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Abstract Wolbachia is possibly the most studied reproductive parasite of arthropod
species. It appears to be a promising candidate for biocontrol of some mosquito borne
diseases. We begin by developing a sex-structured model for a Wolbachia infected
mosquito population. Our model incorporates the key effects of Wolbachia infection
including cytoplasmic incompatibility and male killing. We also allow the possibility
of reduced reproductive output, incomplete maternal transmission, and different mor-
tality rates for uninfected/infected male/female individuals. We study the existence
and local stability of equilibria, including the biologically relevant and interesting
boundary equilibria. For some biologically relevant parameter regimes there may be
multiple coexistence steady states including, very importantly, a coexistence steady
state in which Wolbachia infected individuals dominate. We also extend the model
to incorporate West Nile virus (WNv) dynamics, using an SEI modelling approach.
Recent evidence suggests that a particular strain of Wolbachia infection significantly
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reduces WNv replication in Aedes aegypti. We model this via increased time spent in
the WNv-exposed compartment for Wolbachia infected female mosquitoes. A basic
reproduction number Ry is computed for the WNv infection. Our results suggest that,
if the mosquito population consists mainly of Wolbachia infected individuals, WNv
eradication is likely if WNv replication in Wolbachia infected individuals is sufficiently
reduced.

Keywords Wolbachia - Sex-structure - West Nile virus - Epidemic - Stability

Mathematics Subject Classification 92D30 - 34D20 - 34C11

1 Introduction

Wolbachia is a maternally transmitted intracellular symbiont, and it is the most com-
mon reproductive parasite infecting a significant proportion of insect species, see e.g.
O’Neill et al. (1997), Werren (1997). Wolbachia typically inhibits testes and ovaries of
its host, and it is also present in its host’s eggs. It interferes with its host’s reproductive
mechanism in a remarkable fashion. This allows Wolbachia to successfully establish
itself in a number of arthropod species. Well-known effects of Wolbachia infections
include cytoplasmic incompatibility (CI for short) and feminization of genetic males
also known as male killing (MK for short), see e.g. Caspari and Watson (1959), Hoff-
mann and Turelli (1997), Telschow et al. (2005a,b). Another important well-known
effect of Wolbachia infections is the inducement of parthenogenesis, see e.g. Engel-
stadter et al. (2004), Stouthamer (1997). All of these contribute to the fact that the
mathematical modelling of Wolbachia infection dynamics is both interesting and chal-
lenging.

In recent decades a substantial number of mathematical modelling approaches
have been applied to model different types of Wolbachia infections in a variety of
arthropod species. Perhaps most frequently researchers have been focusing on the
development of mathematical models for Wolbachia infections in mosquito species.
Many of the earlier models took the form of discrete time matrix models, written
for population frequencies, see e.g. Turelli (1994), Vautrin (2007), and the references
therein. Using frequency-type models a number of researchers investigated the pos-
sibility of coexistence of multiple Wolbachia strains, each of which exhibits different
types of the reproductive mechanisms mentioned earlier, see e.g. Engelstédter et al.
(2004), Farkas and Hinow (2010), Keeling et al. (2003), Vautrin (2007). Among oth-
ers, Wolbachia strains have been investigated as a potential biological control tool
to eradicate mosquito borne diseases. Originally the focus has been on Wolbachia
strains that induce life-shortening of their hosts. This is because for many vector
borne diseases only older mosquitoes are of interest from the point of view of disease
transmission. Therefore the use of (discrete) age-structured population models has
become increasingly prevalent, see e.g. Rasgon and Scott (2004) and the references
therein. Fairly recently, in McMeniman (2009) the results of laboratory experiments
were reported envisaging a successful introduction of a life-shortening Wolbachia
strain in the mosquito species Aedes aegypti. In McMeniman (2009) three key fac-
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tors, namely, strong CI, low fitness cost and high maternal transmission rate, were
identified as drivers of a successful introduction of the new Wolbachia strain into an
Aedes population. To this end researchers have developed and analysed continuous
age-structured population models for Wolbachia infection dynamics, which take the
form of partial differential equations, see Farkas and Hinow (2010); which can often
be recast as delay equations, see e.g. Hancock et al. (2011a,b).

In recent years there have been substantial modelling efforts to theoretically inves-
tigate the potential of biological control tools for limiting the impact of mosquito
borne diseases. It is now widely recognised that biological control represents a viable
alternative to established methods such as the use of insecticides and bed nets. Among
others, the sterile insect technique has been investigated in the recent papers (Dufourd
and Dumont 2012; Li 2011; Li and Yuan 2015). More recently, it was reported that
particular strains of Wolbachia (completely or almost completely) block dengue virus
replication inside the mosquito hosts, see for example (Blagrove 2012; Hoffmann
2011; Walker 2011). To this end Hughes and Britton (2013) developed a mathematical
model for Wolbachia infection as a potential control tool for dengue fever. Their work
suggests that Wolbachia may be effective as such a control measure in areas where
the basic reproduction number Ry is not too large. These recent results underpin the
possibility that Wolbachia may be a promising candidate for biocontrol of mosquito
borne diseases, in general. Besides dengue, West Nile virus (WNv) is another well-
known mosquito borne disease of current interest. WNv infection cycles between
mosquitoes (especially Culex species) and a number of species, particularly birds.
Some infected birds develop high levels of virus in their bloodstream and mosquitoes
can become infected by biting these infectious birds. After about a week, infected
mosquitoes can transmit the virus to susceptible birds. Mosquitoes infected with West
Nile virus also bite and infect people, horses, and other mammals. However, humans,
horses, and other mammals are ‘dead end’ hosts. This virus was first isolated in the
West Nile region of Uganda, and since then has spread rapidly, for example in North
America during the past 12 years. Since there is no vaccine available, the emphasis has
been mainly on controlling the vector mosquito species. Some recent experiments, see
Hussain (2013), have confirmed that replication of the virus in orally fed mosquitoes
was largely inhibited in the wMelPop strain of Wolbachia. Interestingly, in a recent
paper, Dodson et al. (2014) demonstrated in laboratory experiments that the wAIbB
Wolbachia strain in fact enhances WNv infection rates in the mosquito species Culex
transalis. However, in Dodson et al. (2014) the Wolbachia was not a stable mater-
nally inherited infection, but rather they infected transiently somatic mosquito tissues,
and hence the wAIbB infection did not induce significant immune response in the
mosquitoes. This is probably key to their findings. Here we will focus on modelling
a maternally inherited Wolbachia infection in a population model, which hypothe-
sizes a large number of successive generations. Nevertheless, the findings in Dodson
et al. (2014) underpin the importance of Wolbachia research in general and highlight
the importance of contrasting the findings of new theoretical, laboratory and field
investigations.

