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Abstract. There is an emerging trend towards the automated design of
metaheuristics at the software component level. In principle, metaheuris-
tics have a relatively clean decomposition, where well-known frameworks
such as ILS and EA are parameterised by variant components for accep-
tance, perturbation etc. Automated generation of these frameworks is not
so simple in practice, since the coupling between components may be im-
plementation specific. Compositionality is the ability to freely express a
space of designs ‘bottom up’ in terms of elementary components: previ-
ous work in this area has used combinators, a modular and functional
approach to componentisation arising from foundational Computer Sci-
ence. In this article, we describe Haiku, a combinator toolkit written in
the Scala language, which builds upon previous work to further auto-
mate the process by automatically composing the external dependencies
of components. We provide examples of use and give a case study in
which a programatically-generated heuristic is applied to the Travelling
Salesman Problem within an Evolutionary Strategies framework.

1 Introduction

Early work in Search Based Software Engineering (SBSE) only needed to out-
perform manual approaches and in many cases random search and hillclimbing
were sufficient for this. Now that the field is maturing and we wish to use SBSE
to tackle more difficult problems, there is a need to employ more sophisticated
search strategies. The difficulty facing the SBSE practitioner is the wealth of
different metaheuristics available: e.g. can a software problem most usefully be
solved with iterated local search, genetic alorithms, particle swarm or some hy-
bridization of these techniques or their component parts?

A metaheuristic is instantiated for a particular problem domain via three
domain-specific items, viz. a data structure for the representation of candidate
solutions (e.g. bit-string, permutation etc); the ability to efficiently compare so-
lution quality in order to guide the search process and lastly a collection of meth-
ods for transforming solutions. While metaheuristics can provide good results,
operating at this level of abstraction offers no silver bullet. Rather, the family of
techniques is ideally used as a toolbox, from which a practitioner can pick com-
ponents and determine their effectiveness on a particular problem. Consequently,
considerable development effort is focused on operator and parameter tuning for
each new application (although it is encouraging to see increasing automation in
this area [19]). It has also long been the norm to combine or hybridise methods,



for example using several in parallel, attempting to introduce the strengths of
one method to others. As a concrete example of ‘composition by hand’, previous
work [6] has applied Tabu search [14] and simulated annealing [16] at different
points in a multi-stage local search algorithm. The desire for greater automa-
tion has led to approaches such as hyper-heuristics [3], which are the application
of search to the problem of finding good heuristics (‘heuristics for searching
the space of heuristics’). Of particular interest for the automated design of algo-
rithms are generative hyper-heuristics [5], which assemble basic components into
more complex search algorithms. It is also worth mentioning algorithm portfo-
lios [38], which use a group (portfolio) of different algorithms at the same time
to solve a difficult problem. Fortunately for SBSE researchers, it is possible to
express the problem of creating search strategies as one of software component
assembly, thereby jointly incorporating knowledge from the domains of software
engineering and metaheuristics. This paper introduces Haiku, a tool-kit written
in the Scala1 language that facilitates the composition of metaheuristic compo-
nents via combinators, extending previous work in the pure functional language
Haskell [36].

Combinators are pure functions that depend exclusively on their input pa-
rameters. They are often higher-order functions, i.e. they can take other functions
as parameters and (significantly) can return new functions, created dynamically
from their inputs. A well-known example is function composition:

f ◦ g = x 7→ f(g(x))

The function ◦ takes two parameters, functions f and g, and returns a new func-
tion expressed in terms of these parameters. Functional programmers are in the
habit of building reusable libraries using such functions because they encour-
age the expression of problems in terms of small building blocks. These building
blocks can be combined and extended in a vast number of ways, with permissible
combinations being enforced by the type system of the host programming lan-
guage. Metaheuristics are a good fit for this pattern: individual metaheuristics
can take functions (e.g. to provide an ordering of solutions or define acceptance
criteria) as parameters but are themselves functions which can be passed to other
metaheuristics (e.g. using an iterative improver as one component of a memetic
algorithm [26]).

Recent work [34] on the use of combinators to build search heuristics notes
that they have the look-and-feel of a Domain-Specific programming Language
(DSL). Their modular nature allows new search algorithms to be developed for
a specific application with reduced effort [25]. Further, their pure functional na-
ture greatly simplifies the automated assembly of new search algorithms. In this
context, the basic principles of modularity and re-use (well-established practices
in software engineering) are fundamental to algorithm implementation. DSLs
have already found uses in parameter control for evolutionary algorithms [18].

