However, this is not 333 

of major importance to the significance of our findings: even ‘no effect’ of the number of sprint 334 

repetitions would lead to the logical conclusion that performing SIT protocols with more than 335 

2 or 3 sprints is unnecessary for improving V̇O2max in sedentary individuals. Based on the 336 

present analysis, the chance that in reality the effect of performing more sprints is positive was 337 

calculated as 0.0%.  338 
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A final limitation of our meta-analysis is that only SIT interventions using all-out intensities 339 

were included. Optimising time-efficient interventions aimed at improving general health 340 

requires consideration of various parameters, and exercise intensity is undoubtedly one of the 341 

key parameters affecting the effectiveness of HIIT and SIT protocols. However, due to the 342 

large range of intensities used in SIT and HIIT protocols (~80%-350% of V̇O2max) we felt it 343 

was important to attempt to ‘control’ for this variable in the present analysis by including only 344 

studies that used ‘all-out’ cycling exercise. Nonetheless, there is a clear need for studies 345 

examining the effect of the number of sprint repetitions at lower exercise intensities, e.g. in 346 

HIIT studies.  347 

In conclusion, in the present meta-analysis we demonstrate that SIT is possibly more effective 348 

at improving V̇O2max if fewer sprint repetitions are performed in a training session. 349 

Considering the proclaimed aim of SIT to provide a time-efficient alternative / adjunct to high-350 

volume moderate-intensity aerobic exercise, this finding has important implications for the 351 

design of practical SIT interventions. We put forward that SIT research should move away 352 

from further characterising the commonly used 4-7 x 30-s Wingate protocol, and towards 353 

establishing acceptable and effective protocols. This will require more studies to examine the 354 

modifying effects of a range of training parameters (including number of sprint repetitions, 355 

sprint duration, sprint intensity, and training frequency) on adaptations to key health markers, 356 

as well as exercise enjoyment and acceptability, perceived exertion, and the potential to cause 357 

negative affective responses.    358 
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Figure 1:  Flow diagram of the study selection process 
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Figure 2: Funnel plot of model residuals versus their corresponding standard errors, with 90% 

confidence interval region 
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Figure 3: Main effects of SIT on V̇O2max 
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Figure 4: Modifying effects of number of sprint repetitions (A), baseline V̇O2max (B), and age 

(C) on the effect of SIT on V̇O2max. Data-points represent individual trials included in the meta-

analysis, and the size of the data-point is proportional to study weighting. Solid and dotted lines 

represent the effect of the moderator ± 90% confidence limits respectively.  
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Table 1: Training effects, training protocol parameters, and participant characteristics for the studies included in the meta-analysis 

Reference Study 
design 

SIT-group 
sample 
size (n) 

Proportion 
of men 

Mean baseline 
V̇O2max  

(mL·kg-1·min-1) 

Mean 
age (y) 

Mean 
BMI 

(kg·m-2) 

Training 
duration 
(weeks) 

Total 
training 

sessions 

Sprint 
duration 

(s) 

Recovery 
duration 

(s) 

Resistance 
(% of BM) 

Sprint 
repetitions 

Effect on 
V̇O2max (%) 

