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Abstract 26 

Juvenile salmon, with an initial weight of 9g, were fed three experimental diets, formulated to 27 

replace 35 (SPC35), 58 (SPC58) and 80 (SPC80) of high quality fishmeal (FM) with soy 28 

protein concentrate (SPC) in quadruplicate tanks. Higher dietary SPC inclusion was combined 29 

with increased supplementation of methionine, lysine, L-threonine and phosphorus. The 30 

experiment was carried out for 177 days. On day 92 salmon in each tank were bulk weighed. 31 

Post weighing eighty salmon from each tank were redistributed in two sets of 12 tanks. Salmon 32 

from the first set of tanks were vaccinated, while the second group was injected with phosphate 33 

buffer saline (PBS). Salmon were sampled on day 92 (pre-vaccination), day 94 (2 days post 34 

vaccination [dpv]/PBS injection [dpPBSinj]) and day 154 (62 dpv/dpPBSinj) of the trial for 35 

the assessment of their immune responses, prior to the performance of salmon bulk weights for 36 

each tank. On day 154, fish from each tank were again bulk weighed and then seventeen salmon 37 

per tank were redistributed in two sets of twelve tanks and intra-peritoneally infected with 38 

Aeromonas salmonicida. At Day 154, SPC80 demonstrated lower performance (weight gain, 39 

specific growth rate and thermal growth coefficient and feed conversion ratio) compared to 40 

SPC35 salmon. Reduced classical and total complement activities for salmon fed diets with 41 

over 58 % of protein from SPC, were demonstrated prior to vaccination. Reduced alternative 42 

complement activity was detected for both SPC58 and SPC80 salmon at 2 dpv and for the 43 

SPC80 group at 62 dpv. Total and classical complement activities demonstrated no differences 44 

among the dietary groups after vaccination. Numerical increases in classical complement 45 

activity were apparent upon increased dietary SPC levels. Increased phagocytic activity (% 46 

phagocytosis and phagocytic index) was exhibited for the SPC58 group compared to SPC35 47 

salmon at 62 dpPBSinj. No differences in serum lysozyme activity, total IgM, specific 48 

antibodies, protein, glucose and HKM respiratory burst were detected among the dietary groups 49 

at any timepoint or state. Mortalities as a result of the experimental infection only occurred in 50 
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PBS-injected fish. No differences in mortality levels were demonstrated among the dietary 51 

groups. SPC58 diet supported both good growth and health in juvenile Atlantic salmon while 52 

SPC80 diet did not compromise salmon’ immunity or resistance to intraperitoneally inflicted 53 

furunculosis. 54 

1. Introduction 55 

Farmed Atlantic salmon are typically raised in intensive aquaculture production systems and 56 

fed nutritionally complete formulated diets. Historically, fish meal (FM) has been the source 57 

of protein and essential amino acids for salmon feeds [1]. In 2009, aquaculture’ use of global 58 

FM production was estimated to be 68%, with salmonid aquafeeds consuming 13.7% [2]. 59 

Unless alternative protein sources are used, the reliance of salmon diets on FM may reduce the 60 

potential for salmon culture growth, since the worldwide demand for FM is rapidly exceeding 61 

supply. Given that plant feedstuffs are readily available, these have received most attention as 62 

an alternative to FM [3-6].  63 

Among plant protein ingredients, SPC manufactured through aqueous alcohol extraction 64 

of defatted soybeans is a very promising protein source for Atlantic salmon. Alcohol extracted 65 

SPC has a protein content, which is very similar to that of FM [7], while its EAA content 66 

compares favourably with FM, with the exception of methionine and potentially lysine [8]. 67 

Furthermore, lectins, saponins soy antigens and trypsin inhibitors concentrations, which are 68 

ANFs, are found at lower the concentrations than those found in conventional SBM [9-11]. 69 

Several studies have demonstrated the suitability of SPC as an alternative to FM in Atlantic 70 

salmon post smolt diets [12-14]. Moreover, a few studies reported the absence of soybean-71 

induced intestinal inflammation in salmonids receiving diets with even 100% substitution of 72 

FM with SPC [15-16]. However, the tolerance of salmon for plant feedstuffs depends on 73 

salmon size and stage. Burr et al. [17] demonstrated that early stage Atlantic salmon parr are 74 

much more sensitive to dietary vegetal protein inclusion than late stage Atlantic salmon parr. 75 
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Previous studies exploring the effects of increasing dietary levels of plant derived 76 

ingredients on the immunity of several fish species have reported adverse effects of diets with 77 

over 70% of dietary protein from plant derived feedstuffs on immune responses such as the 78 

total serum immunoglobulin levels and alternative complement activity in rainbow trout 79 

Oncorhynchus mykiss [18] and the alternative complement activity of gilthead sea bream 80 

Sparus aurata [19]. While studies on the use of soybean meals in salmonid diets and their 81 

subsequent effects on immune function have been undertaken, only few have investigated the 82 

effects of dietary SPC on Atlantic salmon immune responses [1, 16, 20-21]. Briefly, Krogdahl 83 

et al. [16] demonstrated an enhancement of lysozyme activity and total IgM levels in the 84 

intestinal mucosa of Atlantic salmon smolts, maintained on feeds with 30% of dietary protein 85 

from soy products (SBM and SPC), and in turn, enhanced resistance of SPC fed salmon to 86 

infection by A. salmonicida the causative agent of furunculosis. Moreover, Metochis et al. [21] 87 

reported no adverse effects in the immune responses of large size Atlantic salmon parr 88 

commercially reared under constant light and intensive feeding with amino acid supplemented 89 

diets formulated with up to 80% of protein SPC and constant supplementation of phosphorus 90 

compared to a commercial type diet with up to 35% of protein from SPC. 91 

Furunculosis is a highly infectious disease, causing serious fish losses, such as those 92 

observed during the epidemic of 1991-1992, which led to the loss of approximately 25% of the 93 

total Scottish salmon production [22]. Successful vaccination has enabled the disease to be 94 

brought under control and currently the majority of farmed Scottish and Norwegian Atlantic 95 

salmon are vaccinated against fununculosis. Thus, vaccination with a commercial A. 96 

salmonicida vaccine and subsequent infection challenge of the experimental Atlantic salmon 97 

parr in this study was used to describe the effects of increasing dietary SPC levels on immune 98 

responses upon vaccination and the resistance of Atlantic salmon parr against furunculosis. 99 

Since the site(s) of pathogen uptake into fish, is a subject of conjecture and seems likely to 100 
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include gills, mouth, anus and/or surface injury [23-26] an i.p. injection of A. salmonicida was 101 

used for the infection of Atlantic salmon parr in this study. 102 

Generally, soy products and several other vegetable derived products used as FM 103 

replacements have been shown to affect a range of immune responses in fishes and these have 104 

been interpreted as inflammatory/hypersensitivity or immunostimulatory effects [16, 19-22]. 105 

In spite of the fact that commercial application of aquafeeds with higher than 58% of dietary 106 

protein from SPC is unlikely, due to the high cost of this feedstuff in comparison to other FM 107 

alternatives, the above diets were tested in this framework in order to augment dietary 108 

responses, highlighting nutritional deficiencies. Herein, the main objective was to monitor how 109 

increased dietary SPC, methionine, lysine and phosphate inclusion (to give similar amino 110 

acid/protein ratios and increase the availability of P in diets with higher levels of SPC) affects 111 

the immunological responses of naïve and vaccinated (against A. salmonicida) Atlantic salmon 112 

parr and their protection against furunculosis after i.p. infection with A. salmonicida. 113 

2. Materials and Methods 114 

2.1. Diets and fish husbandry 115 

The dietary trial was carried out at the Aquatic Research Facility (ARF), Institute of 116 

Aquaculture, University of Stirling and lasted 177 days. The feeding trial started in June, 2013 117 

and ended in December 2013. The fresh water system consisted of twelve 100 l circular tanks 118 

supplied with flow-through water at a rate of 1.5 l × min-1. Water temperature was maintained 119 

at 12 ± 1ºC (ambient temperature of 12 ±  ºC for the first 3 months of  the study and application 120 

of  heating later on Day 115 of the feeding trial to maintain the temperature constant throughout 121 

the study), whilst photoperiod was constant to prevent smoltification (12 hours of light: 12 122 

hours of darkness). Dissolved oxygen, ammonia, nitrate, nitrite and pH were monitored and 123 

remained within limits recommended for Atlantic salmon. Prior to the trial unvaccinated S1 124 
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Atlantic salmon parr (AquaGen QTL eggs - AquaGen Ltd, Kilmacolm, Scotland - selected for 125 

improved growth and resistance to IPNV) purchased from Scottish Seafarms Ltd (Dumfries, 126 

Scotland, UK) previously maintained on a commercial BioMar (BioMar Fishes Ltd, 127 

