
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017 1

A Hyperheuristic Methodology to Generate
Adaptive Strategies for Games

Jiawei Li, Member, IEEE, and Graham Kendall, Senior Member, IEEE

Abstract—Hyperheuristics have been successfully applied in
solving a variety of computational search problems. In this paper,
we investigate a hyperheuristic methodology to generate adaptive
strategies for games. Based on a set of low-level heuristics (or
strategies), a hyperheuristic game player can generate strategies
which adapt to both the behavior of the co-players and the game
dynamics. By using a simple heuristic selection mechanism, a
number of existing heuristics for specialized games can be inte-
grated into an automated game player. As examples, we develop
hyperheuristic game players for three games: iterated pris-
oner's dilemma, repeated Goofspiel and the competitive traveling
salesmen problem. The results demonstrate that a hyperheuristic
game player outperforms the low-level heuristics, when used indi-
vidually in game playing and it can generate adaptive strategies
even if the low-level heuristics are deterministic. This methodology
provides an efficient way to develop new strategies for games
based on existing strategies.

Index Terms—Competitive traveling salesmen problem, game,
Goofspiel, hyperheuristic, iterated prisoner's dilemma (IPD).

I. INTRODUCTION

G AME theory has provided some theoretical methodolo-
gies, equilibrium analysis, for example, to solve games

[31], [37], [25].However,manygames are too complex to be the-
oretically analyzed. Hard combinatorial optimization problems
are intrinsic to many board games such as Chess and Go and
also many card games with stochastic moves [18], [34], [16].
Heuristics have been widely applied to many approximate al-

gorithms for almost every type of computational search problem
and complex games [30], [24]. Generally, heuristics have the
advantage of deriving reasonable solutions while requiring less
computational resources than a complete enumeration of the
search space. Some heuristic approaches, metaheuristics, for ex-

Manuscript received March 06, 2014; revised September 21, 2014; accepted
January 14, 2015. Date of publication January 21, 2015; date of current version
March 15, 2017. This work was supported by the Engineering and Physical
Science Research Council (EPSRC) under Grant EP/H000968/1.
J. Li is with the ASAP Research Group, School of Computer Science, Uni-

versity of Nottingham, Nottingham NG8 1BB, U.K. (e-mail: jiawei.li@not-
tingham.ac.uk).
G. Kendall is with the ASAP Research Group, School of Computer Sci-

ence, University of Nottingham, Nottingham NG8 1BB, U.K. and also with the
University of Nottingham, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
(e-mail: graham.kendall@nottingham.ac.uk; graham.kendall@nottingham.edu.
my).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCIAIG.2015.2394780

ample, are able to generate high quality solutions in reasonable
computational times.
Hyperheuristics encompass a set of approaches with the

goal of automating the design and tuning of heuristic methods
to solve hard search problems [5], [20]. Hyperheuristics are
considered to be methodologies to build systems which can
handle different classes of search problems using the same
algorithm. They have been applied to personnel scheduling
[10], timetabling [6], space allocation [4], packing problems
[7], and vehicle routing problems [32], [15].
Hyperheuristics for search can be classified into two types:

1) heuristic selection; and 2) heuristic generation [5]. A heuristic
selection mechanism has been proposed which uses a Bayesian
approach to randomize and optimize the probability distribu-
tion of each heuristic call [26]. This approach is based on the
performance of the heuristics. If a heuristic has performed well
in the past, it is more likely to be selected to solve the current
problem. Otherwise the heuristic is less likely to be selected.
It attempts to determine a set of parameter values, or a proba-
bility distribution, in order to select the next low-level heuristic
[26]–[28].
There is already someworkwe can draw onwhich utilizes hy-

perheuristics in game playing. For example, a hyperheuristic for
the competitive traveling salesmen game [20]; an evolutionary-
based hyperheuristic algorithm for the jawbreaker puzzle [38]
and hyperheuristic based solvers for RushHour and FreeCell
games [19]. It has been shown that a hyperheuristic is able to
generate efficient strategies compared to just using the low-level
heuristics in isolation [19].
In this paper, we investigate applying hyperheuristics to game

playing. The objective is to develop a simple heuristic selection
mechanism that generates adaptive strategies for games based
on existing strategies for specialized games.
This paper is organized as follows. In Section II, a frame-

work of our proposed hyperheuristic game player is introduced.
In Section III, we develop hyperheuristic game players for three
games: iterated prisoner's dilemma (IPD), repeated Goofspiel,
and the competitive traveling salesmen problem. Simulations
are run in order to evaluate the performance of hyperheuristic
game players. The paper is concluded and future work is dis-
cussed in Section IV.

