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Abstract 

Effective management of water quality in large rivers requires information on the influence of 

activities within the catchment (urban and rural) throughout the whole river basin. However, 

traditional water quality monitoring programmes undertaken by individual agencies normally relate to 

specific objectives, such as meeting quality criteria for wastewater discharges, and fail to provide 

information on basin-scale impacts, especially in transboundary river basins. Ideally, monitoring in 

large international river basins should be harmonised to provide a basin-scale assessment of sources 

and impacts of human activities, and the effectiveness of management actions. This paper examines 

current water quality issues in the Danube River basin and evaluates the approach to water quality 

monitoring in the context of providing information for a basin-wide management plan. Lessons 

learned from the monitoring programme in the Danube are used to suggest alternative approaches that 
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could result in more efficient generation of water quality data and provide new insights into causes 

and impacts of variations in water quality in other large international river basins. 

 

Keywords: Danube River basin, water quality monitoring, international river basins, transboundary 

rivers, monitoring networks 

 

1. Introduction 

River water quality globally has been impacted by anthropogenic activities, in many cases in ways 

that still have to be fully quantified (e.g. Meybeck, 2005; Vörösmarty, 2002). Whilst these impacts are 

increasingly acknowledged, our ability to understand the magnitude of anthropogenic forcing is 

constrained by the limited availability of long-term water quality data-sets, which are essential in 

understanding system behaviour (Burt et al., 2014; Myroshnychenko et al., 2015).  

 

Large river basins pose many challenges with respect to water quality monitoring and management, 

particularly in multi-national basins where individual countries may differ in their legislative 

framework and in their priorities for water resource management (Bloesch et al., 2012; Sommerwerk 

et al., 2009). However, the main aim in all cases is ultimately the sustainable management of water 

resources (UNEP 2007). The focus in international river basin management has largely been on water 

quantity and flow allocation, particularly where there has been a high demand for energy from 

hydropower, water for irrigation, and/or problems related to flood control and the role of wetlands 

(Rebelo et al., 2013). The physical, chemical and biological quality of river water is critically 

important, because they are linked to every aspect of human wellbeing and sustainable development 

(UN 2012). Therefore, monitoring water quality is essential in determining the impacts of human 

activities, the suitability of water for human use and fluxes (through concentrations and discharge 

measurements) of sediment and contaminants to lakes and coastal zones. Such monitoring typically 

has a local focus, but to contribute to management at the river basin scale it is essential to harmonise 

individual monitoring activities to: i) indicate trends over time; ii) obtain a complete picture of the 

impacts of activities, and their interaction, within the basin; iii) determine downstream impacts; and 

iv) direct remedial actions most appropriately. 

 

This paper considers current problems (and opportunities) of water quality monitoring specifically in 

the Danube River Basin (DRB) of Central and Eastern Europe. In common with many other 

catchments, the DRB has experienced significant recent changes in water quality, including physical, 

chemical and biological water quality. The challenges faced in the DRB are examined here, 

highlighting the importance of adopting a holistic approach when investigating water quality 
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problems. The situation in the DRB is compared and contrasted with other large river basins and ways 

in which monitoring of river water quality can be improved are identified.  

 

2. The Danube River Basin: features and pressures 

The DRB is Europe's second largest river basin, with a catchment area of 801,463 km² and a total 

channel length of 2,857 km. It is the world's most international river basin, including territory from 19 

countries: 29% of the basin is within Romania, Hungary lies entirely within the Danube basin and 

large proportions of Austria, Serbia and Slovakia are in the DRB. Fourteen of the countries in the 

basin have co-operated on water protection and conservation since 1998 through the International 

Commission for the Protection of the Danube River (ICPDR), which is working to implement the 

1994 Convention on Cooperation for the Protection and Sustainable Use of the Danube River, known 

as the Danube River Protection Convention (DRPC). This Convention has the objective of achieving 

sustainable and equitable water management, including the conservation, improvement and the 

rational use of surface and ground waters in the DRB. Of the 14 countries, nine (Austria, Bulgaria, 

Croatia, Czech Republic, Germany, Hungary, Slovakia, Slovenia and Romania) are members of the 

European Union (EU) and are bound by the Water Framework Directive (WFD), Directive 

2000/60/EC, (EC 2000) which came into force in December 2000 (although the actual date of its 

implementation varies according to when countries joined the EU). Subsequent directives, 

2008/105/EC on Environmental Quality Standards (EQS) in the field of water policy (EC 2008), as 

amended by daughter Directive 2013/39/EU (on priority substances), also have implications for 

catchment management; and all the countries co-operating under the DRPC have agreed to implement 

the WFD and the daughter Directives in the basin through the ICPDR. 
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One of the key characteristics of the Danube River today is the extent to which the flow of the Danube 

(and its principal tributaries) has been increasingly regulated for hydropower and navigation (see 

Habersack et al., 2016). This has considerable implications for water quality, including temperature 

(Webb and Nobilis, 2007) and sediment flux (Schwarz et al., 2008). At present there are 598 major 

dams and weirs along the Danube and its tributaries (ICPDR 2014), 156 of which are for hydropower 

(Sommerwerk et al., 2009). In the first 1100 km of the Danube, there is an average of one power plant 

every 16 km above the Gabcikovo-Bős Water Barrage System (GB-WBS) in Slovakia/Hungary 

(ICPDR 2014). In Hungary the biggest abstraction of water from the Danube is at the Paks nuclear 

power plant (Q = 100 m3 s–1) which is responsible for thermal pollution in the river. In total, there are 

69 dams along the main stem of the Danube and ~30% of the channel length is impounded, with 

implications for species  migration (Figure 1) and sediment transport (Klaver et al., 2007). In addition 

to dam construction for hydropower, the channel and banks have been engineered to facilitate 

navigation and improve flood protection. Such changes have implications for aquatic habitats and the 

river ecology as well as the associated floodplain and wetland habitats (Habersack et al., 2016; Hein 

et al., 2004; Hohensinner et al., 2005; Rebelo et al., 2013). Compared with the 19th Century, estimates 

Figure 1. Dams and weirs along the length of the Danube River, indicating those that block the natural 
migration patterns of migratory fish species (both diadromous and  potamodromous) by preventing 
access to spawning grounds (Source: ICPDR) 
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suggest  65% to 81% of the former floodplain area has been lost (ICPDR 2009; Schneider 2002), with 

large differences between the different river sections (i.e. upper, middle, lower and delta). 