In this work we introduce sex-structured models for Wolbachia infection dynamics
in a mosquito population. This will allow us to incorporate and study the well-known
effects of CI and MK of particular Wolbachia infections, simultaneously. First we will
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treat a model which only involves the mosquito population itself. Then we will use this
model as a basis for a much more complex scenario incorporating WNv dynamics in a
Wolbachia infected mosquito population. The full WNv model will naturally include
the bird population, too.

2 Model for a Wolbachia infected mosquito population without WNv
2.1 Model derivation

We start by introducing a model for a Wolbachia infection in a sex-structured mosquito
population, incorporating sex-structure using a well established approach originally
due to Kendall (1949). More recent papers of Hadeler (2012) and Hadeler et al. (1988)
derive and discuss sex-structured pair formation models in depth. We only model
(explicitly) the adult population of mosquitoes. Our model allows us to take into
account the well-known effects of cytoplasmic incompatibility (CI), incomplete mater-
nal transmission, fertility cost of the Wolbachia infection to reproductive output, and
male killing (MK), at the same time. We note that it was shown in Engelstidter et al.
(2004) that a stable coexistence of MK and CI inducing Wolbachia strains is possible,
in principle. Introduction of male killing Wolbachia strains in vector populations may
have a significant effect on the disease dynamics, as typically only female mosquitoes
are transmitting the disease. Also note that according to Walker (2011), those Wol-
bachia strains which cause greater disruption, as in the case of dengue transmission,
confer greater fitness costs to the mosquitoes. This may well be the case for West Nile
virus, hence we account for the reduced reproductive output in our model.

We deduce our starting model from basic principles. In particular, first we deduce
mating rules arising at the individual level. Starting with the adult population of size N,
we construct arandom mating graph. This is a bipartite graph, not necessarily complete,
in which each vertex has degree at most one. The vertices represent male and female
individuals and edges represent realized matings. Let us denote by M, M,,, F, F, the
numbers of un/infected males and females, respectively. For every adult mating pair,
offspring is created according to the following rules. Below, m, f and m,,, f,, denote
uninfected/infected male/female individual, respectively. The parameter 8 models the
reduced reproductive output of Wolbachia infected females, T measures maternal trans-
mission in the sense that it is the probability that a Wolbachia infected mother passes
on the infection to its offspring, g measures CI in the sense that when a Wolbachia
infected male mates with an uninfected female, g is the probability that there is no
viable offspring. Finally, y measures MK in the sense that it is the probability that a
Wolbachia infected male larva dies during its development. A complete list of param-
eter values will be given later on. With this notation the mating rules are described
below.

(1) m x f: create one pair of the same type (m, f).

(2) m x f,: with probability g, create no offspring. This reflects the fecundity reduc-
tion due to the Wolbachia infection. In the complementary case, with probability
(1 = B)t(1 — y), create a new pair (my,, fy,), at the same time with probability
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(1 — B)ty create (0, f), i.e. a female only brood. This accounts for male killing
(MK). With probability (1 — 8)(1 — t) create a new pair (m, f).

(3) my, X fy : same as above.

(4) my, x f:with probability g, create no offspring. This is the effect of cytoplasmic
incompatibility (CI). With probability 1 — ¢, create a new pair (m, f).

Notice that, in contrast to Farkas and Hinow (2010), the sex ratio at birth will not
be 1 : 1, it is distorted due to male killing. Also we allow different mortality rates
for males and females, in general. Therefore, even in the case when there is no male
killing, the sex ratio would be distorted, in general. Also, we assume that any offspring
resulting from CI crossing is uninfected.

We apply the mating rules described above to construct the birth function in our
model. If the population sizes in the four compartments are denoted by M, My,, F, F,,
respectively, then the total number of possible matings is (M + My,)(F + Fy). The
total number of matings for example between uninfected males and infected females
is M F,,. Hence the probability that a given mating of type m x f,, takes place is
m To compute the total number of matings per unit time we follow the
harmonic mean birth function approach from Keyfitz (1972). Accordingly, the total
number of matings is proportional to

( F + F, >+M< F + F, )
M+ My, +F+ Fy, Y\M+ My + F + Fy
M+ M M+ M
o ) =
M+ My + F + Fy M+ My + F + Fy
(M + My,)(F + Fy)

=2 . 2.1)
M+ My + F + F,

Hence the birth rate of offspring arising for example from the mating between an unin-
fected male and an infected female is proportional to T, TP We also naturally
assume that there is competition between female individuals for finding an appropriate
water reservoir to lay eggs. This is taken into account via a function A(F;,;q7) Which
we assume (at least in the first instance) to be a monotonically decreasing function of
the total number of females F;4, to allow for this competition for nesting places.
Though A(Fozq1) is decreasing, it may approach a positive limit as Fyy;q; — 00. This
is to allow for the fact that gravid females that cannot find a place to lay their eggs
may destroy eggs previously laid by others, and lay theirs instead. Thus the overall
egg-laying rate should approach a positive limit as F;,rqy — 00, and therefore we
assume that A(Fypq7) is a decreasing function such that A(co) > 0. Based on the
individual mating rules explained earlier, our model reads as follows.

M/ )V(Ftalal)
#) = —umM + T(MF +A -0 -0)MFy + My Fy)
+ A =qgMyF), (2.2)
F _ )\(Flotal)
(1) =—psF + T(MF +A =0 -0)MFy + My Fy)
+ (1 —-q)MyF), 2.3)
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M/ )\(Ftotul)

w(t):_ﬂmwa+T(l Bt —y)MFy, + MyFy), (2.4)
F/ _ )\(Ftotal)

w®) = —ppuw by + T(l —B)t(MFy + My Fy). (2.5)

A complete list of the variables, parameters and coefficient functions appearing in
model (2.2)—(2.5) is given below.

M : number of uninfected male mosquitoes.

F': number of uninfected female mosquitoes.

M,,: number of Wolbachia infected male mosquitoes.

F,,: number of Wolbachia infected female mosquitoes.

M:otal = M + My, total number of male mosquitoes.

Fioral = F + Fy, total number of female mosquitoes.

N = Myp1a1 + Fiorai, total number of mosquitoes.

B: reduction in reproductive output of Wolbachia infected females.

7: maternal transmission probability for Wolbachia infection.

g probability of cytoplasmic incompatibility (CI).

y: probability of male killing (MK) induced by Wolbachia infection.
A(Frorar): average egg laying rate, which depends on the total number of female
mosquitoes.

m: per-capita mortality rate of uninfected male mosquitoes.

M r: per-capita mortality rate of uninfected female mosquitoes.