Modularity means that components are self-contained and can be developed
independently, communicating only through clearly-defined interfaces. If the in-

1 for an introduction, see http://www.artima.com/scalazine/articles/steps.html



terfaces are sufficiently general, parts can be re-used and recombined in new
ways. However, there is often a high degree of interdependence between algo-
rithm components, reducing modularity and inhibiting re-use. This is known
as content coupling, where the implementation of one component requires deep
knowledge of (and in many cases, access to) the internal mechanisms and im-
plementation details of another. This is a hindrance to the combination of dif-
ferent components and their substitutability within metaheuristic frameworks.
The Haiku tool-kit presented in this article is structured in such a way that
modularity and re-usability are inherent in the component implementations.

The remainder of the paper is structured as follows: Section 2 summarises
related work. Section 3 introduces combinators in more detail and Sections 4
and 5 describe the design and implementation of Haiku. A simple example of
Haiku’s use is provided in Sections 6 and 7, composing combinators for Tabu
search and simulated annealing and applying all three to the Travelling Salesman
Problem. Finally, Section 8 provides conclusions and future work.

2 Related work
There is a body of work applying combinators in the field of constraint program-
ming. Perron [30] describes a compositional approach in which search heuristics
are termed ‘goals’. This does not seem intended to support additional combina-
tors, and specifically targets depth-first search. The Comet system [39] features
‘fully-programmable’ search: in contrast to the composition approach of com-
binators, a search controller is used to determine the behaviour of the search
heuristic [40]. Choi et al [7] describe a compositional framework for search that
relies on composing search engines and Desouter [8] describes a Scala framework
using combinators to build custom heuristics for constraint satisfaction problems.
‘Monadic constraint programming’ was introduced by Schrijvers et al. [33], de-
scribing ‘stackable search transformers’. While these only provide a limited and
low-level form of search control, the concept is extended by Schrijvers [34], who
introduces the concept of search combinators. This bridges the gap between a
high-level modelling language for search and its efficient implementation. The
user is able to define application-specific search strategies by combining a small
set of primitives, effectively providing a Domain-Specific Language (DSL). This
also serves as the foundation of the work in [32], where a search algorithm is
used to automate the composition process.

McGillicuddy et al [24] achieve rapid prototyping of combinatorial optimisa-
tion algorithms via functional implementation of DSLs, as applied to dynamic
programming problems (unbounded knapsack and longest common substring).
Senington [36] argues for a specific function signature as forming a good basis
for building metaheuristics from combinators: metaheuristics are regarded as
stream transformations (i.e. functions that take a stream of solutions and return
an updated stream) which are composed into more complex search algorithms.
The paper presents a toolkit for expressing metaheuristics in the pure functional
language Haskell. Building on this toolkit, [35] describes the use of combinators
to move between perturbation, recombination and neighbourhood methods in
metaheuristics, demonstrated for the Travelling Salesman Problem (TSP).



Marmion et al. [22,23] propose a generic structure for stochastic local search
(SLS) algorithms, represented in a text-based grammar. The productions of the
grammar represent local search hybrids. In this structure, each SLS algorithm
has a definition of perturbation, optional subsidiary SLS, and acceptance cri-
terion. Hybridisation is possible by assembling algorithms via the subsidiary
local search. In common with this article, most of the human effort required is
in devising problem-specific components for neighbourhoods, perturbations and
heuristics. There are also some major differences with our work: Haiku defines
a search using program code rather than via a grammar, with the attendant pro-
grammatic flexibility, compile-time checking and IDE support that this provides.
Haiku’s automated mechanism for composing ‘environmental’ state (described
in more detail subsequently) is both less onerous and less error prone that the
requirement to manually embed information such as search trajectory within the
algorithm itself.

