
Evals is not enough: why we should report wall-clock time.

John R. Woodward
University of Stirling

Stirling
Scotland, United Kingdom

jrw@cs.stir.ac.uk

Alexander E.I. Brownlee
University of Stirling

Stirling
Scotland, United Kingdom

sbr@cs.stir.ac.uk

Colin G.Johnson
University of Kent

Kent
England, United Kingdom

C.G.Johnson@kent.ac.uk

ABSTRACT
Have you ever noticed that your car never achieves the fuel 
economy claimed by the manufacturer? Does this seem un-
fair, unscientific? Would you like the same situation to oc-
cur in Genetic Improvement? Comparison will always be 
difficult [6], however, guidelines have been discussed [2, 4, 
3]. This paper asks if reporting number of evaluations is 
enough, or if wall-clock time is also important, and argues 
that reporting time is even more important when doing GI 
when compared to traditional GP.

How do we fairly compare two GP systems, written in 
different programming languages? Counting the number of 
evaluations of the cost function is a fair approach. This 
also means you are comparing the GP systems, and not how 
efficiently they are implemented, how fast the language is. 
However, with GI we will typically compare systems which 
are applied to the same language (i.e. a GI systems targeted 
at Java, may not even be applied to C).

Keywords
Genetic Improvement (GI), Genetic Programming (GP)

1. POSITION
The halting problem states that we cannot in general de-

termine if a program will halt. This poses a deep issue for 
GI, but is particularly important if we only compare GI ap-
proaches using the number of evaluations. The easiest solu-
tion is to set a time-out parameter, after which, if a program 
has not halted, termination is forced on it. However, if this 
parameter is set too low, it will prevent correct programs 
from being produced. Conversly, if this parameter is set 
too high, valuable wall-clock time will be wasted executing 
programs which do not halt. Just counting the number of 
evaluations will not differentiate between this parameter be-
ing set a little too high, and much too high: this will make 
a difference to wall-clock time. We may be able to gather 
some valuable information as to how to set this parameter 
for different test cases, given runs of the existing program.

An open question is, does setting the time-out parameter a
little higher than the time needed for the existing program
to run on a test case help GI discover better programs, even
though they may not ultimately need the extra time to ex-
ecute. In other words, as a program is manipulated, its de-
scendants may walk along a path through programs which
require a longer runtime, but eventually lead to programs
with better properties.

With the growth of online repositories, the code for a GI
system can be made available, along with the test cases.
This will help to independently verify published results and
allow for comparisons of different GI systems on different
hardware.

Typically we compare two metaheuristics with a fixed
number of evaluations on a given set of problem instances.
This is the easiest (and reasonably fair) way to compare algo-
rithms. However, it does not take account of the amount of
time to generate the next program. This could be relatively
simple and cheap to compute (e.g. randomly exchanging
lines of code in a program). However, it could also be more
computationally expensive (e.g. instrumenting the program
to gather information). This difference is ignored if we are
only counting evaluations of the target program.

A possible fair comparison would be to limit the number of
clock cycles (a low level measure of time). When transferred
to a different machine, GI may take a different number of
clock cycles, but this may be a better indication of how good
a GI system is than physical time or number of evaluations
of the cost function. The number of clock ticks could then
be used to estimate wall-clock time.

By measuring wall-clock time, in addition to the number
of evaluations, we are presenting a fuller picture. Transfer-
ring the GI to a faster machine will result in speed up, but
it is for the end user to take final responsibility for which
machine they run the algorithms on. They may run GI on
one hardware architecture, but later execute the genetically
improved programs on a different machine with a different
configuration.

We can classify programs into 4 execution types:

• 1-programs, where all nodes in the syntax tree are exe-
cuted once (e.g. programs constructed with a function
set f1 of arithmetic operators {+, -, *, %}).

• 0-1–programs, where nodes are either executed once or
not (e.g. programs constructed with a function set f2
containing logical operators {AND, OR, NOT}, where
short circuiting is used.)

• bounded-programs containing for loops with a deter-



mined number of iterations (bounded execution time).

• unbounded-programs with while loops with an unknown
termination condition (unbounded execution time).

Generally, most of GP is with the former two types of
program (“1” and “0-1”), while most of GI is with the latter
two types (“bounded” and “unbounded”). Adopting a GI
approach, which deals with software, forces us to confront
the fact that different programs can take vastly different
amounts to time to execute. (Of course, GP work exists
using Turing Complete instruction sets [5, 1], and there is no
reason why GI could not be applied to programs consisting of
instruction sets such as f1 or f2). With the first two types,
programs will execute in a comparatively short amount of
time (bound by the size of the program). While with the
last two types, programs may take an extremely long time to
terminate (possibly not halting). Therefore, reporting just
the number of evaluations can be more misleading with GI
when compared to traditional GP.