Grangemouth, Scotland) diet (BioMar Inicio PLUS) were allowed to acclimate for a week 128 

within two stock tanks, during which time they were maintained on a commercial EWOS 129 

(EWOS Ltd, Westfield, Near Bathgate, Scotland) diet (EWOS micro). The fish were then 130 

randomly allocated into the twelve trial tanks, each tank containing 130 individuals in which 131 

they were allowed to acclimatize for 7 days. The fish had an average weight of 9.3 g at the start 132 

of the trial. The fish were then starved for two days and were subsequently fed a mixture of the 133 

commercial feed and the trial diets they were assigned to. The trial diets contained different 134 

levels of protein from SPC (35, 58 and 80% of protein from SPC) replacing FM and were 135 

manufactured by EWOS Innovation, Dirdal, Norway.  Protein/fat ratios were kept constant 136 

(~3.0), while methionine, lysine, L-threonine and phosphorus (P) supplementation increased 137 

concomitantly with increased dietary SPC inclusion. Each dietary treatment included four 138 

replicate tanks. Dietary formulations are presented in Table 1. Parr were acclimatized to the 139 

trial feeds for 3 days prior to the start of the trial. The trial lasted for almost 6 months (177 140 

days) during which fish were fed on the diets to satiation twice daily at 09.30 and 16:30 hours. 141 

During feeding the outlets of the tanks were blocked. Satiation was judged to have been 142 

achieved when almost 30 pellets were not eaten. Uneaten pellets were then collected through 143 

siphoning and feed intake was calculated by subtracting the number uneaten from supplied 144 

pellets. The average weight of each pellet was calculated by weighing 8 × 500 pellets of each 145 

diet. Eight fish per tank were sampled on Day 92 of the feeding trial prior to vaccination with 146 

a commercial anti A. salmonicida and infectious pancreatic necrosis virus vaccine (Alpha-Ject 147 

2-2, Pharmaq) to monitor their immune status. Briefly, blood from 8 fish per tank was collected 148 

from the caudal vein into non-heparinised syringes and then transferred into 1.5ml eppendorf 149 
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tubes. The blood was allowed to clot at 4° C and then 250μl of serum from the first four fish 150 

were pipetted into an eppendorf tube creating a pool of serum collected from 4 individuals per 151 

tank. Two serum pools per tank were obtained, from which multiple aliquots of 50 μl were 152 

created for the performance of immunoassays. Moreover, two pools of head kidney samples 153 

from 4 fish/tank were obtained for the isolation of head kidney macrophages (HKM) and the 154 

determination of HKM respiratory burst and phagocytic activities as described below. After 155 

the first sampling the bulk weights of the fish in each tank were measured for the assessment 156 

of their growth performance and approximately 80 fish per tank were divided between the 157 

original set of tanks and another set of 12 replicate tanks with the ones kept in the original set 158 

of tanks being vaccinated with the above vaccine and the salmon parr transferred to the 159 

replicate set of tanks being injected with 0.02 M phosphate buffer saline (PBS) (0.15 M NaCl, 160 

pH 7.2). Conditions in all tanks were kept constant to the previous period. The remaining 161 

salmon parr (~40 fish distributed in a third set of 3 tanks -1 tank per diet-) were used to establish 162 

the lethal dose of bacteria giving 70% mortalities of fish intraperitoneally infected with A. 163 

salmonicida (100μl). Pools of serum samples (2 serum and 2 head kidney pools from 4 fish per 164 

tank) were taken at 2 days post vaccination (2 dpv) (serum samples from only vaccinated 165 

individuals/head kidney samples from both vaccinated and PBS-injected salmon) (Day 94 of 166 

the feeding trial) and at 62 dpv (Day 154 of the feeding trial-sampling of vaccinated and PBS-167 

injected salmon). Measurements of salmon bulk weights in the tanks were recorded on Day 168 

154 for growth evaluation. The fish were weighed to the nearest 0.1g.  Prior to any experimental 169 

procedure (e.g. weighing, measuring, vaccinating and challenging) all fish were anaesthetized 170 

using MS222 (Tricaine Methanosulphonate, Pharmaq Ltd, Fordingbridge, Hampshire, UK) (50 171 

mg × l-1). After the experimental procedure the fish were placed in clean aerated water and 172 

allowed to recover (usually within 5 min) before being returned to their tank. Measurements of 173 

fish weight and length were made throughout the experiments. Where fish required to be 174 
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sacrificed for blood and tissue sampling, they were anaesthetized with MS222 (100 mg × ml-175 

1). 176 

2.2. Disease resistance 177 

On Day 154 of the feeding trial (62 dpv), twenty five salmon from each tank of vaccinated 178 

and PBS-injected fish were removed and stocked in another two sets of 12 replicate tanks in 179 

the ARF. The tanks used were also circular fiberglass tanks supplied with flow-through fresh 180 

water as described above. The fish were housed under a controlled photoperiod (12 h of light: 181 

12 h of darkness) at a controlled temperature of 13-15ºC. Seventy five hours before A. 182 

salmonicida was administered; a fresh culture of the passaged bacterium was prepared on a 183 

blood agar plate. Twenty seven hours before the commencement of the challenge, seven 184 

bacterial colonies were cultured in tryptone soy broth (15ºC for 18 h). Subsequently the bacteria 185 

were washed twice with sterile PBS with intermediate centrifugation (3500 × g, 10 min). The 186 

OD of the bacterial suspension was then adjusted to 1.0 at 610 nm (6 × 108 cfu × ml-1), and 187 

serially diluted to 0.25 × 10-7 (corresponding to ~ 2 × 102 cfu × ml-1), which was the dilution 188 

found to give approximately 70% mortalities in salmon parr in a pre-challenge trial. Cell 189 

densities were confirmed by distributing eight 25 μl drops of each one of the obtained serial 190 

bacterial suspensions (1.0 × 10-7, 0.25 × 10-7, 0.5 × 10-7, 1.0 × 10-6) onto tryptone soy agar 191 

plates (TSA) (Sigma-Aldrich) and colonies counted after 48 h. One-hundred microlitres of the 192 

0.25 × 10-7 bacterial suspension (corresponding to and 2 × 101 cfu × fish-1) was i.p. injected 193 

into each Atlantic salmon after anaesthetizing them (benzocaine, 30 mg × l-1). Specific 194 

mortalities were confirmed by culturing kidney swabs onto TSA and checking colonial 195 

morphology. The challenge was terminated after 22 days, at which time mortalities had ceased. 196 

2.3. Growth performance assessment 197 
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Salmon growth performance was assessed, through the application of the following formulae 198 

to the data: 199 

Feed intake: 200 

𝐹𝐼 (
𝑔

𝑑𝑎𝑦
) 𝑝𝑒𝑟 𝑓𝑖𝑠ℎ =

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑔𝑖𝑣𝑒𝑛 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑠ℎ × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 201 

FCR: 202 

𝐹𝐶𝑅 =
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑔𝑖𝑣𝑒𝑛 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑒𝑒𝑑 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑊1 − 𝑊𝑂
 203 

Weight gain: 204 

𝑊𝐺 (
𝑔

𝑑𝑎𝑦
) =

𝑊𝑒𝑖𝑔ℎ𝑡 𝑔𝑎𝑖𝑛(𝑔)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
 205 

Specific Growth Rate: 206 

𝑆𝐺𝑅 = (
𝑙𝑛𝑊1 − 𝑙𝑛𝑊0

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠
) × 100 207 

Thermal Growth Rate: 208 

𝑇𝐺𝐶 = (
√𝑊1
3

− √𝑊0
3

(𝑡 × 𝑇)
) × 100 209 

In the above formulae W0 and W1 is the initial and the final fish mean weights in grams. 210 

2.4. Head kidney macrophage isolation, respiratory burst and phagocytic activity by head 211 

kidney macrophages 212 

For the isolation of HKMs, the head kidney was teased through a 100 µm nylon mesh 213 

(BD Falcon; BD Biosciences, Franklin Lakes, NJ, USA) into 2.5 ml L-15 containing 40 µl of 214 

heparin (10 IU × ml-1). The mesh was rinsed with 2.5 ml of the medium and the cell suspension 215 

placed on ice. HKM phagocytic activity and levels of O-2 production in HKM suspensions by 216 

the conversion of nitroblue tetrazolium (NBT; Sigma-Aldrich) to formazan were measured 217 

following the method described by Secombes [27], with modifications described by Korkea-218 

Aho et al. [28].  219 
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For the measurement of HKM phagocytic activity, duplicate 100-μl cell samples were 220 

placed on glass slides and incubated for 1 h at 15°C to allow macrophages to attach. After this 221 

time, non-adherent cells were removed by washing the slides three times with L-15 medium. 222 