In order to automate metaheuristic construction, we need to be able to un-
ambiguously determine the contribution of a component. This is clearly essential
for learning schemes involving reinforcement and/or credit assignment: if com-
ponent state is hidden, then we cannot determine which changes contribute to
the sucess of a metaheuristic. Popular metaheuristic frameworks such as ECJ or
JMetal [11,21] etc. do not prevent components from making arbitrary changes to
nonlocal state. In contrast, the various works on combinators due to Schrijvers
and Senington (above) allow unambiguous component substitution because of
their pure functional nature. Recall that the aspects of modularity that con-
cern us include decomposability of the different components as well as their
recombinability : the metaheuristic components such as acceptance, perturbation
should all be equipped with suitable composition operations (compositors). This
latter aspect of modularity is absolute (rather than quantitative). Existing meta-
heuristic frameworks don’t achieve the level of modularity that is sufficient for
recombinability purposes. The essential contribution of this work is to address
this outstanding issue, as described in the following sections.

3 Combinators

Formally speaking, a combinator is a ‘pure’ function (i.e. referentially transpar-
ent and without side-effects) with no free variables (i.e. they are self-contained,
with no reference to external state). This modularity means that they can pro-
vide useful building blocks for describing a particular domain. Through the use
of higher-order functions, combinators can combine their function parameters
to provide more sophisticated control flow. Combinator libraries have been suc-
cessfully employed in functional languages to provide clean and extensible capa-
bilities for a diverse range of problems including real-time systems control [42]
and expressing parser logic [15, 17]. These libraries capture patterns across di-
verse operations; provide mechanisms for combining these building blocks and
allow extensibility via the provision of new constructs and control structures as
different end-uses become apparent.

Parsers provide a good example of the power and mechanism of combinators
since there is an obvious need to provide for many control structures, e.g. match-



ing a pattern many times in sequence; matching a single character or matching
one pattern separated by another pattern. These can all be expressed as higher-
order functions. In particular, most of this functionality can be defined so that
parsers tend to act on other parsers, hence anything which is a parser can be
passed to the library. This provides the high degree of customisability and exten-
sibility that we desire from combinators. What follows is an example of a CSV
parser written using parser combinators (this example is adapted from [28]), il-
lustrating the creation of several user defined blocks of code (such as cell) built
from library combinators and then reused.

val eol = Scanners.isChar(’\n’) // end of line
val cell = Scanners.notAmong(”,\n”).many()
// a cell is anything until , or \n
val line = cell.sepBy(Scanners.isChar(’,’))
// a line is a series of separated cells
val csvFile = line.endBy(eol);
// a csvfile is lines each ended by

The library of possible combinators can also be easily extended with user code,
e.g. an operator that matches an identical symbol on either side of a given term.
This could be coded by a user in the following manner and used in any expression
which takes a parser as a parameter:

def surroundedBy( b : Parser, a : Parser ) : Parser = a.followedBy(b).endBy(a)

As discussed above, combinator libraries are essentially embedded DSLs and
hence (unlike ‘configuration-file’ based approaches) can make use of the full
power of the host language, as well as being customisable via the problem-
specific code used to parametrise the system. In devising an appropriate meta-
heuristic, we have a toolbox of common patterns (‘iterate until local optima’,
‘accept unimproved moves in inverse proportion to the number of iterations’
etc.) and a desire to automatically combine different elements of this toolbox.
Metaheuristics therefore share with combinators the essential notion of func-
tionally parametrised and (recursively composable) control structures. The use
of combinators is a natural fit for a generic metaheuristic library, allowing the
problem-specific elements to be coded in the host language without limitations.

4 The design of Haiku

There are many popular metaheuristic software libraries (e.g. [9,11,12,20,21,41]),
several of which abstract out common components such as acceptance, pertur-
bation, recombination et c. It is typically the case that well-known metaheuris-
tics such as iterated local search, evolutionary and swarm algorithms etc. then
act as instances of the ‘Template Method’ design pattern [44], i.e. providing a
pre-defined invocation sequence for the concrete instantiations of the abstract
components with which they are (manually or automatically) configured. For
example, a framework for iterated perturbation which is parametrised by the
components for perturbation, acceptance and termination condition is given in
Listing 1.1.



def iteratedPerturbation[Sol](incumbent : Sol,
perturb : Sol => Sol,
accept : (Sol,Sol) => Sol,
isFinished : Sol => Boolean ) : Sol = {
while( !isFinished(incumbent) ) {
val incoming = perturb(incumbent)
incumbent = accept(incumbent, incoming)
}
// the return keyword is implicit in Scala:
incumbent