II. A HYPERHEURISTIC FRAMEWORK FOR GAME PLAYING
A hyperheuristic is a high-level algorithm that adapts to the

current state of the search in order to select one of the low-level

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



2 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

heuristics at each decision point. It is hoped that this approach
will perform better than using any single heuristic in isolation as
well as enabling it to be applied to different classes of problems.
In the proposed hyperheuristic for game playing, there is a high-
level algorithm and a set of low-level heuristics as shown in
Fig. 1. The high-level algorithm selects from among the low-
level heuristics and the selected low-level heuristic is used to
generate strategies for a specific game.
The low-level heuristics are chosen from existing heuristics

(or strategies) for a specialized game. Each low-level heuristic
produces the entire action sequence for playing a game. It can
be as simple as the heuristic mimicing the opponent's previous
choices or a complex algorithm such as the algorithm under-
pining IBM's Deep Blue chess player. Intuitively, the perfor-
mance of low-level heuristics will have a significant influence
on the performance of the hyperheuristic. Therefore we should
carefully choose those heuristics that perform well in special-
ized games to act as low-level heuristics.
The high-level algorithm dynamically tunes the priorities of

the different heuristics during game playing. In order to gen-
erate adaptive strategies, we require a learning mechanism for
the hyperheuristic to adapt to the game dynamics. Initially, the
low-level heuristics are assigned preferences (or probabilities)
by which the heuristic selection decisions are made. Whilst the
game is being played, the preferences are updated by learning
from, and adapting to, the historical performance of the chosen
heuristics. The heuristics that have been performing well are
more likely to be chosen in future play and the heuristics that
have been unsuccessful are less likely to be chosen. The frame-
work of the high-level algorithm is shown in Fig. 2.
We are not yet able to propose a general learning algorithm

because domain knowledgemay be required for a specific game.
We see this as a long term vision and we do not address this
challenge in this paper. We adopt simple heuristics as learning
algorithms in the examples of this paper. Our objective is to
show that simple heuristic selection mechanisms can generate
adaptive strategies that perform well in complex games. In the
following section, we study three hyperheuristic game players
for the IPD, repeated Goofspiel, and the competitive traveling
salesmen problem. For each game, a hyperheuristic game player
is developed based on deterministic strategies/heuristics.

III. THREE EXAMPLES OF HYPERHEURISTIC GAME PLAYERS

A. IPD
The prisoner's dilemma (PD) is a fundamental problem in

game theory that has been heavily studied in economics, ma-
chine learning, and evolutionary computation [3], [11], [33]. It
is a nonzero-sum game in which two players try to maximize
their payoff by cooperating with, or betraying, the other player.
The classical PD is as follows [21]:
Two suspects, A and B, are arrested by the police. The police

have insufficient evidence for a conviction, and, having sepa-
rated both prisoners, visit each of them to offer the same deal: if
one testifies for the prosecution against the other and the other
remains silent, the betrayer goes free and the silent accomplice
receives the full ten-year sentence. If both stay silent, the police
can sentence both prisoners to only six month in jail for a minor

Fig. 1. Structure of a hyperheuristic to generate strategies for game playing.

Fig. 2. The framework of the high-level algorithm.

Fig. 3. Payoff matrix of the prisoner's dilemma. If both players cooperate, both
receive a Reward of three points. If one player defects and the other coop-
erates then the defector receives the Temptation to defect payoff of five
points and the cooperator receives the Sucker payoff (zero in this case).
If both players defect then they both receive the penalty payoff (1 in this
case). There are and , which motivates
each player to play noncooperatively and prevents any incentive to alternate be-
tween cooperation and defection.

charge. If each betrays the other, each will receive a six-year
sentence. Each prisoner must make the choice of whether to
betray the other or to remain silent. However, neither prisoner
knows for sure what choice the other prisoner will make. So the
question this dilemma poses is: What will happen? Howwill the
prisoners act?
The payoffs for the players in a PD game are shown in Fig. 3.



LI AND KENDALL: HYPERHEURISTIC METHODOLOGY TO GENERATE ADAPTIVE STRATEGIES FOR GAMES 3

TABLE I
STRATEGIES FOR IPD GAME

It is clear that a player is better off choosing to defect no
matter what the other player chooses. However, both players
would have been better off if they chose to cooperate with each
other. Mutual defection is the unique Nash equilibrium of this
game, which denotes the steady state in which no player has the
incentive to deviate from their strategy, even when the decision
of the other player is known.
In an IPD, two players play PD repeatedly, and they have

the option to retain a memory of the previous actions of both
players. Mutual defection in IPD is not as stable as in the one-
shot game especially when the number of iterations is large.
Since Axelrod's IPD tournaments and his famous book, The

Evolution of Cooperation [3], tit-for-tat (TFT) has become
a well-known strategy for IPD and many researchers are at-
tempting to develop novel strategies that can outperform TFT
either in round-robin tournaments or within an evolutionary
environment [9], [22].
We propose a hyperheuristic-based strategy (Hyper) for IPD

games, which contains three low-level strategies.
h1) TFT: It cooperates on the first move, and then copies the

opponent's last move.
h2) Always-defect (AllD): It defects on every move.
h3) Tit-for-two-tat (TFTT): It cooperates on the first move,

and defects only if the opponent has defected in two
consecutive moves.