Baker’s yeast resuspended in L-15 medium at 5 mg ml−1 (100 μl) was added to one of the 223 

samples on the microscope slide. An equal volume of L-15 medium was added to the other 224 

sample on the same slide as a negative control. Samples were incubated for 1 h at 15°C to allow 225 

phagocytosis to proceed. The slides were then washed three times with L-15 medium before 226 

100-μl volumes of 100% methanol were added for 5 min. Slides were washed three times with 227 

70% methanol and stained with rapid Romanowsky stain (Raymond A Lamb, Eastbourne, UK). 228 

The slides were viewed at × 1000 magnification, and 100 macrophages were counted per 229 

sample. The phagocytic activity was determined as the percentage of macrophages performing 230 

phagocytosis (% phagocytosis) and as the number of yeast cells engulfed by each macrophage 231 

(phagocytic index).  232 

For the estimation of HKM respiratory burst activity, one hundred µl of macrophage 233 

suspension was added to the 96-well plate (Iwaki, Tokyo, Japan), incubating at 15°C for 2 h to 234 

allow cell attachment. The supernatant was removed and wells washed three times with L-15. 235 

After washing, 100 µl of L-15 containing 1 mg × ml-1 NBT was added to three replicate wells, 236 

and this together with phorbol myristic acetate (1 µl × ml-1 PMA) was added to another three 237 

replicate wells, while 100 µl of lysis buffer (citric acid, 0.1 mol× l-1; Tween 20, 1.0 % (v⁄v); 238 

crystal violet, 0.05 % (w⁄v); Sigma-Aldrich) was added to two additional replicate wells. The 239 

plate was incubated for 60 min at 15°C, the medium removed and cells fixed with 100 % (v⁄v) 240 

methanol for 2–3 min before washing three times with 70 % (v/v) methanol. The plates were 241 

air-dried before adding 120 μl of 2 M potassium hydroxide (Sigma-Aldrich) and 140 μl of 2 M 242 

dimethyl sulfoxide (Sigma-Aldrich) to each well to dissolve the resulting formazan. The 243 

absorbance was determined at 610 nm using an automated multi-mode microplate reader 244 



11 
 

(Synergy HT; BioTek Instruments, Winooski, VT, USA). The number of macrophages 245 

attached to the plate was determined by counting the average number of nuclei released by the 246 

addition of lysis buffer for two replicate wells. The number of released macrophage nuclei was 247 

achieved using a Neubauer chamber, by counting the number of nuclei in the 4 sets of the 16 248 

corner squares from one grid. The total number of nuclei within the 4 sets of squares was then 249 

divided by 4 and then multiplied by the dilution factor giving the number of nuclei × 104 × ml-250 

1. The level of respiratory burst was expressed as an absorbance at 610 nm for 105 cells × 251 

sample-1.  252 

2.5. Determination of serum glucose, protein and lysozyme activity 253 

Serum glucose was determined using a CONTOUR blood glucose monitoring system (Bayer 254 

HealthCare LLC) according to manufacturer’s instructions. Briefly a CONTOUR strip was 255 

inserted accordingly into the Contour blood glucose monitor and then 5μl of serum were 256 

pipetted onto the blood receiving end of the CONTOUR strip and held for 5 sec until the test 257 

result was displayed on the screen of the monitor. Protein content of serum was determined 258 

using a Pierce BCA (bicinchoninic acid) protein determination kit (Thermo Scientific, IL, 259 

USA) using bovine serum albumin (BSA) as a standard. Serum lysozyme activity was 260 

estimated according to the protocol described by Korkea-Aho et al. [28], based on the lysis of 261 

lysozyme sensitive Micrococcus lysodeikticus.  262 

2.6. Determination of serum total IgM 263 

The level of IgM in sera of experimental fish was determined using an indirect enzyme linked 264 

immunosorbent assay (ELISA) described by Metochis et al. [29].  265 

2.7. Determination of specific antibody against Aeromonas salmonicida 266 

An ELISA was used to measure the specific antibody response of Atlantic salmon to the A. 267 

salmonicida vaccine using the method outlined by Metochis et al [22]. Briefly, 96-well 268 
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Immulon™ 4HBX plates (ThermoScientific, Maine, USA) were coated with 50 µl of 0.05 % 269 

w/v poly-L-lysine (Sigma-Aldrich) in 0.05 M sodium carbonate/bicarbonate buffer, pH 9.6 and 270 

incubated for 60 min at 21°C. Plates were then washed twice with a LSWB. A.salmonicida 271 

(Hooke) in 0.1M PBS was added to the wells at 100 μl × well-1 and plates incubated overnight 272 

at 4°C. Fifty microliters per well of 0.05 % v/v glutaraldehyde in PBS was added to the bacteria 273 

and the plate incubated at 21°C for 30 min before washing three times with LSWB. Non-274 

specific binding sites were blocked by incubating plates with 3% w/v skimmed milk powder 275 

in water at 21°C for 120 min. After washing the plates three times with LSWB, 100 µl of 276 

serially diluted fish serum diluted in 1 % casein (from 1: 50, 1: 200 and 1: 1000) was transferred 277 

to the ELISA plate, which was then incubated overnight at 4°C. Both positive (serum pools 278 

from challenged salmon survivors which have been vaccinated prior to challenge) and negative 279 

controls (serum blanks/ pooled serum from naïve salmon) were also added to each plate. Plates 280 

were washed five times with HSWB with a 5 min soak on the last wash. Anti-rainbow 281 

trout/Atlantic salmon IgMmonoclonal antibody (F11-monoclonal anti trout/salmon IgM - 282 

Aquatic Diagnostics Ltd, Stirling, Scotland) was then added and plates were incubated at 21°C 283 

for 60 min. The steps followed until the development of the plates were the same with those 284 

described above. The percentage of specific antibody production was estimated by the 285 

comparison of positive (pooled serum from vaccinated and challenged salmon, 100 % antibody 286 

production) and negative controls (pooled naïve salmon serum, 0% antibody production) and 287 

was expressed as percentage of specific antibody production. 288 

2.8. Measurement of alternative, classical and overall complement activity 289 

Salmon antiserum against sheep RBC was produced by immunising fish i.p. with 109 sheep red 290 

blood cells (SRBC) in PBS (0.15 M phosphate-buffered saline, pH 7.2). Four weeks after 291 

priming a booster injection (109) was given, and two weeks later, fish were bled. Control fish 292 

were injected with PBS. Endogenous complement activity of anti-SRBC salmon serum was 293 
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inactivated by heating at 50°C for 30 min and the anti-SRBC serum was diluted with 0.1% 294 

Gelatin-Complement Fixation Buffer (G-CFB) (1 tablet of Oxoid complement fixation tablets 295 

in 100 ml of warm water and 0.1 g of gelatin from Sigma-Aldrich) with 20mM EDTA. Diluted 296 

anti-SRBCs were then stored at – 20°C. Sheep blood (Oxoid) was stored at 4°C in Alsever’s 297 

solution (1: 1) for 1 week before use. The SRBCs were used to determine lysis by the alternative 298 

complement pathway (ACP), while SRBCs, sensitized (60 minutes, 37°C) with pooled and 299 

diluted (1: 400) salmon anti-SRBC serum, was used for determination of total (TC) and 300 

classical complement pathway (CCP) activity. Buffer for the AC was 0.01 M EGTA-Mg-G-301 

CFB and for determination of the total and classical haemolytic activity G-CFB. Tests were 302 

done in round-bottomed 96-well microtiter plates (Sterilin).Briefly complement activity 303 

determination was based on methods described by Yano et al. [30-31] with modifications. 304 

Briefly serum was diluted four times in double serial dilutions accordingly (starting from 1:4 305 

for the estimation of AC activity and 1: 16 for the estimation of TC and CC activity) and 25 μl 306 

of each dilution was added to each well of a non-absorbent U-well micro-plate (Sterilin) in 307 

duplicate. Ten microliters of 0.5 % SRBC suspension was added to each serum dilution. 308 

Controls on each plate comprised 0.1 % anhydrous Na2CO3 (v/v) (100 % lysis) replacing 309 

serum. G-CFB replacing serum (0 % lysis) and serum blanks (duplicate wells of serum 310 

dilutions with G-CFB replacing SRBC suspension). The plates destined for the estimation of 311 

TC and CCP activity also included, a CC control sensitization of SRBC with non-immune 312 

pooled carp serum and a standard complement sample (serum pool) for correction of plate 313 

differences were included. Microtitre plates were incubated at 22°C for 90 min with constant 314 

shaking and the reaction terminated by the addition of 140 μl G-CFB with 20mM EDTA, 315 

followed by centrifugation at 1500 × g to spin down the remaining SRBCs. After centrifugation 316 