}

Listing 1.1: Iterated perturbation framework using polymorphic components

It is therefore desirable to be able to combinatorially configure such frame-
works with different combinations of components. It is also known that different
components can perform well at different points in the search (see e.g. [37]),
which is particularly important in the case of dynamic environments [27]. One
method of composition for components is to use the ‘Composite’ Design Pat-
tern [13], i.e. to create a new component as a (perhaps dynamically-generated)
function of existing components. As described by Woodward et al. [43], ensem-
bles are a popular example of this approach. An elementary example would be to
define a composite fitness function c as an aggregate of the fitness of a collection
of surrogate functions {f1, . . . , fk}, e.g. with c being given as a weighted sum of
surrogates:

c :Sol→ R
c :x 7→ c1 ∗ f1(x) + c2 ∗ f2(x) + . . .+ ck ∗ fk(x)

In order to ensure that our composite function can be plugged into the tar-
get framework, it needs to have the same signature as the abstract component
that it instantiates. For the elementary generation of composites (e.g. weighted
sum of fitness values, as above) this is straightforward: i.e. (in the case of a
single-objective) the surrogates and the composite can all be defined in terms of
functions from R→ R.

Unfortunately, the composition of many popular metaheuristic components
is intrinsically not so straightforward. As a motivating example, consider an at-
tempt to compose the well-known methods of Exponential Monte Carlo (EMC)
[16] and Tabu acceptance [14]. EMC employs an annealing schedule, which tends
to decrease the probability of accepting unimproved solutions as the search pro-
gresses. The Tabu scheme uses a Tabu list to prohibit the acceptance of recently-
encountered solutions or operators. When attempting to automatically compose
these components, a problem therefore arises because they depend on different
notions of component state: e.g. EMC acceptance is dependant on the current
state of the annealing schedule and Tabu Acceptance (TA) on the Tabu list.



Define acceptance to have signature:

State× State→ State

where State is a generic type representing some combination of solution state Sol
and component state. For solution state Sol, this means that EMC has signature:

emc : (Sol, Schedule)× (Sol, Schedule)→ (Sol, Schedule)

and TA has:

ta : (Sol, TabuList)× (Sol, TabuList)→ (Sol, TabuList)

Any attempt to build a combinator that composes EMC with TA would therefore
need boilerplate to propagate component state information for both acceptance
criteria:

hybrid :(Sol, (Schedule, TabuList))×
(Sol, (Schedule, TabuList))→
(Sol, (Schedule, TabuList))

This can be seen as a specific example of a general issue: i.e. whenever we
compose stateful components (either within some composite component or as
part of an operator pipeline), the combinator needs to be parametrised by the
Cartesian product of the component states. This situation is particularly onerous
for a metaheuristic designer since boilerplate code needs to be written for each
specific combination of component states. What is therefore required is an auto-
mated means of dealing with Cartesian products of component states by ‘lifting’
pre-existing operations so that they correctly apply to the product state. The
means by which Haiku provides this functionality is described in more detail in
the following section.

5 Haiku - Implementation
Tabu(diff,size=3)
transforms plainOldEMC
yielding hybridSearch

Actual Haiku code

Haiku is implemented in the Scala programming language. Scala was chosen
because it has previously been used to implement combinator libraries [28], and
its type system facilitates creating objects that behave like functions (e. g. fitness
below). Scala runs on the Java Virtual Machine (JVM) and can call (and be
called from) Java libraries and programs.

All Haiku components are parametrised by the types Dec[Sol], where Sol is
the type of solutions (as above) and Dec[Sol] (short for ‘decorable’) is a data type
containing the solution along with the environment, i.e. the aggregated state of
all composed components. The composition of components in Haiku is simply
illustrated in the context of the Evolutionary Strategy (ES) metaheuristic [2]. ES
is a population-based metaheuristic that has been applied across a wide range
of problem domains. In the general framework of ES, each iteration a set of one
or more solutions (‘parents’) is selected from the population according to their



fitness. λ new solutions (‘children’) are generated from these by duplication,
recombination and mutation. The children become members of the population,
and the population is reduced back to its original size µ. EA approaches are
classified into (µ + λ) and (µ, λ), according to the strategy used for reducing
the population back to µ solutions (generational succession). With (µ+ λ), the
combined population of children and parents is ranked according to fitness, and
the µ highest-ranking solutions are retained. Children only replace parents if
they represent improvements. In (µ, λ) ES only the highest ranking µ children
remain in the population. Parents are deleted, even if the children represent a
decrease in fitness.