The high-level algorithm selects one of the low-level strate-
gies every six moves according to the interaction between the
two players in the previous six moves. It selects TFT in the first
six moves and then follows the following rules.
A) If the average payoff per move is not less than ,

then play TFT in the following six moves.
B) If the average payoff per move is , then

play TFTT in the following six moves.
C) In all other cases, play AllD in the following six moves.
D) If AllD has been chosen twice, always play AllD.
We run a series of evolutionary IPD simulations. The initial

population contains types of strategies ran-
domly chosen from the 27 strategies in Table I (descriptions of
these strategies can be found in [22], [23]). Each strategy has 20
identical copies and the initial population contains players.

Fig. 4. Fitness and frequency of 8 representative strategies in 100 generations
. (a) Fitness of strategies. (b) Frequency of strategies.

Stochastic universal sampling is used to select parents for the
next generation. The parents simply copy their strategies to pro-
duce offspring and no mutation is carried out. An evolutionary
IPD is run for 100 generations. As the outcome of any single
evolutionary IPD is affected by randomness, we repeat each
evolutionary IPD with the same value for 10 000 times, and
gather statistics on the outcomes. Two measures, the fitness and
the frequency of strategies in the population, are used to mea-
sure the performance of the strategies. The fitness of a strategy
denotes the average payoff per move in all evolutionary IPDs
that the strategy is involved. The frequency of a strategy is the
average percentage in the population in all evolutionary IPDs
that the strategy is involved in.
The fitness and frequencies of all 27 strategies in the popula-

tion after 100 generations are shown in Tables II and III. Hyper
outperforms all the other strategies for all values of . The fit-
ness and frequency of eight strategies, AllC, AllD, Rand, TFT,
Gradual, Adaptive, ATFT, and Hyper, as functions of genera-
tion are shown in Fig. 4 and Fig. 5 . They show
that the fitness of Hyper is higher than other strategies at the be-
ginning of the simulations, which leads to its higher frequency



4 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

Fig. 5. Fitness and frequency of 8 representative strategies in 100 generations
. (a) Fitness of strategies. (b) Frequency of strategies.

in the population. In many simulations, defective strategies be-
came extinct after 50 generations and only cooperative strate-
gies remained in the population. This was the reason why the
fitness of some cooperative strategies tended to be equal at the
end of evolution.
We run another simulation to show that Hyper performs

well against evolving strategies. The initial population contains
types of strategies randomly chosen from a set of 1027

strategies. Besides the 27 strategies in Table I, the set contains
1000 evolving strategies. An evolving strategy is expressed by

where are the probabilities of
choosing cooperate in next move given that the payoff of the
current move is , respectively. An evolving strategy
starts with randomly assigned values of and
then evolves by making small changes to these probabilities.
A learning rate is used to control the rate of evolution.
The fitness and frequency of nine strategies, including three
evolving strategies that receive the highest fitness, are shown
in Fig. 6. Most evolving strategies performed poorly against
deterministic strategies. The evolving strategies that performed
well are nearly deterministic. For example, there is and

for all of the top three evolving strategies.

TABLE II
THE FITNESS OF 27 STRATEGIES AT GENERATION 100

TABLE III
THE FREQUENCY OF 27 STRATEGIES AT GENERATION 100

The results of the simulations show that Hyper outperforms
other strategies, including its low-level strategies AllD, TFT,



LI AND KENDALL: HYPERHEURISTIC METHODOLOGY TO GENERATE ADAPTIVE STRATEGIES FOR GAMES 5

Fig. 6. Fitness and frequency of 9 representative strategies in 100 generations.
EP1, EP2, and EP3 are the evolving players that have the highest fitness. (a)
Fitness of strategies. (b) Frequency of strategies.

and TFTT, in evolutionary IPD. AllD is the optimal strategy
against all memory-zero strategies and it receives low payoff
in interacting with most of the memory-nonzero strategies. TFT
is optimal against those strategies that cooperate with the op-
ponent conditionally. A situation that TFT cannot handle well
is a long series of mutual retaliations provoked by a singleton
defection. TFTT performs well in this situation by playing one
more cooperation. However, it can be exploited by the strategies
that alternatively play C and D. Hyper inherits the advantages
of three strategies and thus performs well in evolutionary IPD.
A hyperheuristic using more low-level strategies and more

effective learning schemes has the potential to outperform
other hyperheuristics using less low-level strategies and simple
learning schemes. We use only three low-level strategies in
Hyper because of the complexity of the algorithm.