100 μl of the supernatant from each well was transferred to a new flat-bottomed 96-well non-317 

absorbent micro-titre plate (Sterilin). The absorbance of the wells was read at 450 nm using a 318 
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micro-plate reader (Synergy HT; BioTek Instruments, Winooski, VT, USA) and the percentage 319 

lysis of SRBCs calculated. The absorbance values of samples were corrected by subtracting 320 

the absorbance of the sample blank control (0% haemolysis).  321 

2.9. Diet composition analysis 322 

Dietary crude fat was determined following acid hydrolysis using a Soxtec System 1047 323 

hydrolysing unit (Tecator Application note 92/87) followed by exhaustive Soxhlet extraction 324 

using petroleum ether (40–60°C boiling point) on a Soxtec System HT6 (Tecator application 325 

note 67/83)as described by Bell et al. [32]. Dry weight and ash contents of diets were 326 

determined after oven-drying the samples to constant weight (at 100 ºC) and by ashing dried 327 

samples in an oven at 550°C [33]. Dietary energy content was determined through bomb 328 

calorimetry [33]. For the determination of phytic acid and phytic acid bound P content in the 329 

diets a Megazyme Phytate/Total Phosphorus Assay kit (Megazyme, Ireland) was used. Dietary 330 

energy content was determined through bomb calorimetry [33].  331 

Dietary carbohydrate was determined following a modified Dubois phenol sulphuric 332 

method. Dietary fibre was determined after subjecting defatted dietary samples (3 washes with 333 

petroleum ether) within pre-weighed organic capsules, to acid (with 1.25% sulphuric acid 334 

solution)and alkaline hydrolysis (with 1.25% sodium hydroxide solution) for 35 min each, 335 

using a Fibertec system 1020 hot Extractor. Following one last defatting step (3 washes with 336 

petroleum ether), the samples were ashed at 600°C in a muffle furnace (Gallenkamp Muffle 337 

Furnace) for 4 hours, cooled in a desiccator and reweighed (W2).  Extracted fibre was 338 

expressed as percentage of the original undefatted sample and calculated according to the 339 

formula: 340 

𝐹𝑖𝑏𝑟𝑒(%) =
(𝑊1 × 1.0011) − 𝐶𝑎𝑝𝑠𝑢𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 − (𝑊2 − 0.0025)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
  × 100 341 
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Where W1 is the initial weight of the unprocessed dietary sample and W2 is the weight after 342 

processing.  343 

Dietary minerals and phosphorus were determined using inductively coupled plasma 344 

mass spectroscopy (ICP-MS) with collision cell technology (CCT) (Thermo X Series 2).  345 

2.10. Statistics 346 

Growth and immunological data were examined using a one-way analysis of variance 347 

(ANOVA), general linear model, and pairwise comparison (Tukey-test) of means. All 348 

statistical tests were performed using Minitab statistical software (Version 17©, University of 349 

Stirling, 2016). Differences were considered statistically significant at p values < 0.05. 350 

Statistical differences were examined between naïve dietary groups prior to vaccination, the 351 

vaccinated dietary groups at 2 and 62 dpv and the PBS-injected dietary salmon at 2 and 62 352 

dpPBSinj. Serum pools were used as statistical units (two serum and/or HKM pools from 4 353 

fish per tank thus two pools per tank resulting in eight pools per treatment). Data are presented 354 

as means ± SEM. The analysis of the survival data from the disease challenge trial was 355 

performed with Cox regression (Cox proportional hazard modelling) in SPSS statistical 356 

software (IBM SPSS Statistics 21, University of Stirling, 2016) using time-to-event (e.g. the 357 

time at which a subject in the 30-day challenge period survived – data for each fish were 358 

recorded) and status for each fish (dead =1 or alive =0) variables (individual fish per treatment 359 

and time-to-event, were used as statistical units – from the former parameters the coefficients 360 

Exp (B) e.g. hazard ratios, per treatment group were estimated) and the level of protein from 361 

SPC in the dietary treatments as the covariate. Differences were considered statistically 362 

significant at p values < 0.05 while the coefficient Exp (B) was also recorded for the assessment 363 

of potential positive or negative effects of increased dietary SPC levels in the resistance of 364 

salmon to furunculosis (Exp (B) or Hazard Ratio is the factor by which the hazard -the presence 365 

of mortalities upon infection- for a dietary group is increased or decreased; Exp (B) values = 366 
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1 reveal no changes in salmon resistance and/or hazard ratio -HR-, values > 1 reveal an 367 

increment in HR and deterioration of its disease resistance and values < 1 reveal a decrease in 368 

HR and an improvement of salmon resistance to furunculosis)  369 

3. Results  370 

3.1. Growth performance 371 

Salmon performance data are given in Table 2. Overall, negligible mortalities (< 0.1 %) were 372 

observed in the three dietary groups prior (Day 92) and post vaccination/PBS-injection (Day 373 

154) (Table 2). SPC80 salmon exhibited reductions in feed intake and FCR at Day 92. 374 

Significant decreases for all growth performance indices (mean weights, WG, SGR, TGC) were 375 

observed for both SPC58 and SPC80 salmon in comparison to SPC35 fish prior to 376 

vaccination/PBS injection.  377 

At Day 154, reductions in FCR persisted in SPC80 salmon compared to the SPC35 group. 378 

In addition decreased mean weights, WG, TGC and SGR were demonstrated for the SPC80 379 

group in comparison to SPC35 salmon at both vaccination states on Day 154, while no 380 

differences were detected between SPC58 and SPC35 salmon for any of the performance 381 

parameters.  382 

3.2. Immune Responses 383 

The data of the estimated immunological responses are presented in Table 3. Serum proteins 384 

were only affected by time or state and not by dietary levels of SPC. A sharp decrease in serum 385 

protein levels was exhibited in vaccinated salmon at 2 dpv while at 62 dpv serum protein 386 

increased compared to the levels at 2 dpv. Nevertheless, serum protein concentrations were 387 

found to be lower than their initial pre-vaccination serum concentrations. On the contrary, 388 

serum protein levels in PBS-injected fish doubled at 62 days post PBS injection (62 dpPBSinj) 389 

when compared to naïve salmon.  390 
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Serum total IgM concentrations did not exhibit any differences among the dietary salmon 391 

groups. While serum total IgM in naïve and PBS-injected salmon were found to be similar, in 392 

vaccinated salmon total IgM levels demonstrated a decrease at 2 dpv compared to pre-393 

vaccination values, whereas at 62 dpv total IgM increased 4-fold, compared to naïve salmon 394 

serum concentrations. Specific IgM was measured at 62 dpv and no differences were detected 395 

among the three dietary groups.  396 

Lysozyme activity was another immune response exhibiting no changes among the 397 

dietary salmon groups. Both naïve and PBS-injected salmon at Day 154 exhibited similar 398 

lysozyme activities. An increment in average lysozyme activity was obtained at 2dpv compared 399 

to the pre vaccination levels, followed by a further increase at 62dpv. Serum glucose 400 

concentrations did not show any differences among dietary groups. Moreover, similar glucose 401 

concentrations were detected in naïve and PBS-injected salmon serum. However at 2 dpv, 402 

glucose levels were found to be higher than in pre-vaccinated fish, while at 62 dpv glucose 403 

levels in the vaccinated groups were lower compared to naïve salmon.  404 

At Day 63 prior to vaccination/PBS-injection, SRBC haemolysis due to TC and CC 405 

activity demonstrated significant reductions in SPC58 compared to SPC35 (both p values for 406 

CC and TC were equal to 0.02) salmon while no differences were detected between the SPC80 407 

and SPC35 groups. Alternative complement activity on the other hand did not show significant 408 

differences among the treatment groups. No differences in the complement activities were 409 

observed at 62 days post PBS-injection among the dietary treatments. However, a decreasing 410 

trend in AC activity was observed in fish receiving increasing dietary SPC levels (p value = 411 

0.06). On the contrary, significantly lower AC activity was observed for SPC80 salmon at both 412 

timepoints post vaccination compared to SPC35 (p values: 0.02 at 2 dpv and 0.04 at 62 dpv) 413 

salmon while SPC58 salmon exhibited lower activity only at 2 dpv (p value = 0.02). No 414 
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differences in total complement (TC) activity were exhibited among the dietary groups of 415 

vaccinated and PBS-injected salmon.  416 

No differences in PMA-stimulated and non-stimulated HKM respiratory burst and 417 

phagocytic activity among the dietary groups of salmon prior to vaccination/PBS-injection, 418 

were detected. For vaccinated salmon, the estimated values for all the HKM responses among 419 

the dietary groups presented no differences, with respiratory burst activity, phagocytic index 420 

levels and phagocytosis % increasing sharply at 2 dpv compared to the values recorded prior 421 

vaccination and decreasing at 62 dpv below the latter values. For PBS-injected salmon, 422 

respiratory burst was similar to the ones obtained for vaccinated salmon at 2 and 62 dpv 423 

exhibiting an almost equal increase at 2 dpPBSinj, followed by a subsequent reduction, at levels 424 

lower than the ones determined for naïve salmon except for PMA-stimulated HKM, which 425 

presented higher activity at 62 days post injection compared to naïve fish. Significantly lower 426 

phagocytic activity (phagocytosis % and phagocytic index) were detected between SPC58 and 427 