A single step of ES can be abstractly described by the composition of three
operations neighbourhood, bias and select, with signatures as follows:

neighbourhood[Sol] = Dec[Sol]→List[Dec[Sol]]
bias[Sol] = List[Dec[Sol]]→List[Double]

select[Sol] = List[(Dec[Sol], Double)]→Dec[Sol]
For some solution state s, the output of the neighbourhood function is defined to
consist of s together with its λ children. As explained in a subsequent section,
this formulation makes it easy to generalise the ‘plus’ and ‘comma’ strategies
described above for generational succession. The actual Scala code for a single-
step of ES is given in Listing 1.2 and is depicted diagrammatically in Fig. 1.

case class ES[ Sol ] {
type State = Dec[Sol]
def update( currentState : State ) : State =

select(neighbourhood(currentState) zip bias(neighbourhood(currentState)))
// the zip function creates a list of pairs from the two list
}

Listing 1.2: Evolutionary Strategies update

Fig. 1: A single step of ES described by the composition of the neighbourhood, bias
and select operations



It is important to remember that different neighbourhood, bias and select func-
tions may in fact have different associated component states. Therefore, the
requirement to form the Cartesian products of states is, as explained above, un-
avoidable if one wishes to compose components. Haiku, uniquely among meta-
heuristic frameworks, frees the end-user of the burden of having to do this man-
ually. In implementation terms, this is achieved by storing the relevant environ-
ments as entries in a map. To ensure that access to this map is both type-safe
and documented in the component declarations, the public interface requires
that callers implement the Uses[Env] interface2. Storing the aggregate component
state in this manner has several benefits. In particular, alternative approaches
to aggregate state (e.g. monad transformer stacks [33]) keep the ordering of
the combinators explicit, so reordering combinators requires writing boilerplate
(involving the lift function that is well-known to functional programmers and
type theorists). In contrast, the map-based approach requires no boilerplate for
reordering combinators. The Scala definition of Dec can be seen in Listing 1.33.

trait Uses[Env] { } // marker interface
case class Dec[A]( extract : A, private val decor : Map[Uses[ ],Any] ) {
def get[Env](c : Uses[Env]) : Option[Env] =

decor.get(c).map( .asInstanceOf[Env])
def set[Env](c : Uses[Env], value : Env) : Dec[A] =

Dec(extract, decor.updated(c,value)))
}

Listing 1.3: The Dec class

6 Case study: TSP

In this section, we use Haiku to create a hybrid metaheuristic for solving the
well-known Travelling Salesman Problem (TSP) [1]. The techniques used in
Haiku are not specific to the TSP, but it is a suitable problem for illustration.
First, an appropriate solution representation needs to be chosen. This example
uses the simplest possible one: a Tour is a permutation, implemented as a list of
nodes in the order they were visited.

type Node = Int
type Tour = Dec[List[Node]]

As described above, Haiku uses a bias function to measure solution qual-
ity. This allows us to compose measures of solution quality in various ways (as
described in more detail below), thereby facilitating the creation of surrogate
fitness measures. A fitness function is a deterministic bias function, mapping the
solution to an ordered set. The search algorithm then operates to minimise or

2 For these purposes we can consider a Scala ‘trait’ to be equivalent to the more
familiar concept of interface

3 We would like to consider Dec[A] to be a subtype of A. This is not expressible in Scala
or any other mainstream language. Instead, we rely on Scala’s implicit conversions
to ensure that Dec[A] can be substituted for A.



to maximise its value accordingly. In the case of the TSP, the goal is to opti-
mise the tour length associated with the solution. The following code defines the
corresponding bias function.

def length : FitnessFunction[Tour,Double] =
Minimise { x =>
val xnext = x.tail ++ List( x.head )
// the .zipped method turns a pair of lists into a list of pairs,
// and map invokes the tsp.dist function on each resulting pair.
val distances = ( x, xnext ).zipped map ( tsp.dist )
distances.sum
}

The search requires an initial state: the following code creates a random tour:

val seed : Tour = RNG.shuffle { (0 until tsp.size).toList }

The RNG singleton provides the sole point of access to Haiku’s random num-
ber generator. Since the combinator implementation is stateless, results are re-
producible from a given random seed. The Haiku ES implementation uses a
neighbourhood function to move around the search space. The neighbourhood func-
tion takes the current state of the search, and returns a list consisting of the
current state and its offspring. In the example below, lambda children are cre-
ated by reversing a random segment of the parent.