 

In addition to the direct effects of anthropogenic activities in the DRB, there are significant impacts 

associated with other long-term processes such as climate change, similar to those discussed for the 

neighbouring upper Rhone Basin by Clarvis et al. (2014). The ICPDR Strategy for Adaptation to 

Climate Change (ICPDR 2013a) predicts an increase in mean winter discharge and a decrease in mean 

summer discharge for the entire DRB, although there will be seasonally local variations as predicted 

for the Mures River (Sandu et al., 2009). The predicted increase, especially in winter floods and run-

off, may increase particle transport and particle-associated water pollution, depending on the 

contaminants stored in the sediments and the grain sizes of the bed sediments (Pulley et al., 2016; 

Vignati et al., 2003). Water temperatures are also expected to increase with associated decreases in 

water quality (e.g. reduced oxygen concentrations and increased algal blooms). The precise impacts of 

climate-associated problems in the DRB are hard to quantify, but the GB WBS hydropower plant 

illustrates some of the anticipated effects on surface waters in the basin. Construction of the GB WBS 

in 1992 led to the diversion of the main channel of the Danube and resulted in a reduction of 

discharge from 2000 to 400 m3s-1 as the majority of the river flow was diverted for input to the 

hydropower plant (Kovács et al., 2015). In consequence, shallow groundwater levels in the immediate 

vicinity have fallen significantly (Bárdossy and Molnár, 2003; 2004), to levels that are comparable to 

recent IPCC projections (IPCC 2013). Given the decreased discharge, more sediment is now 

deposited on the river bed leading to river bed clogging (colmation) and decreased groundwater 

recharge (via effluent seepage), resulting in conditions that would have normally occurred only in dry 

years and which are now anticipated under future climate change predictions to occur more frequently 

during summer in future (IPCDR 2013a). 

 

3. Trends in water quality in the Danube River Basin 

In common with many catchments, the DRB has experienced significant changes in water quality 

including: physical (e.g. temperature, suspended sediment and bed-load transport), chemical (e.g. 

ammonium, nitrate, nitrite, phosphorus and emerging pollutants) and biological water quality (faecal 

pollution, species loss and biological community alterations due to invasive species). These reflect 

multiple factors including changes in: i) land use; ii) point and diffuse pollution (from agriculture, 

industry and individual households), and iii) the catchment water cycle as a result of climate change 

and anthropogenic modifications of the drainage basin (see Sommerwerk et al., 2009 for a detailed 

overview of the DRB). One of the major water quality issues in parts of the DRB is organic pollution 

from untreated, or poorly treated, urban wastewaters. The impact of wastewater discharges has been 

clearly shown by marked increases in microbial faecal pollution downstream of major towns and 

cities, including Novi Sad, Belgrade, Budapest, Dunaföldvár, Zimnicea and Arges (Liska et al., 2015). 
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Quantifying pollutants from diffuse sources is very difficult in large river basins; therefore point and 

diffuse nutrient emissions into the Danube have been estimated using the MONERIS (MOdelling 

Nutrient Emissions in RIver Systems) model (Behrendt et al., 2007). The results indicated that 

agriculture was the major source of N emissions but that this was not as significant as urban 

settlements for P emissions (ICPDR 2009). Improvements are planned or underway for most urban 

wastewater treatment plants in the DRB including new and additional treatment technologies and 

adapted capacities, especially those serving large agglomerations such as Bucharest, and also in other 

EU member countries (see Annex 2 of ICPDR 2012). Similarly, the numerous identified industrial 

sources throughout the EU member countries in the DRB, are gradually being addressed by the 

Integrated Pollution Prevention and Control (IPPC) Directive (EU 2010) and related legislation 

(ICPDR 2012).  Improvements in water quality, in terms of ecological and chemical status, should be 

evident once all such measures are fully implemented over the next decade. 

At present, the effects of eutrophication are evident throughout the catchment (Oguz et al., 2008a). 

However, the situation varies through the DRB: typically in the upper basin, river reaches are 

characterized by good water quality (albeit with a highly regulated flow regime), whilst water quality 

is poorer in the lower basin, especially in specific tributaries of the Danube (see reports of JDS 1, JDS 

2 and JDS 3: Literáthy et al., 2002 and Liska et al., 2008, 2015 respectively). In the 1970s and 1980s, 

the Danube was estimated to contribute 80% of the riverine nutrient load to the Black Sea (Oguz et 

al., 2008b). Dissolved inorganic nitrogen (DIN) and phosphate concentrations in the Black Sea 

increased from 1 to 8 µM and from <2 to 3–8 µM respectively (Oguz and Velikova, 2010). Over the 

same time period SiO4 concentrations declined significantly (60 µM in 1970–1975 to 15 µM in 1980–

1985) following construction of the Iron Gates Reservoirs 1 and 2 (Humborg, et al., 1997; Teodoru 

and Wehrli, 2005). As a consequence of the increased N and P and the decline in Si (increase in N:P 

and N:Si ratios), there have been changes in the productivity and structure of the phytoplankton 

community in the Black Sea. In the 1970s, phytoplankton biomass increased by an order of magnitude 

and continued to increase until the early 1990s. Due to a decline in Si inputs, the phytoplankton 

community shifted from diatom-dominated (siliceous) to dinoflagellate-dominated (non-siliceous) 

(Oguz and Vilakova, 2010).  Subsequently (2000-2005), the proportion of nutrient inputs to the Black 

Sea from the Danube declined to ~50% of the riverine nutrient load and there was a reduction of 

~50% of the biochemical oxygen demand (BOD). Despite this, concentrations of inorganic nutrients 

remain 1.5 times higher than they were prior to 1950 (Oguz et al., 2008a). The decline in nutrient 

inputs probably reflects a combination of factors, including improvements in wastewater treatment 

(daNUbs Project Final Report 2005), nutrient retention (particularly P) in reservoirs (daNUbs Project 

Final Report 2005), the economic recession that occurred in many countries of the former Eastern 

Bloc, and reduced agricultural fertilizer use (Mee et al., 2005).  
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Results from JDS 3 show that metal concentrations in the sediments are at similar levels to previous 

surveys but there may have been a slight improvement compared with JDS 1 and 2, and target values 

were only exceeded at a few sites (Liska et al., 2015). Studies of trace elements in sediments of the 

Danube delta have shown that the main sources were from upstream, although overall the Delta 

sediments were less contaminated than the sediments in river reaches upstream in the catchment 

(Vignati et al., 2013; Woitke et al., 2003). There have also been marked changes in sediment transport 

as a result of interruptions to the continuum of bed-load transport with sediment deposition in 

impounded reaches and a sediment deficit in free-flowing river sections (Habersack et al., 2016). 