The number of evaluations in a GP system, and therefore
a GI system, could be counted on at least 4 different levels:
These being the number of:

• programs evaluated (with fitness evaluated by execut-
ing a fixed set of test cases),

• test cases evaluated (the number of test cases can vary
over during the training),

• the number of nodes when a program is executed (e.g.
some programs take longer to execute than others), or

• the number of nodes (weighted) when a program is
executed (e.g. some instructions take longer to execute
than others),

during a run. By choosing one of these methods to count
evaluations over a different method, we may be able to
demonstrate one GI technique is superior to another. How-
ever, choosing a different method of evaluation, our claim
could be invalidated.

When a program is executed in a GI framework, there are
at least 4 possible outcomes; a program

• crashes

• fails the test cases

• passes the test case

• is terminated as being possibly non-halting

One GI system may produce syntactically incorrect pro-
grams, or avoid runtime errors, while another GI system may
avoid incorrect programs, and have intelligent genetic oper-
ators which make used of white-box information obtained
by instrumenting the program. A GI which uses clever test
case prioritization will detect earlier when to bailout and
stop testing a program. Just counting the number of eval-
uations will not distinguish between these scenarios and is
therefore a crude measure of performance. For example, a
GP evolving programs that computes polynomials will al-
ways succeed and therefore, in this case, it make more sense
to count evaluations of the fitness function. Whereas, with a
GI system, as the software being evolved is more complcated
(taking different amounts of time to execute, failing, or not
even halting), time becomes more of a pressing issue.

It may be the case that algorithm A1 runs faster than
algorithm A2 on machine M1, but on machine M2 the op-
posite is true. If Computing Science were treated as a nat-
ural science, we would report behaviour over a number of
machines (e.g. the most popular machines). As much of
GI research targets non-functional properties, GI will be
aimed at multi-objective optimization. However, as we com-
pare GI systems themselves, we are making multi-objective
comparisons, making comparisons even more difficult. Just
as we can cherry pick which benchmark instances we se-
lect to showcase our the performance of an algorithm, (or
equivalently over-tune our algorithm on those benchmark in-
stances), we can cherry pick architectures for GI. We should
be as open as possible when making comparisons.

In conclusion, making comparisons will always be prob-
lematic. However, the situation is more difficult with GI
than with GP, as the scope as to what constitues an eval-
uation is broader (involving a possible program crash), and
can use more time (as there is possible non-termination of
programs). This paper is not claiming we should abandon
comparing programs based on the number of evaluations
of a fitness function, but to promote the debate and raise
awareness. Counting evaluations of the cost function is sen-
sible with a black-box setting, when the evaluations of the
cost function are similar. However, we can use white-box ap-
proach with GI, calling on expensive but useful instrumenta-
tion for exampe, and therefore the picture is more complex.
Therefore we should be as open as we can be when reporting
results.

2. REFERENCES
[1] B. Harvey, J. Foster, and D. Frincke. Towards byte

code genetic programming. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, volume 2,
page 1234, Orlando, Florida, USA, 13-17 July 1999.
Morgan Kaufmann.

[2] J. N. Hooker. Testing heuristics: We have it all wrong.
Journal of Heuristics, 1(1):33–42, 1995.

[3] D. S. Johnson. A Theoretician’s Guide to the
Experimental Analysis of Algorithms. In 5th and 6th
DIMACS Implementation Challenges. American
Mathematical Society, 2002.

[4] G. Kendall, R. Bai, J. Blazewicz, D. C. P.,
M. Gendreau, R. John, J. Li, B. McCollum, E. Pesch,
R. Qu, N. Sabar, G. V. Berghe, and A. Yee. Good
laboratory practice for optimization research. J Oper
Res Soc, 67(4):676–689, Apr 2016.

[5] P. Nordin and W. Banzhaf. Evolving Turing-complete
programs for a register machine with self-modifying
code. In L. J. Eshelman, editor, Genetic Algorithms:
Proceedings of the Sixth International Conference
(ICGA95), pages 318–325, Pittsburgh, PA, USA, 15-19
July 1995. Morgan Kaufmann.

[6] G. J. E. Rawlins. Compared to What?: An Introduction
to the Analysis of Algorithms. Computer Science Press,
Inc., New York, NY, USA, 1992.