B. Repeated Goofspiel

Goofspiel, also known as the game of pure strategy, in its
classic version is a two-player card game. Three full suits of
cards are needed in the basic version of Goofspiel. The cards
are ranked from low to high as

. Each player is given the cards of a full suit and the
cards in the remaining suit, which is called the competition suit,
are shuffled and placed face down between the two players. In
every round, the top card of the competition suit is turned face
up, which is referred to as the upcard. Two players choose a bid
card from their hand and reveal it simultaneously. The player
with the higher bid card wins a number of points equal to the
upcard. In the case of a tie, both players receive zero points.
The bid cards and upcard are then discarded and a new round
starts. After 13 rounds, all cards are used and the game ends.
The player with the highest number of points wins the game.
Although both players choose from at most 13 cards in each

round of a Goofspiel game, the possible play sequences are
, which prohibits an exhaustive search for

the best strategy [36]. So far there is not any algorithm that gen-
erates optimal solutions for Goofspiel [12], [13], [35].
It is obvious that any deterministic strategy cannot be a win-

ning strategy for Goofspiel. The optimal play for Goofspiel is
to choose the bid card that is one point higher than the oppo-
nent's. Consider a deterministic strategy of matching the upcard,
which chooses the bid card equivalent to the upcard. The op-
timal strategy against this deterministic strategy is matching the
upcard which chooses one point higher than the bid card
except choosing one point (the Ace) when upcard . The
matching the upcard strategy will win 12 out of 13 rounds
in competing against the matching the upcard strategy.
We develop a hyperheuristic for Goofspiel that has six low-

level heuristics:
• : matching the upcard;
• : matching the upcard ;
• : matching the upcard ;
• : matching the upcard ;
• : matching the upcard ;
• : matching the upcard .
The high-level algorithm is a Bayesian heuristic approach to

optimize the probability distribution of the low-level heuristics.
A set of probabilities are

assigned, which denote the probabilities of heuristic being
chosen given that the upcard is . All the values of are set
to initially and then they are updated by means of
a learning algorithm. The learning algorithm is a modification
of experience weighted attraction [8]. The idea behind the algo-
rithm is that the heuristics that have proved to be successful in
the past are played more frequently and the heuristics that have
been less successful are played less frequently. The values of

at time are computed by

(1)

where is the attraction of heuristic and is
the intensity of choice. When has no influence on

and all low-level heuristics are equally weighted. The larger
is, the more contributes to . is computed by

(2)

where is the payoff of adopting heuristic and the pa-
rameter specifies the memory in the learning.
When there is no memory of previous moves and when



6 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

all previous moves are equally weighted in determining
the current choice. is computed by

if or
if or
if or
if or or
if or
if or
if or

(3)

where is the point difference between one's bid card and the
opponent's card. If a heuristic has chosen the bid card that is one
point higher than the opponent's, for example, we have
and thus .
The hyperheuristic chooses one of the heuristics with

respect to the assigned probabilities for any given upcard in
playing Goofspiel. The chosen heuristic is then applied to de-
termine a competition card. After each round of the game, the
probabilities are updated according to (1–3). It is possible that
the chosen competition card has been used in previous rounds.
Consider a process of a Goofspiel game in which the upcard
was 7 and was chosen on the first round. The upcard was
8 and was chosen on the second round. In both rounds the
competition card chosen by the heuristic was 8. However, the
card was not available on the second round because it can only
be played once. We solve this problem by choosing the card
that has the nearest point with the chosen competition card if
the chosen one is not available. When more than one card has
the nearest points, one of them will be chosen randomly. In the
above example, the cards with nearest point values are 7 and 9
and thus one of them will randomly be chosen as competition
card in the second round.
We run a series of two-player 100-iteration Goofspiels. The

coefficients of a hyperheuristic player (Hyper) are and
. In Fig. 7, the payoffs of Hyper competing against heuris-

tics are shown as functions of the number of iterations.
It shows that Hyper outperforms all of its low-level heuristics.
The result of Hyper competing against a random player is shown
in Fig. 8. The random player randomly chooses a card from the
remaining cards in each round.
We also run a set of 1000-iteration Goofspiels where two hy-

perheuristic players (namely Hyper1 and Hyper2, respectively)
compete against each other. In Fig. 9, Hyper1 and Hyper2 are
identical copies of the hyperheuristic player introduced previ-
ously and they have the same initial assignment of probabilities.
The payoffs of two hyperheuristics tend to be equivalent as the
game iterates.
In Fig. 10, the probabilities for Hyper1 to choose the low-

level heuristics in the case of upcard are shown. Note
that the probabilities vary stochastically although the payoff re-
mains at a steady value. The stochastic variations can be found
in the probabilities of both hyperheuristics in every case of dif-
ferent upcards. It demonstrates that the hyperheuristic players
are adaptive in interacting with each other.
We have tried different values of and , the coefficients that

determine the rate of probability update for the hyperheuristic
player. It shows that the performance of a hyperheuristic player
is not sensitive to these coefficients if the number of iterations

Fig. 7. The hyperheuristic competes against its low-level heuristics in 100-
iteration Goofspiel. (a)–(f) Payoffs of the hyperheuristic and .