Sediment transport has been further modified by dredging for navigation, and by river engineering 

work, such as groynes, that contribute to increased river bed erosion in some reaches and sediment 

aggradation between groynes (Schwarz et al., 2008). River modifications can also interrupt the 

transport of sediments between the river and the floodplains. Maintaining river continuity (from the 

catchment headwaters downstream), and lateral connectivity between rivers and their floodplains, is 

important since both have wide-ranging environmental implications. For example, the effects of 

reduced sediment dynamics in impounded sections leads to wider ecological and environmental 

degradation including the clogging of hyporheic interstices. This results in reduced oxygen 

availability, the loss of fish spawning grounds and riparian zone degradation affecting benthic 

invertebrates and fish (e.g. Petkovska and Urbanič, 2015).  

In common with many river basins, there is a lack of detailed knowledge of the levels of hazardous 

substances in the DRB, particularly persistent organic compounds, endocrine disruptors and 

pharmaceutical compounds (ICPDR, 2014). There is therefore an urgent need for chemical and effect-

based monitoring tools to inform new models of exposure and risk assessment (Brack et al., 2015). 

These require the application of sound science and, specifically, good understanding of pollutant 

sources, transport pathways and ultimately the fate of pollutants. Nevertheless, the sources of such 

contamination should be identified and controlled as a matter of priority in the DRB. 

Fundamentally, catchment managers require significant help in identifying and monitoring specific 

compounds and appropriate ways of controlling or mitigating problems (such as untreated urban 

runoff). Addressing current water quality challenges requires a basin-scale approach providing a 

holistic view of the impacts of activities and their interactions within the basin, and new tools that 

build upon existing data-sets to model changes in key water quality determinants and improve the 

scientific basis for integrated catchment management. Examples of current needs are monitoring 

networks to capture spatial and temporal variability; standardisation of monitoring protocols; and 

combining real-time and basin-wide observational data. Within the DRB significant progress has 

already been made in the standardisation of monitoring protocols as outlined below. 
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4 Development of water quality monitoring in the Danube River Basin 

Water quality throughout the DRB was first mapped by Liepolt (1967) and Schmid (2002; 2004) 

assessed water quality in the Danube basin in 1995 and 2002 based on benthic flora and fauna. Prior 

to 1998 when the ICPDR was formed, there was little basin-wide coordination of river monitoring but  

in December 1985 the governments of riparian countries along the Danube signed the Bucharest 

Declaration. One of its objectives was to improve the water quality of the Danube and, in order to 

comply with this objective, a monitoring programme of 11 cross-sections of the Danube River was 

established. The number of sampling sites was expanded to 61 stations in 1996 to form the Trans 

National Monitoring Network (TNMN). The TNMN aimed to provide sufficient data to enable 

reliable and consistent trend analysis for concentrations and loads of priority pollutants, to support the 

assessment of water quality for water use and to identify major pollution sources. Since the 1990s 

international co-operation in the basin has increased (ICPDR 2009). River water quality has continued 

to be a major focus of this co-operation, together with improvement of riverine ecosystems and 

management of groundwater quality (ICPDR 2014). With respect to the latter, 11 transboundary 

groundwater bodies have been identified in the DRB and at present it is estimated that ~72% of 

drinking water within the basin is derived from groundwater abstraction (ICPDR 2014). 

 

The WFD required a revision of the TNMN and this was completed in 2007. The major objective of 

the revised TNMN is to provide an overview of the overall status and long-term changes of surface 

water and, where necessary, groundwater status in a basin-wide context with an emphasis on 

transboundary pollution. In response to the link between the nutrient loads of the Danube and 

eutrophication of the Black Sea noted above, sources and pathways of nutrients in the DRBD and the 

effect of measures taken to reduce the nutrient loads to the Black Sea have been a particular focus of 

monitoring effort. 

 

To meet the requirements of the WFD and the DRPC the TNMN for surface waters currently 

includes: 

• Surveillance monitoring I: Monitoring of surface water status; 

• Surveillance monitoring II: Monitoring of specific pressures; 

• Operational monitoring; 

• Investigative monitoring. 

Surveillance monitoring I and Operational monitoring entail the collection of aggregated data on 

surface water and groundwater status in the DRB and Surveillance monitoring II is a joint monitoring 

activity of all ICPDR contracting parties that produces annual data on concentrations and loads of 

chemical substances throughout the basin.  Investigative monitoring is primarily a national task, but at 

a basin-wide level the Joint Danube Survey (JDS) was developed to carry out investigative 
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monitoring as required, e.g. to harmonize existing monitoring methodologies, to fill information gaps 

in the DRB monitoring networks resulting from an earlier focus on specific issues such as wastewater 

outfalls, and to test new methods or check the impact of “new” chemical substances in different 

matrices. 

 

Surveillance monitoring I and Operational monitoring data are published in the DRB Management 

Plan. The ICPDR identified significant impacts and water management issues that should be 

addressed at the local and basin-wide scales and produced the first DRBD Management Plan in 2009. 

This, together with a programme of measures to improve water quality until 2015, is known as the 

Joint Programme of Measures (JPM) (ICPDR 2005; 2008; 2009). Implementation of the JPM was 

evaluated in 2012 (ICPDR 2012) and the second DRBD Management Plan is currently due to be 

completed by the end of 2015 (ICPDR 2013b).  