SPC80 salmon compared to the SPC35 group at 62dpPBSinj (p value = 0.03).  428 

3.3. Disease resistance trial 429 

No mortalities were observed for any of the dietary groups vaccinated against A. salmonicida 430 

after challenging them with the bacterium. The raw data of PBS-injected salmon cumulative 431 

survival during the experimental infection are presented in Fig. 1. Mortalities were obtained 432 

from all dietary groups in PBS-injected and subsequently challenged Atlantic salmon parr. 433 

Mortalities from these fish first started to occur at 6 days post challenge, but only for the SPC35 434 

salmon group. On Day 7 post-challenge the first mortalities from SPC58 salmon were 435 

observed, while on Day 8, mortalities from the SPC80 group of salmon also started to occur. 436 

Mortalities ceased on Day 19 post-challenge. At this time, the mortality rate for the SPC35 437 

group from all tanks corresponded to 44%. A death rate of 34% was observed for the SPC58 438 

while a 29% mortality rate was recorded for SPC80 salmon. Statistical analysis revealed no 439 
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significant differences among the dietary salmon groups (p value = 0.07) and a slight reduction 440 

in the hazard ratio (Exp (B) = 0.76 – non-significant improvement of salmon resistance to 441 

furunculosis) of salmon fed on the diets the highest SPC levels (SPC80).  442 

4. Discussion 443 

In the present trial, significant reductions for most performance indices (FCR, average weight, 444 

weight gain, SGR and TGC) were observed for both vaccinated and PBS-injected SPC80 445 

compared to their SPC35 counterparts while no differences between the latter dietary group 446 

and SPC58 salmon at both states were obtained at Day 154 (62 dpv/dpPBSinj). Considering 447 

the initial reductions in SPC58 salmon growth in comparison to the SPC35 group (9-30g fish), 448 

it is suggested that larger size salmon parr of ~30 g with a more developed digestive system 449 

can make a more efficient use of the SPC58 diet compared to smaller size parr of 9g or that 450 

salmon receiving this diet requires an adaptation period before accepting and start utilizing 451 

efficiently the nutrients in this type of feed [17, 34-36]. On the contrary, the levels of SPC in 452 

the SPC80 diet were overwhelming for salmon parr which never manage to recover the initial 453 

reductions in growth performance when compared to SPC35 salmon. Growth reductions in fish 454 

fed diets with very high levels of SPC are generally attributed to the increased amounts of 455 

phytic acid (Table 1), decreasing the digestibility and availability of dietary nutrients [37] and 456 

the lower concentrations of several key nutritional components found abundantly in FM and 457 

scarcely or absent in plant proteins (including macro and trace minerals, sterols and non-458 

nitrogen compounds), compromising feed acceptability, FCR and growth in fish [13,14, 38-459 

41]. Compromised feed acceptability was apparent during the first period of the study for 460 

SPC80 compared to SPC35 salmon, while numerical decreases persisted during the full course 461 

of the study. Moreover, decreased FCR was apparent for the SPC80 group at all timepoints. 462 

Herein, the determination of serum protein levels was used to evaluate the general 463 

condition of experimental salmon [42], whereas serum glucose was measured for the evaluation 464 
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of the general stress status of fish from different dietary groups [43]. Moreover, the assessed 465 

immune responses are considered salient components of salmon defence mechanisms against 466 

disease. Lysozyme and macrophage phagocytosis followed by oxygen radical production, are 467 

important antimicrobial agents [27-28], while complement and total and specific IgM are 468 

linked with the neutralisation and opsonisation of various pathogens [44-45].  Thompson et al. 469 

[46] suggested that measuring defence mechanisms prior to challenge only represents resting 470 

levels. However, measuring immune function after immune stimulation (either through 471 

challenge or vaccination) may highlight dietary modifications that are not previously evident. 472 

This is further highlighted in mammalian research, where studies have shown that nutrients are 473 

preferentially directed towards the immune system, rather than growth, during times of 474 

infection [47]. This includes the distribution of amino acids to the liver for synthesis of acute 475 

phase proteins [48] and suggests suboptimal nutrient intake prior to infection may result in a 476 

diminished immune response. It therefore seems a logical step to evaluate the immune function 477 

of the fish after its dietary protein source has been altered. For this reason, salmon parr 478 

receiving the experimental diets in the present trial were vaccinated and then challenged with 479 

A. salmonicida.  480 

While most of these immunological parameters (serum lysozyme, protein, total IgM, 481 

head kidney macrophage phagocytic activity and oxygen radical production) have been 482 

previously shown to be modulated by dietary change in various teleosts (summarized by Kiron 483 

[44]), no differences compared to the commercial type control SPC35 diet occurred prior or 484 

post-vaccination in the present study. Similar to the current trial, Bransden et al. [49] reported 485 

no differences in lysozyme activity, plasma concentrations of total IgM, total protein or glucose 486 

levels of non-immunized salmon parr fed on diets where dehulled lupin meal replaced 40% of 487 

FM. Furthermore, in line with the present study, Jalili et al. [18] demonstrated no differences 488 

in serum lysozyme levels of non-immunized rainbow trout (Oncorhynchus mykiss) fed on diets 489 
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fully based on mixed plant proteins. Rumsey et al. [20] reported increased lysozyme activity 490 

in rainbow trout fed SBM diets. Contrary to this, Fahrangi & Carter [50] revealed decreased 491 

serum protein levels in rainbow trout receiving 30, 40 and 50 % of dehulled lupin meal, 492 

compared to trout fed 10% dehulled lupin meal, while no changes were detected in serum 493 

glucose levels. Increased lysozyme activity at both points after vaccination for all dietary 494 

groups of salmon is indicative of both stress induction and immune stimulation and was not 495 

apparent in naïve fish. Vaccination is a stressful process, which could explain the sharp increase 496 

in serum glucose at 2 dpv [51-52]. Furthermore, the stress-related reduction in fish appetite due 497 

to vaccination could explain the concomitant reduction in serum protein and total IgM levels 498 

observed at 2 dpv in vaccinated salmon [53]. The observed initial reduction in serum total IgM 499 

could also be related to the formation of antibody-antigen complexes, reducing the number of 500 

free circulating natural antibodies at 2 dpv [54-55]. The reduction in serum glucose levels at 501 

62 dpv, below those of pre-vaccinated or PBS-injected salmon at 62 days post injection 502 

demonstrates the reduced responsiveness to acute stressors (e.g. sampling processes such as 503 

netting and exposure to anaesthetic) of salmon subjected to higher stress for a prolonged time 504 

period (e.g. vaccinated salmon vs PBS-injected salmon due to immune stimulation) [56-57]. 505 

However, the 4-fold increase in total IgM for all dietary groups at 62 dpv is an indication of 506 

the efficacy of vaccination [53, 58], and the absence of polyetiological stress during the study, 507 

which could have compromised this response [52]. The increase of total protein is also 508 

indicative of salmon appetite recovery at 62 dpv [53]. In a previous study performed by 509 

Metochis et al. [22], higher plasma total IgM and lysozyme activity in SPC50 and SPC65 510 

compared to SPC35 salmon prior to vaccination (Day 63 of feeding), 7 dpv (Day 70) and 34 511 

dpv (Day 97) were demonstrated. Contrarily lower levels to former two groups were 512 

demonstrated for SPC80 salmon, similar to those observed in SPC35 fish. While IgM levels 513 

prior to and after vaccination followed similar patterns in the two studies, lysozyme activities 514 
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presented different post vaccination patterns. The observed differences are discussed further 515 

below (paragraph 7 of Section 4).  516 

No effects of the SPC inclusion levels on specific antibody production were detected, 517 

which is in line with the data from the study by Metochis et al. [22], on increasing dietary SPC 518 

levels on larger size Atlantic salmon parr. Kiron et al. [59-60] reported no changes in the 519 

specific antibody levels of rainbow trout fed on different dietary protein levels, suggesting that 520 

specific antibody production does not seem to depend on dietary protein quantity. This could 521 

explain why in the present trial, differences in protein intake attributed to the reduced feed 522 

intake or the presence of phytic acid which is known to adversely affect protein digestibility, 523 

did not affect the production of specific antibodies. Moreover, many studies on the effects of 524 

dietary or injectable immuno-stimulants have found no effect on specific antibody production 525 

in fish (summarized by Anderson [61] and Gannam & Schrock [62]), which could be an 526 

indication that increasing dietary levels of plant proteins with potential immunostimulatory 527 

effects, do not promote specific antibody production and that their activity lies on the 528 

stimulation of innate immune components. 529 

Complement activity appeared to be the most eminently affected immune response by 530 

increased dietary SPC inclusions, during the course of the study, in accordance to previous 531 

studies [19, 22, 63]. While no changes in AC activity among the dietary groups were observed, 532 

lower CC and TC (the sum of alternative, classical complement activities) activities were 533 

detected in salmon fed increased dietary SPC levels at Day 92, prior vaccination. In similar 534 

studies, increased or unaffected AC activity were reported in gilthead sea bream (Sparus 535 

aurata) and rainbow trout respectively, in naïve fish fed up to 50% of protein from plant 536 

ingredients, while decreased activity was observed in fish fed on diets with over 70% of protein 537 

from such feedstuffs [18-19]. Alternative complement activity is considered as a major 538 

component of salmon’ innate immunological defences against diseases, depending on serum 539 
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Mg availability for its activation [64-66]. Classical complement activity, on the other hand, is 540 

a component of acquired immunity, enhanced upon specific immune stimulation and increased 541 

serum antibody presence, having a requirement for both Mg and Ca for its activation [64-66]. 542 