Min Max Mean SE 

Metcalfe (50) C 11 0.45 34.2 25.0 23.5 6 18 20 200 7.5 1 2 12.7 2.8 
Metcalfe (52) NC 34 0.50 35.0 34.1 24.6 6 18 20 200 5.0 1 2 9.6 1.5 
Allemeier (1) C 11 1.00 48.7 22.7 24.8 6 15 30 1200 7.5 3 3 13.5 2.0 
Gillen (23) NC 14 0.50 29.5 30.0  - 6 18 20 120 5.0 3 3 11.6 2.0 
Ijichi (35) C 10 1.00 47.7 20.4 21.0 4 20 30 600 5.0 3 3 13.9 1.8 
Gillen (22) C 9 1.00 32.0 27.0 27.0 12 36 20 120 5.0 3 3 17.3 3.3 
Harris (29) C 6 0.00 35.0 22.0 23.6 4 12 30 270 7.5 4 4 9.0 3.4 
Bayati (8) C 8 1.00 44.6 25.0 23.7 4 12 30 240 7.5 3 5 9.6 3.9 
Barnett (6) C 8 1.00 47.6 20.4  - 8 24 30 180 -  3 6 8.2 2.1 
Burgomaster (11) C 10 0.50 41.0 23.6 23.6 6 18 30 270 7.5 4 6 6.3 4.0 
Hazell (31) C 13 0.81 47.0 24.0 24.7 2 6 30 240 10.0 4 6 8.3 2.2 
Hazell (31) C 13 0.81 47.0 24.0 24.7 2 6 10 240 10.0 4 6 8.5 2.4 
Hazell (31) C 13 0.81 47.0 24.0 24.7 2 6 10 120 10.0 4 6 3.9 1.3 
Whyte (76) NC 10 1.00 32.8 32.1 30.3 2 6 30 270 6.5 4 6 8.4 2.6 
Astorino (2) C 20 0.55 43.6 25.0 24.1 2 6 30 300 7.5 4 6 6.3 1.5 
Shepperd (63) C 8 1.00 41.9 22.0 24.8 6 18 30 270 7.5 4 6 7.6 2.3 
Larsen (42) NC 8 1.00 25.8 27.0 26.8 2 6 30 240 7.5 4 6 9.8 3.5 
Ijichi (35) C 10 1.00 46.8 21.3 22.2 4 10 30 600 5.0 6 6 8.4 1.8 
Kiviniemi (40) C 13 1.00 34.7 48.0 25.6 2 6 30 240 7.5 4 6 4.7 1.4 
McGarr (48) C 8 0.75 47.2 25.0 -  2 8 30 240 7.5 4 6 14.2 4.5 
Nalcakan (57) C 8 1.00 40.2 21.7 25.5 7 21 30 270 7.5 4 6 7.0 1.8 
Zelt (77) C 11 1.00 48.6 23.0 25.0 4 12 30 270 7.5 4 6 5.3 2.6 
Zelt (77) C 12 1.00 43.9 22.0 26.0 4 12 15 285 7.5 4 6 7.4 2.7 
Cochran (13) C 12 1.00 50.6 22.0 25.7 6 18 30 240 7.5 4 6 10.3 2.1 
Burgomaster (12) C 8 0.75 44.6 22.0 25.6 2 6 30 240 7.5 4 7 1.4 2.0 
Burgomaster (10) C 8 1.00 48.9 21.0 23.8 2 6 30 240 7.5 4 7 5.6 2.8 
Bailey (5) C 8 0.63 42.0 21.0 23.7 2 6 30 240 7.5 3 7 7.4 2.4 
Trilk (70) C 14 0.00 21.6 30.1 35.7 4 12 30 240 5.0 4 7 11.7 1.6 
Richardson (61) C 9 0.56 40.0 21.0 23.8 2 6 30 240 7.5 4 7 11.2 2.7 
Katz (37) NC 8 1.00 51.8 24.2  - 8 32 30 240 -  8 8 7.0 2.9 
Scalzo (62) NC 21 0.52 41.5 22.5 22.4 3 9 30 240 7.5 4 8 3.7 2.1 
Stathis (68) NC 8 0.75 49.6 22.1 -  7 21 30 180 -  3 10 4.2 2.9 
McKenna (49) NC 8 1.00 47.1 20.9 23.7 7 21 30 180 7.5 4 10 13.7 3.2 
MacDougall (46) NC 12 1.00 50.8 22.7 24.0 7 21 30 180 7.5 4 10 7.5 2.4 
Harmer (27) NC 7 1.00 49.8 22.0 23.5 7 21 30 180 7.5 4 10 6.9 3.1 
Harmer (28) C 7 0.71 43.7 24.0 23.8 7 21 30 180 7.5 4 10 8.2 3.6 
Skleryk (64) C 8 1.00 29.7 40.2 32.2 2 6 10 80 5.0 8 12 -1.7 2.9 
Hellsten-Westing (32) NC 11 1.00 53.0 23.6  - 6 18 10 50 7.0 15 15 2.4 2.5 

Abbreviations:  BM - body mass, BMI - body mass index, C - controlled, NC - not controlled, SE - standard error, SIT - sprint interval training
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Table 2 Main effect of SIT on V̇O2max and modifying effects  

 Effect on V̇O2max  

(mean %, ± 90% CL) 
Inference 

Main effect: 7.8 ± 4.0 Likely large increase 

Modifying effects:   

2 more sprint repetitions*  -1.2 ± 0.8 Possibly small decrease 

3 more training sessions* 0.7 ± 0.4 Likely trivial change 

10 s longer sprint duration* 0.6 ± 1.3 Possibly trivial change  

60 s longer recovery interval duration* 0.2 ± 0.3 Most likely trivial change 

3% of BM greater sprint resistance 1.0 ± 2.3 Unclear 

10 mL·kg-1·min-1 lower baseline V̇O2max 1.5 ± 1.9 Possibly small increase 

7 years higher age -1.1 ± 1.2 Possibly small decrease 

6.2 kg·m-2 higher BMI 0.8 ± 2.7 Unclear 

Female sex -0.2 ± 3.5 Unclear 

Uncontrolled study -0.9 ± 2.1 Unclear 

The reference condition is an intervention using 14 SIT sessions and a maximum of 7 repeated 30-s sprints with 

240 s recovery. Effects of SIT are presented as the % change compared to pre-training. *, indicates a practically 

relevant value was chosen to evaluate the effect magnitude; other numeric modifiers were evaluated as a 2 x SD 

change in the parameter. Abbreviations: BMI: body mass index, CL: confidence limits, SIT: sprint interval training, 

V̇O2max: maximal aerobic capacity. 

 

 