def transition = NeighbourhoodFunction { (x : Tour, lambda : Int) =>
val children = for( i ← 0 until lambda ) yield {

val a = RNG.nextInt( tsp.size )
val b = a + RNG.nextInt( tsp.size − a )
val reversed = x.drop( a ).take( b ).reverse
x.take( a ) ++ reversed ++ x.drop( a ).drop( b )

}
List( x ) ++ children
}

Search objects encapsulate the information required for running a search, viz.
the neighbourhood function, the bias function, and the environmental variables
(if any). The following code creates a search object and executes 1000 iterations
of the search:

val search : Search[Tour] = ES( seed, transition, length ) (†)
val result = search.run(1000)

6.1 Semi-automated Composition of Metaheuristics

We can use the combinator-decorator mechanisms of Haiku to create a accep-
tance criterion as a composite of Tabu search and simulated annealing. A previ-
ous comprehensive study [29] indicates that acceptance criteria can have a strong
effect on the cross-domain generalisability of a hyper-heuristic, so the ability to
create such hybrids is likely to have general utility. In Haiku, a combinator is
an object with a transforms method, of signature transforms : Search[A] →



Search[B]. The following code sets up EMC acceptance using the simulated
annealing combinator SA:

val emcSearch = SA.EMCAccept( 100, t => 0.95∗t, length ) transforms search (†)

The first two arguments determine the annealing schedule. The last argument
is the fitness function to be optimised. Naturally, simulated annealing requires a
real-valued fitness function. Tabu Search additionally requires a difference func-
tion, which yields the changes in the solution state from iteration to iteration.
The following code defines such a function:

def changes(x : Tour, y : Tour) : List[Node] = {
val diff = (x,y).zipped filter ((x,y) => x != y)
diff. 2
}

Using this difference function, the Tabu combinator can be invoked:

val hybridSearch = Tabu( changes, size = 2 ) transforms emcSearch (†)

Note that the change in environment (first from an empty environment to
an environment with temperature, then to an environment with a temperature
and a Tabu list) is handled without the end-user having to write any additional
boilerplate. Since bias functions are List[Double]-valued, it is possible to define
custom distributions over the neighbourhood. This can be seen as a generalisa-
tion of the standard ES generational succession strategy: as mentioned above,
a neighbourhood consists of the current state and its offspring, so if we always
assign a bias of 0 to the current state, we can obtain a (1, λ)-ES otherwise we
obtain a generalisation of (1 + λ)-ES in which the incumbent succeeds to the
next generation with some probability. The composition mechanism also allows
for fine-grained control over how the hybridisation occurs. For example, the
default compositor for Tabu is ‘intersection’ (i.e. takes the smaller of the two
acceptance probabilities, which can be seen in Fig. 2). The Compositor object
provides several built-in compositors, as can be seen in the following:

Tabu( changes, size = 2, Compositor.union ).transforms(emcSearch) (†)

Fig. 2: The intersection composition operation



We used the Tabu and SA combinators to create the hybrid. Other elemen-
tary combinators provided by Haiku for decorating a search via the ‘transform’
method include:

1. Threshold: Adds threshold acceptance capabilities to a search object.

2. Inspector: Allows observation of the search object while the search is in
progress. Strict typing ensures that the search trajectory remains unchanged.

Notice that defining each hybrid (listings marked with †) for solving the TSP
requires only a single line of code.

7 Experiments

As an illustration of the utility of the composition mechanism, we demonstrate
that it is possible to find superior hybrids. We achieve this by performing a
hyper-heuristic search in the space of composed bias functions. Recall from Sec-
tion 5 that a bias function is given a neighbourhood and yields a bias, i.e. a list
of corresponding non-negative values. A bias compositor (such as union, inter-
section etc as described above) takes a pair of biases and returns a new bias.
A simple bias compositor that returns a list containing the weighted average
of the corresponding input values is defined below. It contains a weight value
0.0 ≤ m ≤ 1.0 as the sole hyper-heuristic parameter. This value essentially acts
as an ‘interpolator’ between the contribution of the two input biases:

def weightedAverageCompositor(x: Bias, y: Bias): Bias = x∗m + y∗(1−m)

In order to show that the composition mechanism can yield useful hybrids, we
performed a hyper-heuristic search for suitable m. Note that this search is over
[0, 1] ∈ R, despite the underlying space being permutation-based. The parameter
values were as shown in Table 1, with input biases as given for the Tabu and
EMC searches defined above. The heuristics were evaluated on 5 TSP instances
from TSPLib [31] having less than 100 cities (att48,eil51,eil76,pr76,st70). In all
of these instances, EMC significantly outperformed Tabu search (according to
the Mann-Whitney U/Wilcox signed rank test with p = 0.05).