Increased dietary Mg levels in higher SPC inclusion diets could have attributed to the absence 543 

of differences in AC activity among the dietary groups despite any proposed reductions in 544 

mineral uptake due to reduced feed intake and increased dietary phytic acid concentrations [13-545 

14, 37]. On the contrary, lower dietary Ca in high SPC inclusion diets could have influenced 546 

reductions in CC activity [64]. Moreover, potential reductions of protein and/or amino acid 547 

intake in high SPC inclusion groups (due to higher dietary phytic acid levels) could have 548 

influenced metabolic changes, favouring AC protein production over CC proteins, in order not 549 

to compromise salmon innate immune response, the first line of defence against diseases [22, 550 

37, 67-69]. Overall, lower complement activities were detected after vaccination compared to 551 

pre-vaccination levels while the highest activities were exhibited in PBS-injected salmon at 552 

Day 154 allegedly due to their naivety to immune challenges translating to reduced stress, 553 

higher feed intake, higher growth and higher circulating protein levels [51, 70]. In general, 554 

lower complement activity after vaccination, could be attributed to the formation of 555 

complement complexes with the vaccine, as was the case for serum total antibodies, 556 

diminishing the concentration of complement proteins in vaccinated salmon sera [53-55]. 557 

Moreover, the reduced levels of alternative complement activity for SPC58 and SPC80 558 

compared to SPC35 salmon could highlight suboptimal nutrient uptake prior to vaccination 559 

[46]. Suboptimal protein and or amino acid uptake during the primary (pre-injection) period 560 

could have also influenced the trends of decreasing AC activity in naïve fish receiving higher 561 

dietary SPC levels at Day 154 [46, 67-68]. At 62 dpv average CC complement activity for all 562 

groups was recovered at higher levels than at 2dpv revealing stimulation of the specific 563 

immunity, in accordance to previous studies [53, 55, 58].  The observed increments in CC 564 
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activity at 62 dpv were more pronounced for high dietary SPC groups compared to SPC35 565 

salmon. In a previous study, Metochis et al. [22] reported significantly higher plasma 566 

haemolytic activity in salmon fed high SPC inclusion diets at 97 days post feeding (and 34 567 

dpv), while no differences were observed prior to (Day 63) and at 7 dpv. In the same study, 568 

salmon haemolytic activity remained fairly constant prior to and at 7 dpv while showing an 569 

increase at 34 dpv, similar to the evolution of the TC haemolytic response patterns presented 570 

here.  571 

While most of the immune related responses measured for HKMs did not show 572 

differences among the dietary groups prior to and post vaccination, higher HKM phagocytosis 573 

percentages were detected in SPC58 salmon injected with PBS at 62 dpPBSinj compared to 574 

their SPC35 counterparts. This shows that inclusion of 58% of amino acid and phosphate 575 

supplemented dietary protein from SPC, could have a stimulatory effect on HKM motility 576 

which is reduced at higher dietary SPC inclusion levels. Previously, Metochis et al. [22] 577 

reported no differences in the respiratory burst activity of Atlantic salmon fed diets with 578 

increasing dietary SPC inclusions. However, the HKM respiratory response patterns observed 579 

in the former study were different from the ones recorded here and they are discussed below in 580 

the next paragraph. Rumsey et al. [20] demonstrated both increased phagocytosis and 581 

respiratory burst activity by circulating leucocytes in rainbow trout fed on SBM. However, 582 

those findings were attributed to inflammatory and hypersensitivity processes, since SBM 583 

ANFs are linked with intestinal inflammation [16]. Previously, Burrells et al. [21] reported that 584 

HKM respiratory burst in rainbow trout fed on diets containing 10-50 % of SBM remained 585 

unaffected, whereas inclusion levels of up to 80% caused a reduction in HKM responses. Sitja-586 

Bobadilla et al. [19], contrary to the present findings, reported higher respiratory burst activity 587 

by HK leucocytes in juvenile sea bream fed on nutritionally balanced diets in which 75% of 588 
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FM was substituted with a mixture of different plant protein sources and supplemental amino 589 

acids.  590 

Discrepancies in the way salmon parr immune responses were affected prior to and post 591 

vaccination, their magnitude and differences in the responses of salmon fed increasing dietary 592 

SPC levels were not in accordance with the previous study by Metochis et al. [22]. Despite, the 593 

high relevance in the experimental design between the two studies, differences in the observed 594 

immune responses could be attributed to a number of experimental disparities such as: (A) The 595 

use of different salmon breeds (AquaGen salmon selected for improved growth and resistance 596 

to IPNV vs Salmo Breed salmon selected for higher growth performance previously) [51]; (B) 597 

The use of different commercial adjuvanted vaccines (i.e. liquid paraffin vaccine against 598 

furunculosis and IPNV vs montanide vaccine against furunculosis previously) [61]; (C) The 599 

concentration and source of dietary P (increasing monocalcium phosphate upon increasing 600 

dietary SPC vs diets supplemented with constant amounts of dicalcium phosphate previously) 601 

[45 and 71]; (D) The timing of sampling (2 and 62 dpv vs 7 and 34 dpv); (E) The photoperiod 602 

applied (12 h dark: 12 h light vs constant light previously) [72-73]; (F) The feeding regime 603 

applied (non-intensive: fish fed to satiation twice daily vs intensive: fish fed continuously every 604 

435 seconds all throughout the day previously) [74-75]; and (G) The developmental stage of 605 

salmon parr used (small size vs large size salmon parr previously) (reviewed by [76]). 606 

However, despite the observed differences in the patterns and magnitude of the assessed 607 

immune responses in the two studies, both of them have proven that a range of innate and 608 

specific immune responses in Atlantic salmon parr fed diets with up to 80% of amino acid 609 

supplemented protein from SPC were not compromised compared to fish fed a commercial 610 

type control feed with 35% of protein from SPC and constant [22] or increasing P 611 

supplementation (present study). Another important finding of the present study is that 612 

vaccination can highlight differences in immune responses attributed to dietary changes and 613 
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which might be masked without stimulation of salmon immunity. The latter finding was also 614 

apparent from the results of the previous study by Metochis et al. [22].  615 

Salmon were challenged against A. salmonicida, on Day 154 of the feeding trial and at 616 

64 dpv, in order to prove that the observed data on salmon immune responses pointing at a non-617 

compromised health status were actually meaningful. Challenge with A.salmonicida resulted 618 

in lower mortality levels (44 %), than expected (~70%) according to the pre-challenge. 619 

Reduced virulence for this strain of A.salmonicida has been previously observed after long-620 

term storage (6-7 months) of these bacteria in beads at -70ºC or in glycerol at -20ºC (Herath,T., 621 

personal communication and Chalmers, L., personal communication). Another factor that 622 

could have influenced the lower number of mortalities in the groups during the challenge period 623 

compared to the pre-challenge tests was the fact that potential bacterial dose differences 624 