Fig. 8. Hyper competes against a random player in 100-iteration Goofspiel.

Fig. 9. Two hyperheuristic players compete against each other in 1000-itera-
tion Goofspiel. Two Hypers have same coefficients .



LI AND KENDALL: HYPERHEURISTIC METHODOLOGY TO GENERATE ADAPTIVE STRATEGIES FOR GAMES 7

Fig. 10. The probabilities (upcard ) for Hyper 1 to choose heuristics
in 1000-iteration Goofspiel.

Fig. 11. Two hyperheuristic players compete against each other in 1000-itera-
tion Goofspiel. There are for Hyper1 and

for Hyper2.

Fig. 12. Two hyperheuristic players compete against each other in 1000-itera-
tion Goofspiel. There are for Hyper1 and

for Hyper2.

is large. In Figs. 11 and 12, two hyperheuristic players with dif-
ferent values of and compete in 1000-iteration Goofspiel.

Two Hypers tend to perform equally in the long run. The reason
for this might be that both Hypers are essentially random players
although they may evolve to be deterministic by chance. The
speed of learning is not very important when both players make
random choices.

C. Competitive Traveling Salesmen Problem (TSP)

The TSP is a classic NP-hard problem in combinatorial op-
timization. Given a number of cities and the distances between
each pair of them, the task is to find the shortest tour that visits
each city exactly once.
In a competitive traveling salesmen problem (CTSP), mul-

tiple self-interested agents compete with each other in visiting a
number of cities [14], [20], [29]. The agents will receive a ben-
efit if they are the first one to visit a city. All agents pay a cost for
the distance they travel. Each agent aims to visit as many unvis-
ited cities as possible, with a minimum traveling distance. Due
to the conflict of interest among multiple agents, a CTSP is a
dynamic n-player game and the solution should be a Nash equi-
librium (or equilibria). CTSPs are close to both fields of combi-
natorial optimization and noncooperative game theory. Sched-
uling with competing agents is a similar problemwhich has been
investigated from the economic/market viewpoint [1], [2].
Consider a CTSP in that agents compete with each other

in visiting cities. Let denote the set of agents.
We define the following constraints for the CTSP [20].
• Benefit. For each city , there is a constant
benefit for the agent who is the first one to reach the
city and other agents receive zero. If two or more agents
arrive at an unvisited city simultaneously, they will share
the benefit equally.

• Cost. Each agent has to pay a cost for their travel that is
proportional to their travel distance. Let denote the dis-
tance between city and . The cost for traveling from to
is . We set in this study for simplicity.

• Payoff. The payoff for each agent is computed by aggre-
gating the benefit and cost. Assume that an agent visits k
cities and receives benefit from cities. The
payoff received by the agent can be computed as

(4)

The visits are wasted visits. A wasted visit here denotes
that an agent travels to a city that has been visited by another
agent and thus receives no benefit.
• Path. The agent must travel from one city to another and
they cannot change their destinations once they have
started a trip. They must return to their departure cities to
finish the tour.

• Speed of travel. Each agent has a constant
speed of travel .

• Common knowledge. The location, the speed of travel, the
path traveled, and the payoff for each agent are known to
all agents.

Under these constraints, each agent chooses their tour inde-
pendently. The objective of each agent is to maximize their
own payoffs. In other words, each agent aims to visit as many



8 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

Fig. 13. Payoff matrix of a two-agent CTSP.

cities before any other agents, whilst minimizing their distance
travelled.
Since equilibrium analysis is difficult to conduct due to the

complexity of the problem, we develop a hyperheuristic game
player that generates strategies for individual agents in a CTSP.
The hyperheuristic game player has two levels.
The low-level heuristics consist of a set of construction

heuristics each of which can be used to create a tour for the
agent given the heuristics of other agents. In this study, five
low-level heuristics were utilized.
1) Nearest neighbor (NN). This heuristic always chooses the

nearest unoccupied city as the next destination.
2) Random neighbor (RN). This heuristic randomly chooses

one of the neighboring cities as the next destination. For a
city, its neighbors include the cities to which the distance
is not greater than 120% of the shortest one.

3) Aggressive (AH). This heuristic aims to avoidwasted visits
and also increase other agents' wasted visits. It first checks
other agent's destination and it chooses another's destina-
tion if it takes shorter time to reach the city than other
agents. If not, it chooses the nearest unoccupied city if no
other agents can visit it first. If not, it checks the second
nearest, the third nearest , etc. until it finds a city that no
other agents can reach first. If no city can be found, it waits
a step at its current location.

4) NN 2opt. This heuristic first adopts NN to create a tour,
and then does a local 2opt (2opt repeatedly swaps any two
cities of a tour to find a better tour with less cost) search
to improve it. It assumes that other agents play the NN
heuristic.

5) RN 2opt. This heuristic is same as NN 2opt except
that RN is adopted to create the initial tour.