WUmw: per-capita mortality rate of Wolbachia infected male mosquitoes.
M fw: per-capita mortality rate of Wolbachia infected female mosquitoes.

Model (2.2)—(2.5) is our starting point for a study of the Wolbachia infection dynamics
in a sex-structured mosquito population. Later, we will expand this model by intro-
ducing WNyv infection.

2.2 Positivity and boundedness

First we begin by establishing positivity and boundedness of solutions of model (2.2)—
(2.5).

Proposition 2.1 Assume that A is a monotone decreasing function such that

F lim OO)L(Ftotal) = Amin > 0, A0) > min{wy, wrw}l, Amin < min{ur, sy},
total =
(2.6)

hold. Then, the variables (M, F, My, Fy,) satisfying equations (2.2)—(2.5) remain
non-negative if they are non-negative initially, and they remain bounded for all times.

Proof First note that the solution variables remain non-negative for all time; this
follows from results in Smith (1995). Adding equations (2.3) and (2.5), and noticing
that 8 € [0, 1], ¢ € [0, 1], we have

F' < . F }L(Ftatul) M F
voral < —minfu g, wfw} Froral + m total Frotal
ota ota
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. M Frotal)
=- mln{,uf, Mfw}Ftatul + ;thamlFtolal
Mioral

= (= min{s, wpuw} + A (Frora)) Frotal- 2.7
Therefore,

lim sup Fypq1(t) < F

—>00

where F is such that A(F) = min{u 7, it r}. Note F exists since we assumed A is
monotone decreasing and satisfies (2.6).

Since Fjyq remains bounded it follows that M., is bounded as well, because
adding (2.2) and (2.4) we have

- A(Frotal)
Mt/m,‘al < —min{wm, Wmw}Mrotal + mﬁ/hmalﬂoml
< — min{wm, wmw}Mrotal + A(Ftotal) Frotal

< —min{wm, Wmw}Mrotal + B, (2.8)
where B is an upper bound for A(Fyorai () Frorai (), Which exists since Frorq1(f) is

bounded and therefore s0iS A (Fr o141 (1)) Frorai (t). From the differential inequality (2.8),
we can conclude that M, is bounded, too. O

2.3 Boundary equilibria and their stability

It is straightforward to see that model (2.2)—(2.5) has only one non-trivial Wolbachia
free boundary equilibrium E* = (M*, F*, 0, 0), where F* satisfies

WF®) = s+ . (2.9
and
F*
=R (2.10)
m

under the assumptions that A(0) > i r + wp, A is a decreasing non-negative function,
and A(Fypra1) = Amin (With A, sufficiently small) as Fypq1 — 00.

Note that there is no Wolbachia infected boundary equilibrium unless T = 1, a case
that we shall treat separately later.

Theorem 2.1 Suppose that A is a monotone decreasing non-negative function such
that A(Frotal) = Amin a8 Fioral — 00, With Ay sufficiently small, A(0) > (5 +
and

nr(l—p)r
M fw

<1 @2.11)
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Then, the Wolbachia free boundary equilibrium E* = (M*, F*, 0, 0) of model (2.2)—
(2.5) is locally asymptotically stable.

Proof Linearisation of system (2.2)—(2.5) at the equilibrium E* yields the following
partially decoupled systems. The first system below is just the linearisation of equations
(2.4)—(2.5) at the steady state, which we shall use to show that (M,,(¢), Fy, (1)) —
(0,0) as t — oo. System (2.13) is just system (2.2)—(2.3) in the case My, = F,, = 0.

/ AFT) *
M, = —pumwMy + ﬁ(l — Bt —y)M Fy,
M* + F 2.12)
F, = wl M) 1 M*F,
w — MHfw w+m( _ﬂ)f ws
M = —pu.M + ME) e
— T Mm ’
M+ F (2.13)
F' =—usF+ ME) g
My FET
From the second equation of (2.12), it is clear that if
LF*)(I — By M* (2.14)
M* + F* T < /"l‘fllh .

then F,(t) — 0ast — oo. Then M, (t) — 0 ast — oo follows from the first
equation of (2.12). Since M™* and F* are given by (2.9) and (2.10), inequality (2.14)
is equivalent to assumption (2.11).

It remains to prove the local stability of (M, F) = (M™*, F*) as a solution of system
(2.13). The Jacobian matrix of system (2.13) evaluated at (M*, F*) is given by

1 _ 2 A (F*)F*
Hf+ lm \ M —Wfim + A (F*)F g

The eigenvalues A of J(M*, F*) satisfy the characteristic equation
AP 4 Quuppim — W (FYF ) A = 2 (FYF* (g + )i g pim = 0.
Since A(-) is a non-negative decreasing function, A'(F*) < 0. We have
At + Ao =—Quppm — N (F)F*uyp) <0,

and
MDAy = =N (F)F* (g 4 pm)itfitm > 0,

which implies Re A; < 0 and Re Ay < 0, so that (M*, F*) is locally stable as a
solution of (2.13). Therefore, the Wolbachia free equilibrium E* = (M*, F*, 0, 0) is
locally asymptotically stable as a solution of the full system (2.2)—(2.5). O
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If r = 1, i.e. we have complete maternal transmission of Wolbachia, then a bound-
ary equilibrium of the form (0, 0, M}, F5) may exist. The components of such an
equilibrium solution must satisfy

/meM:Z =(1- V)H«wa,T)s
AFY) (2.15)

=—2_(1-pM:.

Moreover, (1 — )i f + pmw = (1 = B)(1 — y)A(F,;) must hold. Next we study the
linear stability of such equilibrium, showing that it is linearly stable under condition
(2.16) below. Inequality (2.16) does not depend on y, the male killing rate, but the
steady state components M, and F}; do depend on y in the manner expected (for
example, My = 0 when y = 1). Although Theorem 2.2 only apples if T = 1, we will
be interested later on in the case when t is just slightly less than 1. Then, maternal
transmission is imperfect and Wolbachia infected females produce small numbers of
uninfected offspring. We anticipate that as t decreases from 1 to a value just less
than 1, the equilibrium (0, 0, M}, F,;) shifts to another nearby position with small
numbers of Wolbachia uninfected individuals and large numbers of infected ones;
with no change of stability for t close enough to 1. The existence and stability of
such an equilibrium will be important later on when we introduce West Nile virus
(WNyv) disease dynamics because, at a WNv-free equilibrium with large numbers of
Wolbachia infected mosquitoes, the basic reproduction number Ry for WNyv is likely
to be less than 1. The implication is that Wolbachia infection in mosquitoes has the
potential to control WNv infection. It does so by disrupting WNv virus replication
causing WNv infected mosquitoes effectively to remain permanently (or for a very
long time) in the latent stage of WNv.