 

Joint Danube Surveys have been undertaken at six year intervals since the first survey in 2001. The 

JDS 1 provided data for the entire river course for the first time covering > 140 biological, chemical 

and bacteriological parameters (Literáthy et al., 2002). These data were used in the first analysis of the 

DRBD according to WFD Article 5 (ICPDR, 2005). In 2007, JDS 2 produced a comprehensive 

Figure 2. The Danube River Basin showing monitoring sites for the Joint Danube Survey No. 3 in 
2013 (Source: ICPDR) 
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database of the status of the Danube and its major tributaries (Liska et al., 2008). The collected data 

complemented those from the TNMN surveillance monitoring focussing on a wide range of chemical 

parameters and providing reference data for biological quality elements. JDS 2 included the first 

systematic survey of hydromorphological parameters in the entire navigable channel of the Danube 

using a common method based on EN 14614 (CEN 2004). The results of the hydromorphological 

survey were available to the ICPDR Contracting Parties as a reference for developing the national 

methodologies and were also presented in the first DRB Management Plan in 2009. JDS 2 confirmed 

a generally improving trend for water quality along the Danube River and highlighted a number of 

specific problems, such as pollution by WFD priority substances and by newly emerging 

contaminants. JDS 2 also proved invaluable in improving the water quality assessment database and 

confirmed the need to undertake regular investigative monitoring exercises. The report from JDS 3, 

which took place in 2013 (Figure 2), has been published recently (Liska et al., 2015). When planning 

JDS 3 major attention was given to addressing information gaps, such as sources of microbiological 

pollution and levels of priority pollutants, and the monitoring variables were set accordingly. The 

WFD allows standards to be set for matrices other than water provided such standards guarantee the 

same level of protection as the water-based standards. Therefore, the analysis of priority substances in 

sediments, biota and suspended particulate matter are key objectives of the Joint Danube Surveys. 

JDS 3 reconfirmed that the Danube flora and fauna show a high degree of biodiversity. However, the 

results for WFD biological quality elements (e.g. fish, macrozoobenthos or macrophytes) demonstrate 

the need for further development and harmonization of methodologies applicable for the whole 

Danube River to evaluate the biological quality parameters necessary to determine the ecological 

status of the river according to the WFD. During JDS 3 several new analytical techniques and 

strategies were applied targeting hundreds of organic substances and resulting in the most 

comprehensive information in this area acquired to-date for the Danube. The analysis of these data 

enabled prioritization of the DRB specific pollutants. All the results and findings of JDS 3 provide a 

valuable resource for the Danube countries and are used for river basin management planning at both 

international and national levels, given the volume, character and homogeneity of the data. The 

generation of homogeneous data, which can be used for management purposes, is a key motivation for 

carrying out the surveys. 

 

5. Lessons for future monitoring in the Danube 

National water quality monitoring programmes across the DRB vary with respect to their spatial and 

temporal resolution. Moreover, the biological and chemical assessment protocols vary in different 

countries. Nevertheless, observations of Total Nitrogen and Total Phosphorus from JDS 3 showed 

high comparability with the time-corresponding data (August – September) from the long-term 

ICPDR surveillance monitoring (TNMN results from 2001 – 2011) (Liska et al., 2015). This 

confirmed the success of the on-going harmonisation process and improvement of operational activity 
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of the Danube National TNMN Laboratories network as well as the effectiveness of the Analytical 

Quality Control (AQC) programme organised by the ICPDR at the basin level. The WFD requires 

reference conditions to be defined for all water bodies for both abiotic and biotic characteristics, and 

appropriate monitoring must be undertaken (Pardo et al., 2012). However, determining reference 

conditions requires considerable understanding of hydromorphological and biological conditions, as 

well as their interaction (Reyjol et al., 2014). Meeting these criteria has been a major task throughout 

EU countries, and harmonisation of approaches is particularly challenging in multi-national river 

basins, such as the DRB. Ensuring comparability of national assessments across Europe requires an 

inter-calibration exercise, as required by the WFD, but this is still an ongoing issue in large river 

basins >10.000 km2 in area (Poikane et al., 2014).   

 

5.1 Biological monitoring 

The lessons learned from JDS 3 will help ensure proper planning and design of future ICPDR 

monitoring activities. Future surveys will select sites for hydromorphological assessment in close 

cooperation with monitoring and biological experts, to ensure the use of representative river sections. 

Hydromorphological assessments, particularly for large rivers, should be based on physical processes, 

such as discharge and flow patterns. The link between hydromorphological parameters and biological 

responses, together with the related monitoring efficiency, also needs to be improved. The first steps 

in this direction have already been taken by performing in-situ measurements during JDS 3 of 

discharge, velocity (flow pattern, surface velocity), cross sections, bed material, suspended load, 

water level fluctuation, and water level slope. Future monitoring will take fully into account the type-

specific conditions according to WFD requirements. Moreover, the sampling methods applied for the 

benthic macroinvertebrates were found to complement each other: the multi-habitat sampling method 

is especially applicable for ecological status assessment of large rivers at low water periods due to its 

standardized, stressor-specific and habitat-oriented approach (Liska et al, 2015). Kick and sweep 

methods can provide additional information particularly on mussel populations inhabiting deeper 

zones next to the bank. Deep water sampling is not affected by water level and discharge and is, 

therefore, appropriate for data collection throughout the river basin. 

 

The JDS 3 results also confirmed that despite the methodological limitations related to phytobenthos 

in large rivers, diatoms are valuable indicators of water quality and of the general degradation of the 

Danube, and can be reliably applied to the assessment of the ecological status of the river (Liska et al., 

2015). Moreover, the results of the JDS 3 macrophyte study demonstrated that a macrophyte-based 

quality assessment of large rivers is possible. It has been suggested that biological assessment systems 

deliver plausible results only for the river-types or regions for which they were developed. In this 

context the findings of dissimilarities and similarities between river-sections supports the necessary 

region- and river-type-specific adaptions of ecological quality assessment. A further outcome of the 
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macrophyte study was the importance of including helophytes and selected bank-vegetation in a 

macrophyte-based quality assessment, especially with respect to hydromorphology. The national fish 

indices applied during JDS 3 (FIA, FIS, EFI – Liska et al, 2015) delivered inconsistent results for the 

whole river course indicating that they react to different stresses (hydromorphology vs. water quality) 

and are only applicable for restricted river stretches. Hence additional sampling methods (e.g. 

trammel nets) would be required to complete the data set, particularly benthic fish species in the 

Lower Danube (Szalóky et al., 2014). 