The high-level algorithm identifies the heuristics adopted by
other agents and then selects from among its low-level heuris-
tics. The identification mechanism is based on the assumption
that each agent selects from among a limited set of heuristics to
create their tours. Consider a two-agent CTSP, for example. Two
agents select among five heuristics at every move according to
the payoff matrix as shown in Fig. 13. The two values in each
cell are payoffs of two agents given that they adopt predeter-
mined heuristics throughout the rest of the game. The identi-
fication mechanism identifies the heuristic adopted by another
agent according to their historical moves.
The evaluation of the heuristics adopted by other agents

is expressed by beliefs. A belief is a group of five values,
, each of which denotes the probability that

a specific low level heuristic is adopted. For example, at the
beginning of a CTSP, agent has a belief of 0.2, 0.2, 0.2, 0.2,
0.2 about another agent 's heuristic. The latest three choices
of other agents are used to compute the beliefs at each move,

Fig. 14. Two agents play a 30-city CTSP in a 100 100 square area. (a) Loca-
tions of 30 cities and the departure points of two agents in a 100 100 square
area. (b) Both agents adopt NN strategy. The payoffs of two agents are 1668.3
and 1880.4, respectively. (c) Agent 1 adopts Hyper and agent 2 adopts NN. The
payoffs of two agents are 1991.1 and 1608.3. (d) Agent 1 adopts Hyper and
agent 2 adopts AH. The payoffs of two agents are 1962.0 and 1709.2. (e) Agent
1 adopts Hyper and agent 2 adopts NN 2opt. The payoffs of two agents are
1970.9 and 1608.3. (f) Agent 1 adopts Hyper and agent 2 adopts RN 2opt.
The payoffs of two agents are 1970.9 and 1597.3.

and the heuristic with the highest probabilities will be chosen
as the other agent's heuristic.
Given the heuristics of other agents, an imaginary tour is cre-

ated by adopting each low level heuristic so that the expected
payoff can be computed. The hyperheuristic will then choose
the heuristic with the highest expected payoff to create a real
tour for itself. We note that only the first destination of a tour
can be definitely visited because the beliefs and tour are com-
puted and updated at every move. In order to limit the amount
of computation, each imaginary tour contains at most 30 moves
(depending on how many unvisited cities are left).
We run a simulation of two-agent 30-city CTSPs. The cities

are located in a square area of 100 100 and their locations are
randomly created [as shown in Fig. 14(a)]. The payoff of vis-
iting each city is set to 150, while the cost of travel is equivalent
to the distance travelled. Note that the payoff of visiting a city
is greater than the longest distance between two cities, so the
agents are motivated to visit all cities. Two agents with iden-
tical speed of travel are presented and they are initially located



LI AND KENDALL: HYPERHEURISTIC METHODOLOGY TO GENERATE ADAPTIVE STRATEGIES FOR GAMES 9

Fig. 15. Average payoff of player 1 in playing 1000 30-city CTSPs.

at different cities. When both agents adopt NN, their tours are
shown in Fig. 14(b). The payoffs of two agents are 1668.3 and
1880.4, respectively. In Fig. 14(c) the tours of two agents are
shown when they adopt Hyper and NN, respectively. The pay-
offs of two agents are 1991.1 and 1608.3. Figs. 14(d)–(f) shows
the results of Hyper competing against AH, NN 2opt, and RN
2opt.
In another simulation two agents play 30-city CTSP for 1000

times, and statistics on the outcomes were gathered. The loca-
tions of cities in each CTSP are randomly generated within a
100 100 square area. Two agents choose different heuristics
in playing CTSPs. The average payoffs of agent 1 is shown in
Fig. 15. By adopting Hyper, agent 1 receives approximately 200
more points than when adopting other heuristics. It is obvious
that Hyper is superior to other heuristics for agent 1 in inter-
acting with agent 2.

IV. CONCLUSION

We have investigated a hyperheuristic methodology for
game playing. By applying a high-level algorithm to choose
from among a set of heuristics or strategies for games, a hy-
perheuristic game player can generate adaptive strategies for
complex games. The methodology is applied to three games:
the IPD, repeated Goofspiel, and the competitive traveling
salesmen problem. The results show that
1) hyperheuristic game players outperform their low-level

heuristics in repeated and dynamic games;
2) hyperheuristic game players generate adaptive strategies

even if the low-level heuristics are deterministic;
3) simple heuristic selection mechanisms can be adopted to

construct automated game players in different games.
The hyperheuristic methodology provides an efficient way to

develop new strategies for games. Existing strategies for spe-
cialized games can be used as low-level heuristics in developing
new strategies. The designer does not require a detailed knowl-
edge of playing the specialized games, and thus can concentrate
his/her efforts on designing heuristic selection algorithms.