Theorem 2.2 Assume that t = 1, A is monotone decreasing with - Iim  A(Fiptal) =
total —> O

Amin, (Amin sSufficiently small) and

I =yV)fw + tmw
1= —=y)

A(0) >

holds. Then, an equilibrium of the form (M, F, My,, F,,) = (0,0, M, F}) exists,
and it is locally stable as a solution of (2.2)—(2.5) if

(I =@pgw <A —=Puy. (2.16)

Proof The proof is similar to that of Theorem 2.1. The linearisation around
(0,0, M, Fy) yields a system of linear equations for (M, F) that (when t = 1)
are decoupled from the rest of the system. Moreover, it may be shown that (M, F) —
0,0)ast —> oo if

A - MMF)
My + F}
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holds, which becomes inequality (2.16) when the equilibrium equations (2.15) are
invoked. Then, the F,, and M,, equations are considered, in the case when T = 1 and
F = M = 0. Tedious computations yield that the linearisation of that system around
the steady state (M, F,s) has the Jacobian matrix equal to ((1 — y)u ruw + JT
times

(—(1 —Piutme =B =) [(155) 1, + ¥ (FDF30 - y)ufw]>
i ~ i puwbtmn + (U= N (F3)F5 (L= y)itfu

and it may be further shown that its eigenvalues both have negative real parts. Thus
we conclude that the steady state (0, 0, M, F,)) is locally asymptotically stable. O

Next we prove that, under certain conditions, both infected and uninfected
mosquitoes die out. Note, however, that (0, 0, 0, 0) is not technically an equilibrium
of (2.2)—(2.5).

Theorem 2.3 Suppose that A is monotone decreasing and that 0 < AM(Fiora1) <
W+ o for all Fiorqp > 0, and that

(s + )1 = B)T < iy, 2.17)

Then (M(t), F(t), My(t), Fy(t)) — (0,0,0,0) ast — oo ifall of the four variables
are sufficiently small initially.

Proof From (2.4) and (2.5),

M, (1) < = om M (1) + (g + ) (1 = BYT(L — ) Fyy (1), (2.18)
Foy(t) < = Fo(6) + (g + ) (1 = BYTFy (1), (2.19)

From (2.19) and (2.17) we have F,(t) — 0 ast — oo. Then inequality (2.18) implies
that M, (t) — 0 also. With M,, = F,, = 0, we are reduced to system (2.13) and we
now show that (M (¢), F(t)) — (0,0) as t — oo, though this result is local, i.e. for
small introductions of F and M. Note that (M, F) = (0, 0) is not an equilibrium of
(2.13), due to the singularity, but we can remove that singularity by introducing the
new variable £ = F/M. In terms of the variables & and M, system (2.13) becomes

1 _
E() = — (g — e + ( g(”) EOMMDED),

I+&0) (2.20)
M/(t) = —pm M) + (’)5((t))x<M<r>s<r»

We now show that (§, M) = (£, 0) is a locally stable steady state of (2.20), where

1O + fm — iy

£ = ,
3O) + s — fm

2.21)
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provided £* > 0. The latter is not automatic. However, note that, from the first equation
of (2.13), M'(t) < (A(0) — ) M(t). Therefore, if A(0) < u,, then M(t) — 0. The
second of (2.13) then gives F'(t) < —urF (1) + A(0)M(t) so that F(r) — 0. By
similar reasoning we arrive at the same conclusion if A(0) < puz. Therefore, we
may assume henceforth that A(0) > max(u 7, uy) and, under these circumstances,
&* > 0. The linearisation of the second equation of (2.20) near the equilibrium
(&, M) = (£%, 0) reads

%-*

M'(1) = —jum M (1) + 1(0) e

1
M) = 5 O0) = pm — pp)M (@),

and therefore, since A(0) < ;, +p , we have M (¢) — 0. In this limit the £ equation
becomes

1-§@)
1+&(t)

E'M) =~y — mmE@® + ( )S(I)A(O) = F(@),

and to show that £* is locally stable as a solution of this equation, it suffices to show
that F/(§*) < 0. But, after some algebra, we have

ety = - GO0 = (m = 1p)?.

2)(0)
To show that F/(§*) < 0 holds, it suffices to show that A(0) > |, — wrl, i.e. that
both A(0) > wy — py and A(0) > wy — y, hold. But this follows from the fact that
we are now restricting to the case when A(0) > max(u s, i,,). Therefore, the proof
of the theorem is complete. O

2.4 Existence of strictly positive steady states

In this section we examine the possible existence of coexistence steady states
(M, F, My, F,) of model (2.2)—(2.5), i.e. steady states in which each component
is strictly positive. It turns out that in some parameter regimes multiple coexistence
steady states may exist while, in others, there is just one or none at all. An under-
standing of these properties helps us to understand how one might exploit Wolbachia
infection in mosquitoes to effectively control WNv. In this section we simplify by
assuming that y = 0, i.e. that there is no male killing.
At the steady state, dividing (2.2) by (2.3), and (2.4) by (2.5), we obtain

m=r m, =F," (2.22)

Mm Mmw

From (2.3) and (2.5) we then obtain

o
F(1+5) +F (14 22)

nrF =
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m

<”“fF2+(1 ﬂ)(1—r)<“fFF + B g )
I m

m Mmw

+(1— )“f’”FF>

(2.23)
mw
A jz iz
wrwlFy = p * " ((1—/3)1’ <—fFFw+ ‘wauZ))),
(] + M_VZ) + F, (] + H«Tfl:) Hm Hmw
(2.24)

respectively, where A, = A(F + Fy,). From (2.24) we have
1w M fwlt

Mmw Hom

_x*(F(l—ﬂ)r“ +F, (1—ﬂ)z“f“’>. (2.25)
120 Kmw
From (2.25) we obtain
Furi(My) = Fra(As), (2.26)
where
2
Wy 1
1) = g + L2 — a1 = pre LY,
/’me mw
200) = —pu — Hpw L 4 a1 = pr L 2.27)
Mm Mm

Note that if at the strictly positive steady state, we have «1(A,) = 0, then this neces-
sarily implies that x> (1,) = 0. This is only possible if

Brw _ Bmw (2.28)
Ky Km

holds. This case is excluded from Theorem 2.4 but is treated in the next subsection
If (2.28) does not hold then, using (2.27), from (2.23) we obtain

2
0= k(1) (Mf B “f> — 31— (1 — 1) L2

m I’Lm muw
Hf 2 w
+ i1 (k2 (M) <uf L A W B Y4 N Yol A G q)ﬂ> .
Mmw Mm Hmw

(2.29)