 

5.2 Faecal indicators and emerging pollutants 

For the purpose of managing human inputs to surface waters from point and diffuse sources, 

microbiological monitoring has often been neglected despite its importance for human health and its 

potential to locate sources and even to identify whether the source is of human or animal origin 

(Hagedorn et al., 2011). In Europe, large spatially distributed datasets of faecal indictor organism 

(FIO) flux within catchments are scarce because FIOs and pathogens are not listed as a regulatory 

parameter of river quality (Kittinger et al., 2013; Reder et al., 2015). As a result, there is limited 

evidence of good practice and lessons learned for the design of sampling regimes for complex 

transnational river basins. However, using experience gained in JDS 2, microbiological monitoring in 

JDS 3 was expanded to include source tracking and to sample at three stations across the width of the 

river at each sampling location (Liska et al., 2015) because significant differences in FIOs at opposite 

sides of a river have been shown in other studies (Quilliam et al., 2011). Unfortunately, implementing 

the JDS in the summer months only, with constant low flow conditions, could lead to a systematic 

bias to base-flow conditions (Kay et al., 2005; McKergow and Davies-Colley, 2010). Evidence 

suggests that there is at least an order of magnitude difference in FIO concentrations observed during 

base versus storm flow events (Kay et al., 2005; Tornevi et al., 2014). Tetzlaff et al. (2012) have 

suggested that seasonal-based studies have led to an imbalance in understanding winter versus 

summer contributions to year-round microbial pollution of receiving waters and results from summer 

sampling only should be interpreted accordingly for management purposes. In order to address policy-

orientated questions concerning impacts of agricultural intensification or climate change on microbial 

water quality, a nested sampling design within large catchment systems is required to facilitate 

understanding and appreciation of scaling implications of microbial water quality signals through the 

catchment continuum (e.g. Harclerode et al., 2013; Meays et al., 2006; Tetzlaff et al., 2012; Traister 

and Anisfeld, 2006). 

 

The parameters included in any monitoring programme depend on the objectives of the programme 

and for large river basin monitoring programmes with multiple objectives, such as the JDS, the 

number and range of parameters can be extensive. For example, more than 800 parameters were 

analysed in JDS 3 in 2013, including chemical, microbiological, ecotoxicological, radiological, and 
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biological, at a cost of approximately €2 million (Liska et al., 2015). With such a large investment, 

major benefits for water quality through improved understanding and management will be expected, 

as well as more targeted selection of parameters for future monitoring. During JDS 3, samples were 

screened for 650 targeted organic pollutants and several hundred more were tentatively identified for 

future evaluation. This non-target screening was found to be useful in identifying specific river basin 

pollutants, but a strategy is needed to reduce the amount of detected substances in a single sample to 

‘workable’ numbers (a maximum of 10 – 100 substances). Selecting the appropriate compounds is a 

topic of current concern for all water quality programmes, including at the European level in the WFD 

(Carere et al., 2012). One possibility would be to prioritise non-target screening data, which is being 

considered by the NORMAN Working Group on Prioritisation (www.norman-network.net). Other 

approaches based on risk assessment and modelling emissions from dispensing data, could also prove 

useful in assisting in selection of the compounds likely to present the greatest environmental or human 

health risk in water bodies (Bottoni et al., 2010; Brack et al., 2015; Cooper at al., 2008; Daughton, 

2014; Kugathas et al., 2012; Oosterhuis et al., 2013; Wajsman and Rudén, 2005; ). JDS 3 also 

demonstrated the feasibility of effect-based screening at a river basin-wide scale using on-site, large 

volume extraction even under conditions of high dilution. Similarly, a combination of passive 

samplers with bioassays appeared to be very promising in detecting trace organic pollutants and toxic 

potentials along the river and identifying areas of concern for further investigation (Liska et al., 2015). 

 

5.3 Options for site selection 

Water bodies should be monitored at a spatial scale that provides information on their current state 

and highlights where new management actions may be needed, or if current management practices are 

sufficient (Reyol et al., 2014). Hence, the greater the number of monitoring sites throughout the water 

body, the higher the probability that they will accurately represent its current state. However, there are 

resource implications where a large number of monitoring sites are required and a balance is needed 

between resource requirements and scientific rigor (Earle and Blacklocke, 2008). 

In order to generate the data required to enable efficient water quality management across the DRB, it 

is necessary to harmonize sampling approaches and periodically re-adjust the monitoring network (i.e. 

the spatial and temporal scales of monitoring and the techniques adopted). This can only be achieved 

by drawing upon data sets from existing monitoring networks, including national survey programmes 

and the JDS. These can enable periodic and systematic recalibration to ensure the monitoring data are 

as fully representative of the basin as possible. 

 

Computational methodologies which specifically focus on estimating sampling frequency (temporally 

and spatially) can help optimize monitoring design, avoiding significant loss of information. For 

example, in riverine monitoring, it is generally accepted that sampling sites should be situated at the 

http://www.norman-network.net/
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mouth of principal tributaries (Sharp, 1971). However, river reaches between tributary confluences 

can be subject to numerous influences, including structures for hydropower generation (Kovács et al., 

2015), and urban (Booth et al., 2004; Konrad and Booth, 2005), industrial (Vignati et al., 2013) and 

agricultural effluent (Lenat, 1984). Therefore, increasing the number of monitoring sites in 

“uncovered” sections of the basin would be logical. However, the current tendency is to reduce the 

number of monitoring sites wherever possible, to reduce costs. Throughout river basins most 

monitoring authorities seek to find groups of sampling sites which can be replaced with a single 

representative monitoring station. In any event, the principle is that if two or more sites show the same 

trend with respect to similar influences, then the additional sites can be considered redundant and 

discarded. Monitoring sites can be grouped manually (based on professional experience, intuition etc.) 

or by using, for example, multivariate statistics. Grouping algorithms, such as cluster analysis (CA) 

are frequently used to find sampling sites that respond similarly. Dimension reduction methods, such 

as principal component -, factor-, or redundancy analysis, have also been used (for examples see 

Cansu et al., 2008; Neilson and Stevens, 1986;  Simeonov et al., 2003; Singh et al., 2004; Zeng and 

Rasmussen, 2004;). Canonical correspondence analysis and artificial neural networks (Khader and 

McKee, 2014), such as self-organized maps (Khalil et al., 2011), have also been applied to explore the 

spatial or temporal structure of the data. 