The quality of the low-level heuristics may have a signifi-
cant influence on the performance of the hyperheuristic game
player. The heuristics we used in this study are simple strate-
gies or heuristics that are not specifically chosen. For example,
the heuristics forGoofspiel are all deterministic and they cannot
always represent good strategies forGoofspiel. The influence of
low-level heuristics on a hyperheuristic game player will be one
of our future research directions as will how we can make the
hyperheuristic even more general so that we can more easily to
apply it to a wider range of games.

REFERENCES

[1] A. Agnetis, P. Mirchandani, D. Pacciarelli, and A. Pacifici, “Nondomi-
nated schedules for a job-shop with two competing agents,” Computat.
Math. Org. Theory, vol. 6, no. 2, pp. 191–217, 2000.

[2] A. Agnetis, P. Mirchandani, D. Pacciarelli, and A. Pacifici, “Sched-
uling problems with two competing agents,” Operat. Res., 2013 [On-
line]. Available: doi:10.1287/opre.1030.0092

[3] R. Axelrod, The Evolution of Cooperation. New York, NY, USA:
Basic, 1984.

[4] R. Bai, E. Burke, and G. Kendall, “Heuristic, meta-heuristic and
hyper-heuristic approaches for fresh produce inventory control and
shelf space allocation,” J. Oper. Res. Soc., vol. 59, pp. 1387–1397,
2008.

[5] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. Woodward,
“A classification of hyper-heuristic approaches,” in In Handbook of
Meta-Heuristics . Boston, MA, USA: Kluwer, 2010, pp. 449–468.

[6] E. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic
for timetabling and rostering,” J. Heurist., vol. 9, no. 6, pp. 451–470,
2003.

[7] E. Burke, M. Hyde, G. Kendall, and J.Woodward, “A genetic program-
ming hyper-heuristic approach for evolving 2-D strip packing heuris-
tics,” IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 942–958, 2010.

[8] C. Camerer and T. Hua Ho, “Experience-weighted attraction learning
in normal form games,” Econometrica, vol. 67, no. 4, pp. 827–874,
1999.

[9] S. Chong, P. Tino, and X. Yao, “Measuring generalization performance
in coevolutionary learning,” IEEE Trans. Evol. Comput., vol. 12, no.
4, pp. 479–505, 2008.

[10] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach
to scheduling a sales summit,” in Proc. Select. Papers 3rd Int. Conf.
Pract. Theory Autom. Timetabling, 2000, pp. 176–190.

[11] P. Darwen and X. Yao, “Coevolution in iterated prisoner's dilemma
with intermediate levels of cooperation: Application to missile de-
fense,” Int. J. Comput. Intell. Appl., vol. 2, no. 1, pp. 83–107, 2002.

[12] M. Dror, “Simple proof for Goofspiel: The game of pure strategy,”Adv.
Appl. Probabil., vol. 21, no. 3, pp. 711–712, 1989.

[13] M. Dror and G. Kendall, “Repeated Goofspiel: A game of pure
strategy,” IEEE Trans. Comput. Intell. AI Games, 2013, DOI:
10.1109/TCIAIG.2013.2257773.

[14] S. Fekete, R. Fleischer, A. Fraenkel, and M. Schmitt, “Traveling
salesmen in the presence of competition,” Theoret. Comput. Sci., vol.
313, no. 3, pp. 377–392, 2004.

[15] P. Garrido and M. Riff, “DVRP: a hard dynamic combinatorial optimi-
sation problem tackled by an evolutionary hyper-heuristic,” J. Heurist.,
vol. 16, no. 6, pp. 795–834, 2007.

[16] S. Gelly et al., “The grand challenge of computer go: Monte Carlo tree
search and extensions,” Commun. ACM, vol. 55, no. 3, pp. 106–113,
2012.

[17] M. Gendreau and J. Potvin, “Metaheuristics in combinatorial optimiza-
tion,” Ann. Operat. Res., vol. 140, pp. 189–213, 2005.

[18] K. Greer, “Computer chess move-ordering schemes using move influ-
ence,” Artif. Intell., vol. 120, no. 2, pp. 235–250, 2000.

[19] A. Hauptman, E. Achiya, and S. Moshe, “Evolving hyper heuristic-
based solvers for Rush Hour and FreeCell,” in Proc. 3rd Ann. Symp.
Combin. Search, 2010.

[20] G. Kendall and J. Li, “Competitive travelling salesmen problem:
A hyper-heuristic approach,” J. Oper. Res. Soc., vol. 64, no. 2, pp.
208–216, 2013.



10 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 1, MARCH 2017

[21] J. Li, G. Kendall, X. Yao, and S. Chong, “The iterated prisoner's
dilemma: 20 years on, in the iterated prisoner's dilemma: 20 years on,”
World Sci., pp. 89–104, 2007.

[22] J. Li and G. Kendall, “A strategy with novel evolutionary features for
the iterated prisoner's dilemma,” Evol. Comput., vol. 17, no. 2, pp.
257–274, 2009.