The right hand side of (2.29) is, in general, a cubic polynomial in A,. If there exists a
positive root AL, then since A is a strictly monotone function, a corresponding unique
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Fl+ F,L value may be found. From (2.23) we may then determine a unique solution
(F', Ful)). Further analytic progress is possible in certain particular cases of interest,
which we now investigate. The first concerns the case when 7 = 1, or when 7 is very
close to 1, meaning that maternal transmission of Wolbachia is complete or nearly
complete. This is in fact the biologically relevant case for a number of CI inducing
Wolbachia strains in mosquito species treated in the literature, see e.g. Engelstidter
et al. (2004). This leads us to expect the existence of a steady state of (2.2)—(2.5)
with large numbers of Wolbachia infected mosquitoes and few, or no, uninfected
ones. The stability of such a steady state still depends on the other parameter values,
and it will be stable if there is a high probability of mating between infected males
and uninfected females resulting in no offspring (the effect of CI), i.e. g is close to
I; see also inequality (2.16) for the case T = 1. The existence of a stable steady
state of (2.2)—(2.5) with the above mentioned properties is important because the low
number of Wolbachia uninfected females implies that the quantity F,", featuring in
the first term of the parameter R( defined later in (3.47), is small. The likelihood
of Ry being less than 1 (the condition for WNv-eradication) depends mostly on that
first term involving F;", since the second term in (3.47) involves a small parameter
¢ and is automatically small. For these reasons, we are interested in stable steady
states of model (2.2)—(2.5) of the form (M*, F*, M}, F,;), with M* and F* small
compared to M} and F,; (and, ideally, M* = F* = 0). Therefore, referring to
Theorems 2.1 and 2.2, and restricting for now to the case T = 1, we ideally would
like the boundary equilibrium (M*, F*, 0, 0) of Theorem 2.1 to be unstable, and
the boundary equilibrium (0, 0, M, F,5) of Theorem 2.2 to be linearly stable. The
conditions for this, when t = 1, are that the inequalities u (1 — 8) > sy and
(I —q@)pfw < (1 — B)uy should hold simultaneously, but note that the second of
these follows from the first. For t = 1, guided by elementary competition theory,
instability of one boundary equilibrium and stability of the other suggests that there
will be no coexistence equilibrium, and this is what we prove in Theorem 2.4 below.
If 7 is decreased from 1 to a value slightly below 1, there is no longer a boundary
equilibrium with only Wolbachia infected mosquitoes present. What happens is that
the equilibrium (0, 0, M;, F,¢), which exists when t = 1, moves to another nearby
pointin R? , so that Wolbachia infected mosquitoes now coexist with uninfected ones,
the former being dominant. Very importantly, this will be the only coexistence steady
state if T is sufficiently close to 1, and it is a desirable steady state for WNv eradication
because particular Wolbachia strains can significantly reduce WNv virus replication
in mosquitoes, see Hussain (2013).

Theorem 2.4 Suppose thaty =0, 7 =1, w1 — B) > Wrw, Wl fuw 7 I flmw,
and that A is a strictly positive decreasing function with A(00) = Apin (and Apin
sufficiently small). Then system (2.2)—(2.5) has no coexistence equilibrium with
M*, F*, M}, Fy > 0.

If the foregoing hypotheses hold, except that T is slightly less than 1, then system
(2.2)—~(2.5) has precisely one coexistence equilibrium in which Wolbachia uninfected
mosquitoes exist in very small numbers relative to Wolbachia infected ones.
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Proof Since we assume t = 1, the form of (2.29) simplifies and in fact we may cancel
k1(As) since we seek equilibria in which M*, F*, M}, F;; > 0. After some further
algebra, we find that there is just one value for A, given by

2 2
K fw it Wf I 2 Kfi
gl — pyLUEL — ﬂ)( / f“’——f)+q—f“’

mwMm mw Mr;z Mm Lemw (2.30)
n
+U«fﬂfw_(1_q fw.
m Mmw

If A« < O then the equation A, = A(F + F,,) cannot be solved for F + Fy,, so we
may restrict to the case that A, > 0. Recalling that «; and «» are defined by (2.27),
we find, with A, given by (2.30) and with T = 1, that

Mm I fw 1 :|
) =1 — ——— w+ —((1— —Urw) |, 2.31
K1 (hy) < Wme)[uf +q(( By — thfw) (2.31)
and
1 Mmew)
Ay) = —((1 — — )1l ————). 2.32
K2 (As) q(( By — iy )( Vot (2.32)

Since w (1 — B) > iy it follows that the sign of the product «1(A4)K2(As) is the

same as the sign of
<1 _ Mmﬂf'w) (1 _ Mmew)
K f mw Mm I fw

and, since we assume [y /dfuw 7 M fMAmw, it follows that «1 (A )k (Ay) < 0. This
makes it impossible to find F > 0 and F,, > 0 satisfying (2.26), and so there is no
coexistence equilibrium.

Next we prove the second assertion of the theorem. Let T = 1 — ¢. Since we expect
the equilibrium (0, 0, M}, F), which exists when 7 = 1, to move to another nearby
point when 7 = 1 — ¢, for € sufficiently small, we seek an equilibrium of (2.2)—(2.5)
of the form

M(e) =eMD +2M@ + ...

F(e) =eFD +&?F@ + ...
My(e) =M} +eMD +2MP + ...,
Fy(e) =F; 4+ eFV +2FP 4 ...

Coefficients of ¢ yield

A(FE)

MM =
M + F

[(1 — BMEF: + (1 — q)M:;F(”] , (2.33)
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and
AF)
) _ w _ * ok _ * (1)
e [(1 BYMEF: + (1 — Q)M:F ] (2.34)
Using
A(Fy)
=—2 _(1-B)M*,
M fw M;Z—FF;)( ﬁ) w
(2.34) reads
1 —
wFO = g FE 4 Mflf( ; q) FO,
so that .
) _ (l_lg)ﬂwaw

= ) 2.35
I=Bus—A—-q@sw (&5

Note that FV > 0 because of the assumption w7 (1 — B) > u ry, hence from (2.33)
we conclude that MV > 0 holds, and

wrwpr(l—B)F

mM® = :
o [(1 =B — (1 = @i fu]

(2.36)

In conclusion, if t is reduced from 1 to the value 1 — ¢ then the equilibrium
(0,0, M*, F*) moves to (MW, e FO_ M + eMl) | Fr + eF"), with M and
F) given by (2.36) and (2.35), respectively. O

Note that from the proof of Theorem 2.4 we can see that at the equilibrium the
male/female ratio for Wolbachia uninfected mosquitoes is given approximately by
Ky
m

Theorem 2.4 excludes the case when 4, 1t oy = [4 £ [mw, Which we treat now. In
particular, we assume that y = 0, and 2L = p = “ E/w Tn this situation, we have