 

If sampling is infrequent or not equidistant in time, the site representativeness may be questionable 

(Buonaccorsi, 2010). The higher the variability (coefficient of variation in time), the more frequent 

sampling is needed to obtain the same accuracy, and vice versa (Clement, 2001). The most 

straightforward approach when considering/revising monitoring design is variography, which can 

estimate the boundaries of an acceptable sampling frequency in time and space separately, based on 

the fact that samples outside the temporal (Kovács et al., 2012) or spatial (Hatvani et al., 2014) range 

are essentially independent (Webster and Oliver, 2007). 

 

In some cases, the problem of spatial grouping of sites, and/or temporal grouping of sampling events, 

has been solved using new techniques. For example, Yang et al. (2012) used a multi-label 

classification to manage flood retention basins, as did Straatsma et al. (2013) who assessed 

uncertainty in hydromorphological and ecological model outputs caused by errors in the land cover 

classification in the Rhine River floodplain. Nevertheless, the problem of handling both the temporal 

and the spatial variability remains. This can be addressed by combining CA with discriminant analysis 

(DA), providing a new method called Combined Cluster and Discriminant Analysis (CCDA), which 

accounts for the full variance, and identifies similar and homogeneous groups of sampling sites 

(Kovács et al., 2014). By coupling the temporal and spatial characteristics of a water-quality dataset, 

statistical analysis should help implement the WFD. The number of sampling sites required to 

represent a water body fully can be determined by CCDA, thus objectively optimizing the monitoring 
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network. The sites in each homogeneous group measure the same phenomena and are therefore 

redundant, and can be replaced by one site. While a reduction in the size of the network reduces costs, 

determining the exact saving is complicated as it is not equal to the percentage of the number of sites 

abandoned. When monitoring a water body, the basic infrastructure and personnel have to be 

available at all times, even if there is only one functioning sampling site. Nevertheless, if each 

sampling site is managed by a different authority, equipped with their own instrumentation and 

personnel, the ratio of sites abandoned will equal the ratio of money saved (for a direct example on 

the Danube and its tributary the Raab, along with an expanded discussion on the topic, see the 

Appendix or for further examples see Kovács et al. (2015) and Tanos et al. (2015). 

The question still remains: of the sites clustered in one homogeneous group, which site should be 

retained, or which site abandoned? In the case of rivers, which are linear systems, this question can 

also be answered using CCDA, by attributing a factor (termed pairwise difference) to the neighboring 

sampling sites showing their difference (Figure A1a). Where these differences are the lowest, then the 

site can be abandoned, whereas if all sites have unique information (and do not form a homogeneous 

group) then all should be kept. However, by assessing their pairwise differences, and finding the 

highest, instances where an additional sampling site is required can be identified. In an optimal setting 

the resources released by discontinuing monitoring at redundant sites may be used to set up new sites 

thus producing a more representative monitoring network.  

It is important, however, that the temporal resolution of the monitoring sites is also considered in any 

future recalibration of the JDS network. For example, if a decision is made to abandon one of two 

sites, then the one with longest records should be kept. These long-term sampling sites are those 

which will enable the impacts on water quality resulting from significant changes, such as installment 

of hydropower plants, waste water treatment plants etc.,or the occurrence of invasive species, to be 

assessed.  

 

6. Discussion 

Fundamental to a successful water quality monitoring programme are carefully written objectives 

leading to the information needed for appropriate management action (Meybeck et al., 1996) and 

consecutively the integrated evaluation of the conclusions drawn from the observations (Knieper et 

al., 2010). The objectives should be sufficiently clear to define the location of sampling sites, the 

parameters to be measured, the associated quality assurance, frequency of measurement and the 

programme duration. Within the context of the Danube River, the TNMN has the primary objective of 

determining status and long-term trends in surface water quality and loads, whilst the JDS fills 

information gaps in the monitoring network and undertakes investigative monitoring with more 
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specific objectives. The level of co-operation in monitoring activities between riparian countries in the 

Danube basin exceeds that in many other major international river basins: for example, the JDS 

generates comparable data for the whole Danube River using harmonised methods. Another 

international river, the Mekong, flows through six countries: China, Myanmar, Thailand, Lao PDR, 

Cambodia and Vietnam. Data have been collected in the Mekong continuously since 1985 through its 

Water Quality Monitoring Network (WQMN), which is operated by designated national laboratories 

(MRC 2015). All laboratories follow agreed sampling and analysis protocols and adhere to the 

consistent quality assurance/quality control procedures yielding data that are temporally and spatially 

comparable within the whole river basin. The outputs of both the Danube and Mekong monitoring 

programmes are of sufficient quality to evaluate the state of the whole river and to inform planning 

and management at river basin level (ICPDR 2009; MRC 2010; MRC Environment Programme 

2013). In contrast, integrated water resources management in the Amazon basin is hampered by the 

fact that each riparian country has several different agencies monitoring and managing water quality 

and there is no inter-calibration or standardisation between agencies (Nascimento and Fenzl, 2014). 

The Amazon basin is the world’s largest drainage basin covering ~6.1 × 106 km2 and seven countries: 

Brazil (69% of the basin), Bolivia, Peru, Colombia, Ecuador, Venezuela, and Guyana (de Souza et al., 

2004).  

A major concern in managing large river basins is the transfer of nutrients and pollutants from land-

based activities to the deltas and coastal zones. This is a problem in the Danube basin: while there has 

been a reduction in nutrient loads from point sources (ICPDR, 2014; Sommerwerk, et al., 2009), 

diffuse sources still dominate N contributions at the basin-wide scale (ICPDR, 2014). The 

combination of historical patterns in eutrophication in the Black Sea over previous decades, the 

impacts of nutrient ratios on food web structure, and the continued elevated levels of nutrient inputs to 

the Black Sea from the Danube (as discussed in Section 3), highlight the importance of continued 

long-term monitoring in the whole river basin to optimize measures to be taken. This is a common 

problem in large river basins: the need to address basin level water quality issues has also been 

highlighted for the Mississippi River (Committee on Clean Water Act Implementation Across the 

Mississippi River Basin 2012; Perez and Walker 2014), where agricultural activities contribute 

between 70% and 80% of the N and P in the Gulf of Mexico (Alexander et al., 2008). Water quality 

monitoring activities in the Mississippi River are currently not particularly well co-ordinated at the 

river basin scale, and increased interstate co-operation is needed (Committee on the Mississippi River 

and the Clean Water Act, 2008).  