(producing 70% mortalities) due to the larger size of the fish at the challenge timepoint, were 625 

not taken into account (reviewed by Tatner [76]). The reason was that very low bacterial doses 626 

were required to produce 70% mortalities (LD70) in 32g salmon parr increasing the probability 627 

of misestimating the LD70 for larger size fish. The absence of mortalities in the vaccinated 628 

groups were indicative of the promotion of specific immunity by all treatments and the lack of 629 

differences in specific immunity among the dietary salmon groups. The data also suggest that 630 

increasing dietary SPC levels were not detrimental for the resistance of naïve salmon to 631 

furunculosis, confirming the lack of differences in the assessed immune responses. Similarly 632 

to the present findings, Bransden et al. [49] reported no differences in the resistance of salmon 633 

parr fed diets with 0 or 40% of FM substitution with dehulled lupin meal when experimentally 634 

infected with Vibrio anguillarum, whereas Jalili et al. [18] found no differences in the mortality 635 

of rainbow trout fed diets with 0, 40, 70 and 100% replacement of FM with plant proteins when 636 

challenged against Yersinia ruckerii. Krogdahl et al. [16] reported increased survival in salmon 637 

fed a diet with 30% of dietary protein from SPC compared to fully FM-fed fish challenged 638 
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through cohabitation with A.salmonicida. In the previous study, the proposed reason for the 639 

increased survival was the observed increase in IgM levels in the intestinal mucosa of SPC-fed 640 

compared to FM-fed salmon. Herein, it was shown diets with even higher dietary SPC levels 641 

compared to the ones reported by Krogdahl et al. [16] (control diet in the present study was  642 

close to the SPC diet used in the latter study) do not seem to affect the immunity or resistance 643 

of salmon intraperitoneally infected with furunculosis.  644 

5. Conclusions 645 

Atlantic salmon parr presented a slow but steady adaptation to the diet with 58% of protein 646 

from SPC, presenting similar growth performance to the commercial type control diet at 154 647 

days post feeding but that was not the case with the diet with 80% of protein from SPC. On the 648 

contrary, replacement of high quality FM protein with high levels of amino acid and phosphate 649 

supplemented SPC (80% of dietary protein) did not produce any reductions of the immune 650 

responses or the disease resistance of naïve and/or vaccinated salmon against A. salmonicida, 651 

suggesting no negative effects on immunity. Diets with 58% of dietary protein from SPC 652 

produced similar growth and immune responses to the commercial type control feed with 35% 653 

of protein from SPC and could be used for the on-growing of salmon parr. However, further 654 

challenge experiments against other bacterial, viral and parasitic diseases are required to 655 

properly assess the effects of high SPC inclusion diets on the disease resistance of juvenile 656 

Atlantic salmon. 657 
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Figure Caption 855 

Figure 1. Observed mortality curves in the quadruplicate tanks of the experimental dietary 856 

groups of intra-peritoneally challenged against A. salmonicida Atlantic salmon parr (PBS-857 

injected) and cumulative mortality curves for the three dietary groups (PBS-injected). 858 
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Figure 1. 860 

861 
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Table 1. Formulation and chemical composition of the experimental diets. 862 

Feed composition (× kg-1) SPC35 SPC58 SPC80 SPC35 SPC58 SPC80 

 2mm 3mm 

Fishmeal a (g) 449.2 269.8 114.6 449.2 269.8 114.6 

SPC b (g) 288.3 453.8 598.6 288.3 453.8 598.6 

Tapioca c (g) 110.0 100.0 90.0 110.0 100.0 90.0 

MonoCalcium phosphate d (g) 20.0 30.0 40.0 20.0 30.0 40.0 

Vitamin and mineral premixese (g) 4.0 4.0 4.0 4.0 4.0 4.0 

Vitamin C 35% e (g) 1.0 1.0 1.0 1.0 1.0 1.0 

Methionine f (g) 2.1 4.0 5.5 2.1 4.0 5.5 

Lysine 78% f (g) 1.8 2.6 3.3 1.8 2.6 3.3 

L-Threonine f (g) 0.6 0.8 1.0 0.6 0.8 1.0 

Nobacithin Powder g (g) 10.0 10.0 10.0 10.0 10.0 10.0 

Fish Oil h(g) 113.0 124.0 132.0 113.0 124.0 132.0 

Chemical composition (× kg-1)       

Dry matter (g) 959.7 944.1 923.0 923.2 936.1 922.5 

In dry matter basis 

Energy (KJ) 222.4 218.9 216.3 223.8 218.8 217.1 

Crude protein (g) 531.2 515.2 494.1 532.4 511.8 489.8 

Crude fat (g) 182.4 170.6 162.0 177.7 165.4 162.1 

Crude prt: Crude fat ratio 29.1 30.2 30.5 29.9 30.9 30.3 

Ash (g) 95.5 92.5 89.0 96.1 91.0 87.6 

Carbohydrate (g) 289.7 307.9 332.4 287.8 308.0 318.8 

Crude fibre (g) 0.1 0.2 0.3 0.1 0.2 0.3 

Phytic acid (g) 11.5 14.7 15.4 10.6 13.7 14.2 

Phytic acid-bound P (g) 3.0 3.8 3.8 2.7 3.6 3.5 

P (g) 16.0 16.1 15.0 15.7 16.1 15.4 

Ca (g) 15.1 14.0 11.5 14.8 13.6 11.5 

Ca: P ratio 0.9 0.9 0.8 0.9 0.8 0.7 

Zn (mg) 295.3 295.3 266.5 280.6 285.9 267.6 

Mg (g) 2.3 2.4 2.4 2.1 2.3 2.4 

Mn (mg) 84.0 90.0 84.4 82.4 87.8 85.5 

Abbreviations: SPC 35 - diet with 35% of dietary protein from soy protein concentrate (SPC); 863 
SPC 58 - diet with 58% of dietary protein from SPC; SPC 80 - diet with 80% of dietary protein 864 
from SPC. 865 
* The concentrations of phytic acid and phytic acid-bound P were estimated using a Megazyme 866 

Phytate/Total Phosphorus Assay kit (Megazyme, Ireland) following the protocols provided by 867 

the company and were then corrected according to the total dietary P values estimated via 868 

ICP/MS. 869 
a Fishmeal (Egersund  Sildoljefabrikk, Norway) with an apparent protein digestibility 870 
coefficient (ADC protein) of 90.2 %  871 
b SPC (*62 % crude protein) (Imcopa, Paraná, Brazil) with an apparent protein digestibility 872 
coefficient (ADC protein) of 90.8 % (Anti-trypsins <3.0 mg × g-1, Fibre <5.0 mg × g-1, Lectins 873 
< 0.1 μg × g-1, Saponins = 0%, Glycinin < 3.0 μg × g-1, β-conglycinin < 1.0 μg × g-1) 874 
(compositional analyses performed by an authorised external laboratory hired by Imcopa) 875 
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c Tapioca (Hoff Norske Potetindustrier, Gjøvik, Norway)  876 
d Monocalcium Phosphate (Normin AS, Hønefoss, Norway)  877 
e Vitamin premix and Mineral premix (EWOS AS, Bergen, Norway)  878 
f Amino acids (Evonik Degussa International AG, Hanau, Germany) 879 
g Nobacithin: De-oiled lecithin powder (Noba Vital Lipids, Netherlands);  880 
h Fish Oil (Egersund  Sildoljefabrikk, Norway).  881 
 882 
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 909 

Table 2. Performance data of juvenile Atlantic salmon dietary groups 910 

Growth and survival SPC35 SPC58 SPC80 

Average initial weight (g) (Day 0) 9.3±0.06 9.3±0.16 9.3±0.12 

Average intermediate weight (g) (Day 92) 34.2±0.65a 32.7±0.56b 30.5±0.62c 

Average Weight (Vac. Fish) (Day 92) 34.8±4.45 32.6±0.94 30.2±0.95 

Average final weight (g) (Day 154) Vacc. fish 55.5±6.18a 52.6±2.16ab 47.4±1.12b 

Average weight (PBS-inj. fish) (Day 92) 35.2±1.29 33.6±1.02 30.6±1.56 

Average final weight (g) (Day 154) PBSinj. fish 59.9±3.10a 57.3±1.04a 49.5±2.94b 

Weight gain (g×fish-1×day-1) (Days 0-92) 0.27±0.01a 0.25±0.01a 0.23±0.01b 

Weight gain (g×fish-1×day-1) (Days 92-154) Vacc. 

fish 
0.33±0.04a 0.32±0.02ab 0.28±0.01b 

Weight gain (g×fish-1×day-1) (Days 92-154) 

PBSinj. fish 
0.40±0.03a 0.38±0.02a 0.30±0.02b 

SGR (Days 0-92) 1.50±0.03a 1.45±0.03b 1.38±0.02c 

SGR (Days 92-154) Vacc. fish 0.88±0.07 0.90±0.04 0.85±0.02 

SGR (Days 92-154) PBSinj. fish 1.00±0.03a 1.01±0.06a 0.91±0.02b 

TGC (Days 0-92) 1.03±0.02a 0.98±0.02b 0.92±0.01c 

TGC (Days 92-154) Vacc. fish 0.74±0.06 0.74±0.04 0.68±0.01 

TGC (Days 92-154) PBSinj. fish 0.86±0.04a 0.85±0.05a 0.73±0.03b 

Feed Intake (0-92) 0.22±0.01a 0.22±0.01a 0.21±0.00b 

Feed Intake (Days 92-154) Vacc. fish 0.29±0.02 0.28±0.01 0.27±0.02 

Feed Intake (Days 92-154) PBSinj. fish 0.38±0.02 0.38±0.01 0.38±0.01 

FCR (0-92) 0.82±0.04a 0.85±0.03ab 0.89±0.01b 

FCR (Days 92-154) Vacc. fish 0.87±0.06a 0.86±0.04ab 0.96±0.06b 

FCR (Days 92-154) PBSinj. fish 0.96±0.03a 1.00±0.06a 1.24±0.09b 

Mortalities (%) 0.00±0.00 0.00±0.00 0.01±0.01 

Mortalities (%) (Days 92-154) Vacc. fish 0.01±0.01 0.01±0.01 0.01±0.01 

Mortalities (%) (Days 92-154) PBSinj. fish 0.00±0.00 0.00±0.00 0.01±0.01 

Abbreviations: SPC 35 - diet with 35% of dietary protein from soy protein concentrate (SPC); 911 