M = pF,and M, = uF,. From equatlons (2.3) and (2 5) we obtain

P 2 2
Fz—(F +(-p—1 (FF +F )+ 1 —q)FF, )
5 T+ 0 + Fo) (1= ) w+ Fy)+ 0 —q)FF,
(2.37)
s 2
Fp=———7—7—/¥——|((1- (FF F )) 2.38
kroFo =g (=P (FR+ F (2.38)
From equation (2.38) we find that
1
by = A(F 4 Fp) = ST PBsw (2.39)
(=Bt
hence for the existence of a coexistence steady state it is necessary that A(0) >
(H(—l“—)g)f“’ in which case there exists a unique ¢ = F + Fy,, such that A(c) = %
holds. Then, from equation (2.37) we obtain
—fc(l —B)TF=F>+ (1 —q)FFy+c(1 —B)(1 —1)Fy, (2.40)

M fw
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from which, using F,, = ¢ — F, we obtain

0=F%q+Fc ((l—q)—(l—ﬂ)(l—f)—(l —ﬂ)f:—f) +1 =B —1).

fw
(2.41)
For the existence of the positive steady state we need to guarantee that the quadratic
equation above has (at least one) positive (real) solution, and that the solution is less
than c.
From equation (2.41) it is clear that in case of complete maternal transmission, i.e.
for t = 1 there cannot be more than one coexistence steady state. In this case, from
equation (2.41) we obtain

c(1-piL—a-o)
- .

F= (2.42)

Therefore, if
1—g<1-pLL <1 (2.43)
M fw
holds, then we have 0 < F < ¢, and if A(0) > % also holds, then a unique
strictly positive steady state exists.

Circumstances under which (2.43) is likely to hold include that g is sufficiently
close to 1 and, at the same time, 8 is sufficiently close to 1 or ;Tf; is less than 1. The
biological interpretation is clear: for the existence of a coexistence steady state, the
fertility cost (or mortality increase) due to Wolbachia infection should be sufficiently
large.

It is clear from (2.41) that we can never have more than two coexistence steady
states. On the other hand it is interesting to show that for some realistic parameter
values it is possible to have two coexistence steady states.

To this end we consider the case g = 1, % = 1, and we assume that t # 1,
B # 1. In this case, from (2.41), we have '
1-— 4(1 —
Fip=c Plis 1-2=D) (2.44)
2 1-5

That is, for 0 < F1,2 < ¢ to hold, we need to assume that

41 1 T Sl 2 2.45
(-n<1-p 14 1= 0 < (2.45)

hold simultaneously. It is easy to verify that this can be achieved for any ¢, for example
with T = 0.99, 8 = 0.5. Note that the condition /ij = 1 can be relaxed, too. Also, by

continuity arguments, it follows that for parameter values close enough we still have
two coexistence steady states. We summarise our findings in the following proposition.
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Proposition 2.2 In the case when y = 0, ¢ = 1 and Z—f = B there exists a

m muw
set of values for the remaining parameters such that system (2.2)—(2.5) admits two
coexistence steady states.

In summary, we have shown that our Wolbachia model (2.2)—(2.5) may exhibit all
of the three qualitatively different possible scenarios, i.e. when there are 0, 1 or 2
coexistence steady states.

3 Model incorporating West Nile virus (WNyv)

There has been considerable recent interest in West Nile virus (WNv), with the great
majority of mathematical papers on the topic having appeared in the last 15 years.
Numerous types of models have appeared, some including spatial effects and oth-
ers giving consideration to issues such as age-structure in hosts, optimal control or
backward bifurcation. See, for example, Blayneh et al. (2010), Bowman et al. (2005),
Gourley et al. (2006/07), Lewis et al. (2006) and Wonham and Lewis (2008).

We introduce the following model as an extension of model (2.2)—(2.5) to include
WNv dynamics. Our model for WNv dynamics has similarities to that in Bergsman
et al. (2016) with one resident bird population. Hence, as in Bergsman et al. (2016)
and in some references therein, we compartmentalise the vector and bird population
into SEI and SEIR classes, respectively. Taking into account our earlier model the
complete WNv-Wolbachia mosquito-bird population model takes the following form.

F/ _ )\(Ftotal)
ST M4+ My+F+F,

MF+A-p0-1)MFy, +M,Fy)

B.
+ (= )My F) = s Fy —aypprFig —,

total

B
Fe/ = ayppfFs — — mrke —veFe,
Btotal
Fi/:vae_,szFi,
)‘(Ftotal)
Foy = 1 — B)T(MFy + MyFy) — i F
Ty e
—adrypufF
S BT Ews g el Btotal
Fli)e:aprbews _/'waFwe_f:Vwae,
Btotal
Fl/l)izg‘)fFWC M fwFui,
/ By B
By = TI(Byoral) — b Bs — ofprpli wi ,
Biotal Biotal
’ B
Bé’:afpth +aprbewl — upBe — vp By,
B[ ta Biotal

B} = vy B, — upBi — wpi Bi — vi B,

1

B/ =v;iBi — upB,,

r
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M = A(Ftorat)
M+My,+F+Fy,
+ (1 =pHU0-O)(MFy+MyFy) + 1 —g@MypF) — umM,

M = A(Froral)

Y M+ M,+F+F,

(MF

(=Pt = y)MFy + MyFy) — timwMuw, (3.46)

where

Btotal:Bs'FBe'i‘Bi"‘Br»
Frotal = F + Fy, Fy = Fys+ Fye+ Fyi, F=Fs;+ F,+ F;.

Some of the parameters of system (3.46) are defined after (2.2)—(2.5); the rest are
defined as follows:

e o : biting rate of female Wolbachia uninfected mosquitoes;

® o fy: biting rate of female Wolbachia infected mosquitoes;

® ppy: transmission probability of WNv from infectious birds to WNv-susceptible
female mosquitoes;

e pyp: transmission probability of WNv from WNv-infectious female mosquitoes
to susceptible birds;

e v : per-capita transition rate of WNv-exposed female Wolbachia uninfected
mosquitoes to the infectious stage of WNv;

e ¢ € [0, 1]: small parameter modelling increased time that Wolbachia infected

mosquitoes spend in the latent stage of WNv, due to the tendency of Wolbachia

infection to hamper the replication of WNv in mosquitoes;

Vp: per-capita transition rate of WNv-exposed birds to the infectious stage of WNv;

v;: per-capita rate at which infectious birds recover;

Ip: per-capita natural death rate for birds;

Wpi: per-capita WNv-induced death rate for infectious birds.