[23] J. Li, P. Hingston, and G. Kendall, “Engineering design of strategies
for winning iterated prisoner's dilemma competitions,” IEEE Trans.
Comput. Intell. AI Games, vol. 3, no. 4, pp. 348–360, 2011.

[24] T. Marsland and M. Campbell, “Parallel search of strongly ordered
game trees,” ACM Comput. Surv., vol. 14, no. 4, pp. 533–551,
1982.

[25] K. McCabe, S. Rassenti, and V. Smith, “Game theory and reciprocity
in some extensive form experimental games,” Proc. Nat. Acad. Sci.,
vol. 93, no. 23, pp. 13421–13428, 1996.

[26] J. Mockus, Bayesian Approach To Global Optimisation: Theory and
Applications. Dordrecht, The Netherlands : Kluwer, 1989.

[27] J. Mockus, “Application of Bayesian approach to numerical methods
of global and stochastic optimisation,” J. Global Optimis., vol. 4, no.
4, pp. 347–365, 1994.

[28] J. Mockus, A Set Of Examples of Global and Discrete Optimisation:
Applications of Bayesian Heuristic Approach. New York, NY, USA:
Springer-Verlag, 2000, vol. 41.

[29] M. Mohtadi and K. Nogondarian, “Solving the traveling salesman
problem in competitive situations using the game theory,” Appl. Math.
Eng. Manage. Technol., vol. 2, no. 3, pp. 311–325, 2014.

[30] H. Müller-Merbach, “Heuristics and their design: A survey,” Eur. J.
Oper. Res., vol. 8, no. 1, pp. 1–23, 1981.

[31] J. Nash, “Equilibrium points in n-person games,” Proc. Nat. Acad. Sci.,
vol. 36, no. 1, pp. 48–49, 1950.

[32] D. Pisinger and S. Ropke, “A general heuristic for vehicle routing prob-
lems,” Comput. Operat. Res., vol. 34, pp. 2403–2435, 2007.

[33] W. Press and F. Dyson, “Iterated prisoner's dilemma contains strategies
that dominate any evolutionary opponent,” Proc. Nat. Acad. Sci., vol.
109, no. 26, pp. 10409–10413, 2012.

[34] J. Ramon, T. Francis, and H. Blockeel, “Learning a go heuristic with
TILDE,” in Computers and Games. Berlin, Heidelberg, Germany:
Springer-Verlag, 2001, pp. 151–169.

[35] G. C. Rhoads and L. Bartholdi, “Computer solution to the Game of
Pure Strategy,” Games, vol. 3, no. 4, pp. 150–156, 2012.

[36] S. Ross, “Goofspiel: The game of pure strategy,” J. Appl. Probab., vol.
8, no. 3, pp. 621–625, 1971.

[37] A. Rubinstein, “Equilibrium in supergames with the overtaking crite-
rion,” J. Econ. Theory, vol. 21, pp. 1–9, 1979.

[38] S. Salcedo-Sanz, J. Matías-Román, S. Jiménez-Fernández, A. Portilla-
Figueras, and L. Cuadra, “An evolutionary-based hyper-heuristic ap-
proach for the jawbreaker puzzle,” Appl. Intell., pp. 1–11, 2013.

Jiawei Li (M'12) received the B.Sc. degree in ship
engineering and the Ph.D. degree in fluid mechanics
from the Harbin Engineering University, Harbin,
China, in 1992 and 1998, respectively.
He is currently a Research Fellow at the School

of Computer Science, University of Nottingham,
Nottingham, U.K. His research interests include
evolutionary game theory, hyperheuristic, and
computational intelligence.

Graham Kendall (M'03–SM'10) received the B.S.
degree in computation (first class, honors) from the
Institute of Science and Technology, University of
Manchester, Manchester, U.K., in 1997 and the Ph.D.
degree in computer science from the University of
Nottingham, Nottingham, U.K., in 2001.
His previous experience includes almost 20 years

in the information technology industry where he
held both technical and managerial positions. He is
a Professor of Computer Science at the University of
Nottingham and is currently based at their Malaysia

Campus where he holds the position of Vice-Provost (Research and Knowledge
Transfer). He is a Director of two companies (EventMAP Ltd., Nottingham,
U.K.; Aptia Solutions Ltd., Nottingham, U.K.) and CEO of two companies
(MyRIAD Solutions Sdn Bhd, Malaysia and MyResearch Sdn Bhd, Malaysia).
Dr. Kendall is a Fellow of the Operational Research Society. He is an

Associate Editor of nine international journals, including two IEEE journals:
the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and the IEEE
TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES. He
chaired the Multidisciplinary International Conference on Scheduling: Theory
and Applications in 2003, 2005, 2007, 2009, and 2011, and has chaired several
other international conferences, which has included establishing the IEEE
Symposium on Computational Intelligence and Games. He has been awarded
externally funded grants worth over £6 million from a variety of sources
including Engineering and Physical Sciences Research Council (EPSRC) and
commercial organizations.