SPC 58 - diet with 58% of dietary protein from SPC; SPC 80 - diet with 80% of dietary protein 912 
from SPC. 913 

Data for growth performance represent means ± SEM for 4 replicate tanks. 914 
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Significant differences among dietary groups at each timepoint are given with different 915 

superscript letters within each row.  916 

*Weight gain (WG) (g × fish-1× day-1) = (Final Biomass-Initial Biomass)/ (N × t) 917 
 918 

SGR = [(ln W1 - lnW0)/t] × 100 919 

TGC = [(∛W1-∛W0)/(t ×T)]×1000 920 

Feed Intake (FI) (g × fish-1× day-1) = (Wfg – Wfc)/ (N × t) 921 
FCR = (Wfg – Wfc)/(W1 – W0) 922 

where: t = Number of days 923 
T = Average water temperature in ° C 924 
N = Number of fish 925 
W1 = Average final weight (g) 926 
W0 = Average initial weight (g) 927 

Wfg = Weight of feed given (g) 928 
Wfc = Cumulative weight of feed collected at the end of each feeding (g) 929 

  930 
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Table 3. Immune responses of the dietary groups of salmon parr at different timepoints/states 931 

Pre vaccination SPC35 SPC58 SPC80 

Lysozyme act. (units × min-1× ml-1 of serum) 701.9±48.7 656.3±60.0 653.1±48.8 

Alternative complement act. (units H50 × ml-1 of serum) 90.1±14.5 78.9±11.0 99.4±17.9 

Classical complement act. (units H50 × ml-1 of serum) 436.9±46.3a 260.9±19.3b 314.0±50.0ab 

Total complement act. (units H50 × ml-1 of serum) 527.0±49.8a 339.7±18.2b 413.4±53.5ab 

HKMs resp. burst (NBT) (OD for 105 nuclei) 0.5±0.1 0.7±0.1 0.6±0.1 

Stimulated HKMs resp. burst (OD for 105 nuclei) 0.6±0.4 0.8±0.1 0.7±±0.2 

Phagocytic Index 1.8±0.0 1.9±0.3 1.4±0.2 

Phagocytosis (% of HKMs performing phagocytosis) 49.1±4.2 52.9±9.9 46.3±4.6 

Total serum protein (mg × ml-1 of serum) 33.1±2.9 30.0±3.2 30.9±2.2 

Serum glucose (mmol × ml-1 of serum) 6.8±0.3 6.5±0.2 6.3±0.3 

Total serum IgM (mg × ml-1 of serum) 2.8±1.6 1.7±0.5 1.2±0.3 

2 days post vaccination       

Lysozyme act. (units × min-1× ml-1 of serum) 728.1±30.9 775.6±56.9 735.0±16.7 

Alternative complement act. (units H50 × ml-1 of serum) 95.7±8.1a 52.3±15.4b 52.0±8.6b 

Classical complement act. (units H50 × ml-1 of serum) 240.2±52.7 260.7±59.6 328.1±74.9 

Total complement act. (units H50 × ml-1 of serum) 335.9±52.9 313.0±63.1 380.2±74.1 

HKMs resp. burst (NBT) (OD for 105 nuclei) 0.7±0.1 0.8±0.1 0.8±0.1 

Stimulated HKMs resp. burst (OD for 105 nuclei) 1.1±0.1 1.1±0.1 1.3±0.2 

Phagocytic Index 5.9±0.3 6.5±0.4 7.0±0.9 

Phagocytosis (% of HKMs performing phagocytosis) 76.8±3.5 75.4±2.6 79.4±3.1 

Total serum protein (mg × ml-1 of serum) 24.4±5.8 26.6±3.5 21.3±2.2 

Serum glucose (mmol × ml-1 of serum) 9.1±0.8 11.1±1.7 9.7±0.7 

Total serum IgM (mg × ml-1 of serum) 0.6±0.3 1.2±0.4 0.7±0.3 

2 days post PBS-injection       

Lysozyme act. (units × min-1× ml-1 of serum) _ _ _ 

Alternative complement act. (units H50 × ml-1 of serum) _ _ _ 

Classical complement act. (units H50 × ml-1 of serum) _ _ _ 

Total complement act. (units H50 × ml-1 of serum) _ _ _ 

HKMs resp. burst (NBT) (OD for 105 nuclei) 0.6±0.1 0.8±0.1 0.8±0.1 

Stimulated HKMs resp. burst (OD for 105 nuclei) 1.0±0.2 1.1±0.1 1.0±0.2 

Phagocytic Index 4.8±0.4 4.5±0.5 5.3±0.3 

Phagocytosis (% of HKMs performing phagocytosis) 68.3±1.6 70.8±1.9 72.3±2.1 

Total serum protein (mg × ml-1 of serum) _ _ _ 

Serum glucose (mmol × ml-1 of serum) _ _ _ 

Total serum IgM (mg × ml-1 of serum) _ _ _ 

62 days post vaccination       

Lysozyme act. (units × min-1× ml-1 of serum) 867.5±30.2 810.0±113.8 811.9±77.5 

Alternative complement act. (units H50 × ml-1 of serum) 82.3±8.5a 69.3±11.5ab 47.4±17.5b 

Classical complement act. (units H50 × ml-1 of serum) 303.9±35.1 334.2±77.8 513.8±107.8 

Total complement act. (units H50 × ml-1 of serum) 386.2±32.1 403.5±83.3 561.2±107.3 

HKMs resp. burst (NBT) (OD for 105 nuclei) 0.5±0.1 0.3±0.1 0.3±0.1 
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Stimulated HKMs resp. burst (OD for 105 nuclei) 0.7±0.2 0.4±0.1 0.5±0.1 

Phagocytic Index 1.0±0.2 1.1±0.1 0.9±0.1 

Phagocytosis (% of HKMs performing phagocytosis) 38.6±5.7 44.9±2.8 36.9±3.6 

Total serum protein (mg × ml-1 of serum) 31.0±3.0 29.5±2.1 28.0±2.5 

Serum glucose (mmol × ml-1 of serum) 5.5±0.3 5.4±0.3 5.4±0.2 

Total serum IgM (mg × ml-1 of serum) 9.0±1.8 8.5±1.9 5.1±0.6 

Specific IgM (serum titers) 0.5±0.1 0.3±0.1 0.3±0.1 

62 days post PBS-injection       

Lysozyme act. (units × min-1× ml-1 of serum) 702.5±49.6 707.5±16.8 711.9±59.6 

Alternative complement act. (units H50 × ml-1 of serum) 209.8±13.6 189.2±34.5 130.6±12.0 

Classical complement act. (units H50 × ml-1 of serum) 383.6±56.7 379.2±44.1 402.0±91.0 

Total complement act. (units H50 × ml-1 of serum) 593.4±59.8 568.3±50.0 532.6±94.2 

HKMs resp. burst (NBT) (OD for 105 nuclei) 2.5±0.6 2.1±0.3 2.2±0.5 

Stimulated HKMs resp. burst (OD for 105 nuclei) 4.3±1.4 3.7±0.7 4.5±1.5 

Phagocytic Index 0.3±0.1a 0.8±0.1b 0.8±0.2ab 

Phagocytosis (% of HKMs performing phagocytosis) 20.6±5.2a 39.6±3.2b 37.5±6.1ab 

Total serum protein (mg × ml-1 of serum) 61.6±2.3 60.3±6.7 59.3±3.2 

Serum glucose (mmol × ml-1 of serum) 6.6±0.4 6.1±0.2 6.4±0.3 

Total serum IgM (mg × ml-1 of serum) 0.8±0.3 0.9±0.2 1.3±0.4 

Abbreviations: SPC 35 - diet with 35% of dietary protein from soy protein concentrate (SPC); 932 

SPC 58 - diet with 58% of dietary protein from SPC; SPC 80 - diet with 80% of dietary protein 933 
from SPC. 934 

Data for growth performance represent means ± SEM for 4 replicate tanks. 935 

Significant differences among dietary groups at each timepoint are given with different 936 

superscript letters within each row. 937 
 938 

 939 