In this section, it must be emphasized that we are considering two different kinds of
infection. Mosquitoes may be infected by either Wolbachia or WNv, or both. WNv
infection is assumed possible only for female mosquitoes (since it is females that
bite) and is modelled using an SEI (susceptible-exposed-infectious) approach with
subscripts s, e and i. The variables F, F, and F; denote the numbers of Wolbachia
uninfected mosquitoes that have susceptible, exposed and infectious status with respect
to WNv. A subscript w indicates Wolbachia infection, so that Fy,s, F,. and F,; denote
the numbers of Wolbachia infected mosquitoes that have susceptible, exposed and
infectious status with respect to WNv. The variables M and M,, are the numbers of
Wolbachia uninfected and Wolbachia infected male mosquitoes, none of which have
WNv. Birds are only susceptible to WNv and their numbers are given by the variables
B, B., B; and B, denoting susceptible, exposed, infectious and recovered birds.
Many of the terms of system (3.46) are also present in (2.2)—(2.5) without change,
here we just discuss the extra terms that model the addition of WNv dynamics. WNv-
susceptible mosquitoes, whether Wolbachia infected or not, acquire WNv infection by
biting infectious birds; this is modelled via the last term in the first and fourth equations
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of (3.46) using the idea of mass action normalised by total host density, the biting rates
(the o parameters defined above) having been separated out, rather than being absorbed
into the transmission coefficients pyr and p rp, as is often customary. Having acquired
WNv infection from a bird, a mosquito enters the latent phase of WNv and is classed as
an exposed mosquito. Exposed mosquitoes become WNv-infectious at rates v s F, and
ev Fye for Wolbachia uninfected and Wolbachia infected mosquitoes, respectively.
In the latter, the presence of ¢ € [0, 1] models the tendency of Wolbachia infected
mosquitoes that have contracted WNv infection to spend a greater amount of time in the
latent stage of WNv, since Wolbachia infection tends to block WNv replication making
it less likely that such a mosquito would ever become WNv-infectious. Of course, we
are at liberty to take ¢ very small indeed, with the implication that the Wolbachia
infected mosquito spends so long in the latent stage of WNv that it probably dies
in that stage. This is our approach to modelling the blocking of WNv replication by
Wolbachia.

Birds acquire WNv from bites by WNv-infectious mosquitoes, which may or may
not have Wolbachia infection as well. Thus there are two infection rates for birds,
these can be found in the right hand side of the seventh equation of (3.46), and also
in the eighth equation since birds initially enter the exposed stage of WNv. This has a
mean duration of 1/vj, for birds, after which they become WNv-infectious. Birds may
recover from WNyv, at a per-capita rate v;. Note that, for birds, death due to WNv is
modelled using a separate parameter jp; to distinguish from natural death, accounted
for by wp. The function IT(Bzq) is the birth rate function for birds.

The approach we use here to model the latency stage of WNv (in either birds or
mosquitoes) is not the only possible approach. Our approach permits individuals to
spend different amounts of time in the latency stage, and we may only speak of the
mean time spent in that stage. There are other approaches in which all individuals of a
particular status (for example, all Wolbachia uninfected mosquitoes) spend the same
amount of time in the latent stage of WNv. The time could be different for Wolbachia
infected mosquitoes. These approaches result in models with time delays.

3.1 Local stability of the WNv-free equilibria

Equilibria of system (3.46) may existin which WNv is absent. Such WNv-free equilib-
ria include the equilibrium (M*, F*, 0, 0) considered in Theorem 2.1, in which both
WNv and Wolbachia are absent, and equilibria in which WNyv is absent but Wolbachia
are present. We show that multiple WNv-free equilibria may coexist that have both
Wolbachia uninfected and Wolbachia infected mosquitoes, we present a necessary and
sufficient condition for any particular WNv-free equilibrium to be locally stable, and
we show that the most likely scenario for eradication of WNYv is to have large num-
bers of Wolbachia infected mosquitoes, with solutions of system (3.46) evolving to a
WNv-free equilibrium that has large numbers of Wolbachia infected mosquitoes and
relatively few uninfected ones. Theorem 3.1 applies to any WNv-free equilibrium,
of which there may be several. Of course, we may have Ry < 1 at one WNv-free
equilibrium and Ry > 1 at another. It depends on the values of F;", F5, and B} for
the particular WNv-free equilibrium under consideration. For clarity of exposition,
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we include as a hypothesis that the equilibrium be stable to the subset of perturba-
tions in which WNv is absent (i.e. stable as a solution of the subsystem (2.2)—(2.5)),
rather than including explicit conditions for stability of an equilibrium as a solution
of that subsystem. The latter stability problem is a tedious one in its own right and
is under consideration elsewhere in this paper. Theorem 3.1, in the form presented
below, highlights clearly the particular role played by Ry.

Theorem 3.1 Let F, F,;; and B be the equilibrium values for the female susceptible

(to WNv) Wolbachia uninfected and Wolbachia infected mosquitoes and susceptible
birds, in any WNv-free equilibrium. Let

_ VbVf P b Dby oG (/B ead, (Fus/BY) (3.47)
(b + mpi +vi)(p +vp) \pppr +ve)  pmrwlprw +eve) )

Ro

Then, if Ry < 1, the WNv-free equilibrium under consideration is locally stable as a
solution of the full system (3.46), if it is stable to perturbations in which the exposed
and infectious variables remain zero.

Proof At any WNv-free equilibrium, the linearisation of system (3.46) decouples to
some extent making it sufficient to show that, when Ry < 1, each component of the
solution of the following system:

arpprFY
F, = f—*:SB,- — (g +vp)Fe,
BX

Fl./ =viF, —uyrk,

o _ QrwPbf Fys
F,, = TBi - (/wa + EVf)Fwea

s

FI;,' = 8Vwae - Mwawiv

Bé = Oéfpbe,' +01prbewi — (up + vp)Be,

B = vpBe — (tp + ppi + vi) Bi, (3.48)

tends to zero. It is taken as a hypothesis that the susceptible variables then approach
their respective steady state values. Note that system (3.48) has a structure that allows
the application of Theorem 5.5.1 in Smith (1995), making it possible to restrict
attention to the real roots of the characteristic equation associated with (3.48). That
characteristic equation, corresponding to trial solutions with temporal dependence
exp(At), is most easily analysed when written in the form

(A 4 wp + mpi +vi)(A + wp + vp) By

2 2 *
= VpVf D fbDbf ast* + e utms .
AF+up)A+puy+ve) At w4 ppw +evy)

(3.49)

As functions of the real variable A, the right hand side of (3.49) is decreasing, at
least for A > 0, while the left hand side is a quadratic with two real negative roots.
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Table 1 Definition of parameters