As management of traditional pollution problems, such as nutrients, organic matter and heavy metals 

has improved, attention is turning to newly emerging contaminants such as endocrine disruptors and 

pharmaceutical compounds (Bottoni et al., 2010). There are 163 substances on the Candidate List of 

substances of very high concern under the REACH (Registration, Evaluation, Authorisation and 
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Restriction of Chemicals) Regulations (see ECEH 2015), whereas 33 priority substances and groups 

of substances have been listed in Annex II of the EU Directive on Environmental Quality Standards 

(2008/105/EC). The quality standards specified in this list were incorporated into the requirements of 

the Water Framework Directive (see EU 2015) and a further 12 substances were subsequently added 

in 2013 under Directive 2013/39/EU (EU 2013). The list includes pesticides and herbicides, some 

metals, and organic compounds such as polyaromatic hydrocarbons and polybrominated 

biphenylethers. In common with many other river basins, there is a lack of detailed knowledge of the 

occurrence and levels of hazardous substances in the waters of the Danube and its tributaries (ICPDR 

2014) but JDS 3 incorporated monitoring of priority substances in water, particulate matter, sediments 

and biota and obtained the first comprehensive overview for the river basin (Liska et al., 2015). 

Monitoring of newly emerging pollutants requires good understanding of sources, transport pathways, 

and ultimately the fate of the pollutants (Hughes et al., 2012; ter Laak et al., 2010). It has been 

recognised for several decades that aquatic organisms can accumulate many toxic pollutants and 

magnify the level of accumulation through the food web. Determining pollutant concentrations in  

aquatic biota can, therefore, provide a useful monitoring approach in some situations (Philips, 1980; 

Samiullah 1990). This potential has now been embodied in the Environmental Quality Standards 

Directive 2008/105/EC (EC 2008) as a monitoring approach for use in relation to the WFD (Carere et 

al., 2012).  Nevertheless, the number and types of new and emerging compounds present considerable 

challenges for catchment managers; for example in identifying and monitoring specific compounds 

and in identifying appropriate ways to control or mitigate specific problems (Brack et al., 2015; 

Cooper at al., 2008; Petrovic 2014 ).  

 

Given the diversity of water quality problems that can occur in large rivers, it is essential that the 

relevant water quality parameters are monitored at appropriate spatial and temporal scales as well as 

being combined with new knowledge on significant pollution pathways affecting organisms (e.g. via 

food uptake). It is also important that monitoring programmes are evaluated periodically to ensure that 

the parameters being monitored and the monitoring sites are appropriate to meet the evolving 

objectives of the programme. Comparisons between data obtained from JDS 2 and JDS 3 have 

highlighted the need for sampling at stations across the width of the river for certain parameters, such 

as FIOs (Liska et al., 2015). Incorporating the emerging science of microbial source tracking into 

catchment studies to complement on-going monitoring and modelling activities can help in the 

identification of faecal pollution sources but it remains a largely qualitative approach. The availability 

of new molecular and enumeration techniques for FIOs is leading to increased interest in their 

potential for regulatory monitoring although there remains much debate in terms of practicality and 

cost associated with deployment (Oliver et al., 2010; 2014). With the increasing complexity of 

analytical methods that can, and may need to, be used in monitoring water quality in future in order to 

achieve effective management, alternative approaches to refining the scale (as described in section 
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5.3) and complexity of monitoring programmes are becoming more important. The role of modelling 

for predicting environmental concentrations, combined with risk assessment for the selection of 

priority pollutants are currently showing promise for smaller water basins (Kugathas et al., 2012) and 

the next challenge is to apply these techniques to larger international water basins such as the Danube. 

 

7. Conclusions 

Water quality monitoring in large, multi-national river basins presents particular challenges for 

harmonising the approaches used across the different agencies and government bodies responsible for 

monitoring and managing water quality, at the same time as fulfilling national data and information 

requirements. Current practice varies from countries individually monitoring and managing water 

quality, such as in the Amazon River basin, to attempts at full harmonisation of monitoring 

approaches driven by common legislation such as the Water Framework Directive in the Danube 

River basin. In the Mississippi River basin, for example, different agencies take responsibility for 

monitoring the main river and the sub-basins, leading to a lack of co-operation at the whole river 

basin scale. Long-term monitoring is an important basis for effective river basin management, and the 

co-operation achieved through the TNMN and the ICPDR in the Danube river basin is beginning to 

illustrate how results can be used to target management actions and show improvements in water 

quality downstream, including the delta and coastal areas. The EU strategy of selecting the best 

monitoring matrix is an important step towards better water quality management. In most situations, 

as in the Danube basin, basin-scale monitoring includes few, if any, indicators for newly emerging 

threats to water quality and this problem still needs to be addressed. All large-scale monitoring 

activities are resource intensive, hence statistical methods are being investigated to reduce costs by 

selecting fewer monitoring stations without loss of information. In addition, other indicators of water 

quality that have not traditionally been included in large scale monitoring programmes, such as faecal 

indicator organisms, might be useful to provide additional understanding of the influences on water 

quality. 
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Appendix A1 

Water quality assessment in many cases is a cross border activity; e.g. in the case of Hungary this is 

explicitly true, since 99% of its surface waters come from the bordering countries. To obtain 

representative results, the monitoring network should reflect the phenomena occurring in the water as 

close as possible. Sustaining and managing such systems is costly and time consuming, but their 

optimal functioning is vital from a scientific, environmental and economic aspect. In the view of these 

facts this example using CCDA shows the revision of the monitoring network of two rivers 

concerning Austria and Hungary, the Raab and the Danube (Figure A1/a). The specific aims of the 

example are: 

i) Examine the spatial monitoring networks of the rivers for redundancy, 

ii) Make a suggestion for optimizing the monitoring networks. 
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Figure A1. Locations of the areas shown as example on monitoring recalibration of rivers from the 

Danube Basin using CCDA  

 

Combined cluster and discriminant analysis (CCDA) was used, first introduced by Kovács et al. 