The top-level hyper-heuristic search was performed using the real-valued op-
timization method CMAES4, an extension of ES which maintains a numerical
approximation of the search gradient. The fitness value for the hyper-heuristic
search was determined from an average of 21 runs of the (1{comma, plus}1)−ES
metaheuristic. In each case, CMAES converged quickly, taking resp. 117, 65, 57,
41 and 33 iterations 5.

In one of the five cases (st70), the hyper-heuristic search found a hybrid (the
weight m = 0.091) that was significantly better (according to the Mann-Whitney
U/Wilcox signed rank test with p = 0.05) than EMC search. Fig. 3 is box plot
comparing the tour lengths found by the two algorithms.
4 the default implementation in the Apache Commons Math 3.3 library
5 execution time: 117.7s, 162.7s, 80.8s, 57.8s and 59.4s on an Intel Xeon 2.13 GHz with

4 GB RAM



Fig. 3: Comparison of the tours found by EMC and Hybrid searches on instance st70

Parameter Value

Tabu List Size 3
Max MH ((1{plus,comma}1)-ES) iter 500

Num MH runs per HH iter 21
Max HH (CMAES) iter 1000

Table 1: Parameter values

8 Conclusion

We described Haiku, a combinator tool-kit written in Scala, for semi-automated
hybridisation of metaheuristics. Haiku addresses an intrinsic issue in the auto-
mated assembly of metaheuristic components, viz. the composition of component
state. Experiments on instances of the Travelling Salesman Problem reveal that
such hybridisation can indeed be useful: we implemented a real-valued hyper-
heuristic which acts as an interpolator between a pair of acceptance criteria and
used this to demonstrate the existence of a Tabu-annealing hybrid which sig-
nificantly outperforms the base components. The addition of a wider palette of
components (e.g. Great Deluge [10] and Late Acceptance [4] criteria) will allow
a larger number of hybridizations to be explored.
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6. Cambazard, H., Hebrard, E., OŚullivan, B., Papadopoulos, A.: Local search and
constraint programming for the post enrolment-based course timetabling problem.
Annals of Operations Research 194, 111–135 (2012)

7. Choi, C.W., Henz, M., Ng, K.B.: A compositional framework for search. In: Pon-
telli, E. (ed.) Proc. CICLOPS: Colloquium on Implementation of Constraint and
LOgic Programming Systems, appeared as Tech. Rep. TR-CS-003/2001, New Mex-
ico State University. Paphos, Cyprus (Nov 2001)

8. Desouter, B.: Modular search heuristics in Scala. Master’s thesis, Ghent University,
Belgium (2012), http://bdsouter.github.io/thesis/thesis.pdf

9. Di Gaspero, L., Schaerf, A.: Easylocal++: An object-oriented framework for the
flexible design of local-search algorithms. Softw. Pract. Exper. 33(8) (2003)

10. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-
to-record travel. J of Computation Physics 104, 86–92 (1993)

11. Durillo, J.J., Nebro, A.J.: jMetal: A Java framework for multi-objective optimiza-
tion. Adv. in Engineering Software 42, 760–771 (2011)

12. Fink, A., Voß, S.: Hotframe: A heuristic optimization framework. In: Voß, S.,
Woodruff, D. (eds.) Optimization Software Class Libraries. pp. 81–154. OR/CS
Interfaces Series, Kluwer Academic, Boston (2002)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

14. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic, Norwell, MA, USA (1997)
15. Hutton, G., Meijer, E.: Monadic Parsing in Haskell. Journal of Functional Pro-

gramming 8(4), 437–444 (1998)
16. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.

Science 220(4598), 671–680 (1983)
17. Leijen, D., Meijer, E.: Parsec: Direct Style Monadic Parser Combinators For The

Real World. Tech. Rep. UU-CS-2001-27, Dep. of Comp. Sc., Univ. Utrecht (2001)
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