Symbol Definition Value
m Per-capita mortality rate of male mosquitoes 1720
wr Per-capita mortality rate of female mosquitoes 1720
Hwm Per-capita mortality rate of W-infected male mosquitoes 1/20
Huwf Per capita mortality rate of W-infected female mosquitoes 1/20
r Maximum per-capita mosquito egg-laying rate 30
k Competition coefficient for mosquitoes 5000
B Fitness cost of W-infection on reproduction e [0, 1]
T Maternal transmission rate of Wolbachia e [0, 1]
q Strength of CI due to W-infection €[0,1]
y Male killing rate due to W-infection €[0,1]
of Per-capita W-free mosquito biting rate 0.09
ofy Per-capita W-infected mosquito biting rate 0.09
Pbf WNv transmission coefficient from birds to mosquitoes 0.16
Pfb WNv transmission coefficient from mosquitoes to birds 0.88
Wb Natural per-capita mortality rate of birds 1/(365 x 3)
Wbi WNv-induced per-capita death rate of birds 0.1
T1(B) Birth rate of birds 100/365
vy Per-capita rate at which W-free mosquitoes

complete WNv-latency and become WNv-infectious e [0, 1]
€ € vy is the per-capita rate at which W-infected mosquitoes

complete WNv-latency and become WNv-infectious
Vp Per-capita rate at which exposed birds become infectious 0.2

v; Per capita rate at which infectious birds recover 0.2

Time is measured in days, and rates in day*l. W stands for Wolbachia so that, for example, W -infection
means Wolbachia infection. Parameter values have been chosen purely to demonstrate possible solution
behaviour and are not based on data

A simple graphical argument shows that if the left hand side exceeds the right hand
side when A = 0O (i.e., if Ry < 1, with Ro defined by (3.47)), then any real roots of
the characteristic equation are negative which, since only the real roots need to be
considered, implies that each component of the solution of (3.48) approaches zero as
t — 00. The proof of the theorem is now complete. O

4 Numerical simulations

In the simulations shown in Figs. 1-8, we set A(Fjprq1) := re~Froal /% \where r is the
maximum per-capita mosquito egg-laying rate, and k measures intra-specific com-
petition among female mosquitoes. It should be noted that our model assumes that
the mosquito population persists annually, as for example in the tropical climates of
South-East Asia.
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N of Mosquitoes at steady state
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Fig.1 The dependence of the values of F' and Fy, at the steady state of model (2.2)—(2.5) on the parameters
B, 7, y and q. Here, all the per-capita mortality rates of mosquitoes were taken as 0.05, and we set r = 30,

k = 5000

Fig. 2 Simulation of model (2.2)—(2.5) showing F and Fy, against time.
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Here, all the per-capita mortality

rates of mosquitoes are taken as 0.05, and we set r = 30,k = 5000, 8 =0.1,¢ = 0.9,y =0and r = 0.95
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Fig. 3 The basic reproduction number R, defined in (3.47), plotted against . The parameter values are
B =0.1,¢4 =09,y =0, t = 0.9, with the other parameter values given in Table 1. For these parameter
values, F; = 3630, F5, = 23837, B¥ = 300, and almost all of the mosquitoes are infected with Wolbachia.
In this case, if ¢ < 0.03, the basic reproduction number R < 1, and the WNv will die out
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Fig. 4 Simulation of model (3.46) with the parameter values as given in the caption of Fig. 3 for the cases
& = 0.2 and ¢ = 0.02. In the case ¢ = 0.02, WNv dies out
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Basic reproduction number R,

Fig. 5 Basic reproduction number Ry, plotted against t, with 8 = 0.1, ¢ = 0.9, y =0, & = 0.02, and the
other parameter values given in Table 1. If ¢ > 0.9 the basic reproduction number Ry < 1, and WNv will
die out

Basic reproduction number R,

Fig. 6 Basic reproduction number Ry, plotted against ¢, with 8 = 0.1, 7 = 0.9, y =0, & = 0.02, and the
other parameter values given in Table 1. If ¢ > 0.8 the basic reproduction number Ry < 1, and WNv will
die out

5 Conclusion

In this paper we have derived a detailed sex-structured model for a mosquito pop-
ulation infected with Wolbachia . The model captures many of the well-known key
effects of Wolbachia infection, including cytoplasmic incompatibility, male killing,
reduction in reproductive output and incomplete maternal transmission of the Wol-
bachia infection. Our analysis shows that the mosquito population can stabilise at
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Fig. 7 Basic reproduction number Ry, plotted against 8, with t = 0.9, ¢ = 0.9, y =0, e = 0.02, and the
other parameter values given in Table 1. If 8 < 0.3 the basic reproduction number Ry < 1, and WNv will
die out
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Fig. 8 Basic reproduction number Ry, plotted against y, with § = 0.1, ¢ = 0.9, 7 = 0.9, ¢ = 0.02, and
the other parameter values given in Table 1. If y < 0.65 the basic reproduction number Ry < 1, and WNv
will die out

a Wolbachia free equilibrium under certain circumstances, which include situations
when inequality (2.11) holds. Such circumstances include, for example, if Wolbachia
infection significantly reduces reproductive output, and/or Wolbachia infection sig-
nificantly lowers female life expectancy. We also showed that if T = 1, i.e. maternal
transmission of Wolbachia is complete, then the mosquito population can stabilise at
an equilibrium in which all mosquitoes are infected with Wolbachia. This happens in
the case of sufficiently high cytoplasmic incompatibility. In the case of 7 close to 1 we
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have shown that Wolbachia infected mosquitoes can coexist with small numbers of
uninfected mosquitoes. We have also shown that under some additional assumptions
our model has multiple coexistence steady states.

We extended the sex-structured mosquito population model (2.2)—(2.5) to include
West Nile virus, which is spread by birds and mosquitoes, treating WNv as an SEI
infection for mosquitoes, and as an SEIR infection for birds. We were motivated by
results recently reported in Hussain (2013), which suggest that a particular strain
of Wolbachia substantially reduces WNv replication in the mosquito species Aedes
aegypti. We modelled this crucial phenomenon by incorporating a small parameter ¢,
the reciprocal of which is proportional to the time spent in the WNv exposed class for
Wolbachia infected mosquitoes. This enabled us to assess the potential of Wolbachia
infection to eradicate WNv via its effect on WNv replication in Wolbachia infected
mosquitoes. Notably the expression we obtained for the basic reproduction number Ry
suggests that WNv will be eradicated if at the steady state the overwhelming majority
of mosquitoes are infected with Wolbachia, and the Wolbachia infection substantially
reduces WNv replication in mosquitoes. The first of these hypotheses is in fact shown
to hold for a number of Wolbachia strains and mosquito species, see e.g. Engelstidter
and Telschow (2009).
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