(2014) to find not only similar, but homogeneous groups. During the search process a decision has to 

be made whether further division of some groups is necessary, or not. Cluster analysis is frequently 

used while searching for groups. However, if multiple groupings are possible (for example using 

hierarchical cluster analysis even N different classifications are possible, N denoting the number of 

different sample origins) one has to decide which classification to choose. While there are various 

methods for determining some kind of optimal classification (Davies and Bouldin, 1979; Dunn, 1973) 

in which members of the groups are similar; Combined Cluster and Discriminant Analysis (CCDA) 

(Kovács et al., 2014) goes one step further and aims to find homogeneous groups. It consists of three 

main steps: I) a basic grouping procedure, e.g. using hierarchical cluster analysis, to determine 

possible groupings; II) a core cycle where the correctness of the groupings from step I and the 

correctness of random classifications is determined using linear discriminant analysis; and a final 

evaluation step III, where a decision about iterative further investigation of sub-groups is taken.  

Hence, the main idea of CCDA is that once the ratio of correctly classified cases for a grouping is 

higher than at least 95% of the ratios for the random classifications (i.e. the difference d = ratio-q_95 

is positive), then at the level of alpha = 0.05 the given classification is not homogeneous. Suggestions 
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for the necessary subdivision of groups (step III), a more detailed description of the method in 

general, as well as details about the R package “CCDA” used for the computations in this study can 

be found in Kovács et al. (2014).  

The chosen joint Austrian-Hungarian section of the Danube Basin (Section 2) is highly affected by 

natural and anthropogenic phenomena. Numerous large tributaries and islands can be found in the 

selected sections of the Danube along with numerous water barrage systems including hydropower 

plants. One of the main tributaries is the Raab, with a watershed of 10,270 km2 which is within the 

Danube basin. The full length of the Raab is 283 km, of which 72 km is in Austria and 211 km in 

Hungary. The mean runoff is 20-25 m3 s-1. Like the Danube, the Raab is affected by external pressures 

mainly of anthropogenic origin. Numerous industrial facilities (such as leather, iron or food factories) 

and municipal sewage treatment plants can be found along the river.  

In the case of both the Danube and the Raab the neighboring sampling sites were evaluated (1994-

2004) using pH, oxygen demand [%], oxygen content, BOD5, Ca, Mg, Na, K, Cl, SO4, NH4-N, NO2-

N, NO3-N [mg l-1], PO4-P [µg l-1] to find their homogeneous groups. 

On the Danube, homogeneous sampling sites were only found in the Hungarian section (Fig. A2a). 

Heading downstream from the Austrian section the difference between the sampling sites 

continuously decreases. The magnitude of the change in the differences decreased to a much smaller 

degree in the Hungarian section than in Austria. At the end of the Hungarian section the last three 

sites formed a homogeneous group (DH10, DH11, DH12; Figure A1/b). Besides these three sampling 

sites examining the section between DA8 and DH1 would have been meaningless, because (i) it is 

highly affected by external inputs, (ii) the data of the sampling site in Slovakia is not accessible and 

(iii) the Gabčíkovo hydropower plant greatly changes the flow conditions and water quality in the 

area. 

In the Raab, no homogeneous group of sampling sites were found. The changes in the difference 

between the sampling sites was much more diverse than for the Danube and frequently exceeded 20-

30%. The continuous decrease downstream, as seen in the Danube, is not a characteristic of the 

processes in the Raab. Even the smallest differences did not reach the level of homogeneity (Figure 

A2B). 
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Figure A2. Pairwise comparison of sampling sites for the Danube A) and Raab B). Homogeneous 

sampling sites are marked with a red rectangle. 

 

The examined sampling site pairs were in most cases inhomogeneous indicating differences in water 

quality. This cannot be simply explained by the distance between the sampling sites. In many cases, 

even sites close to each other (e.g. DA2-DA3, RA5-RH1 or RH1-RH2 in Figure A2 and A3) have 

large differences between them. Therefore, the explanation for the difference of the sampling sites is 

quite complex: 

i) As seen from the work of Sharp (1971), Sanders and Adrian (1978), and Sanders (1980) one 

of the most important separating factors are the tributaries, which can be taken into account as point 
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sources. Even in the case of sites close to each other a tributary can cause separation and result in 

different water quality. For example, DH3 and DH4 are close to each other but, the Vah entering the 

Danube splits them into two separate groups, as for RH1 and RH2 in the Raab separated by the 

Lafnitz (Figure A3b). In this context, it is important that samples should be taken below the 

confluence of a tributary where the two different water masses have fully mixed. The location of full 

mixing should be checked with profiles across the river in order to select the sampling site. 

ii) Besides the tributaries, anthropogenic effects such as the ten water barrage systems in the 

Austrian section can cause separation between the sites. They change the morphology of the river bed 

along with flow conditions. This explains the large difference between sites DA2 – DA3, which are 

close to each other (without a tributary between them) but with the Abwinden-Asten hydro power 

plant. 

iii) Again the heterogeneity of the sites in the Raab can be the result of anthropogenic activity 

(i.e. heavy industry on the course of the river (leather, iron or food factories). The outlets of the 

factories are thought to be responsible for the inhomogeneity of the sampling sites on the Raab, for 

both countries.  

iv) As a last example the separating effect of larger islands should be considered (Szentendrei 

and Csepel islands). These also cause changes in water quality, and therefore heterogeneity of the 

sites, e.g. DH5-DH6 and DH7-DH8. Tabulated results and their further discussion can be found in 

Figures A3a and A3b. 
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Figure A3. Homogeneous groups of sampling site in the Austrian Hungarian section of A) the Danube 

and B) the Raab with the suspected reasons behind their separation 

 

In summary it is not sufficient to take into account only the location of tributaries when planning a 

monitoring system. Other factors should be considered as well, such as the size of the river, possible 

anthropogenic effects, or side branches.  

Therefore, the current monitoring networks of the two rivers discussed here are only “near-optimal” 

and their “efficiency” should be increased. Diminishing the spatial redundancy in the monitoring of 

the Danube is highly important from an economic point of view. From a scientific and information-

theory perspective this step will have no disadvantages (i.e. no information-loss). Nevertheless, 

selection of some new sampling sites could increase the information gained. In future any new sites 

should be placed in the larger side-arms of the rivers. 

In the case of the Raab, the heterogeneity of the sampling sites highlights i) a decreased number of 

sampling sites would cause a serious loss in information and representativeness and ii) additional sites 
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would decrease the difference between the sites, especially at the source and between sites RA2-RA3, 

RH3-RH4 and RH4-RH5 (d>20%). The Raab, therefore, requires a denser monitoring network. 
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