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Abstract

Background: Fish currently supplies only 40% of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)

required to allow all individuals globally to meet the minimum intake recommendation of 500 mg/d. Therefore, alternative

sustainable sources are needed.

Objective: The main objective was to investigate the ability of genetically engineered Camelina sativa (20% EPA) oil (CO)

to enrich tissue EPA and DHA relative to an EPA-rich fish oil (FO) in mammals.

Methods: Six-week-old male C57BL/6J mice were fed for 10 wk either a palm oil–containing control (C) diet or diets

supplemented with EPA-CO or FO, with the C, low-EPA CO (COL), high-EPA CO (COH), low-EPA FO (FOL), and high-EPA

FO (FOH) diets providing 0, 0.4, 3.4, 0.3, and 2.9 g EPA/kg diet, respectively. Liver, muscle, and brain were collected for

fatty acid analysis, and blood glucose and serum lipids were quantified. The expression of selected hepatic genes involved

in EPA and DHA biosynthesis and in modulating their cellular impact was determined.

Results: Theoilswerewell tolerated,with significantly greaterweight gain in theCOHandFOHgroups relative to theCgroup (P<

0.001). Significantly lower (36–38%) blood glucose concentrationswere evident in the FOH and COHmice relative to Cmice (P <

0.01).HepaticEPAconcentrationswerehigher inall EPAgroups relative to theCgroup (P<0.001),withconcentrationsof0.0,0.4,

2.9, 0.2, and 3.6 g/100 g liver total lipids in the C, COL, COH, FOL, and FOHgroups, respectively. Comparable dose-independent

enrichmentsofliverDHAwereobservedinmicefedCOandFOdiets(P<0.001).RelativetotheCgroup,lowerfattyaciddesaturase

1 (Fads1) expression (P < 0.005) was observed in the COH and FOH groups. Higher fatty acid desaturase 2 (Fads2), peroxisome

proliferator–activated receptor a (Ppara), and peroxisome proliferator–activated receptor g (Pparg) (P < 0.005) expressions were in-

ducedbyCO.Noimpactof treatmenton liverXreceptora (Lxra)orsterol regulatoryelement-bindingprotein1c(Srebp1c)wasevident.

Conclusions: Oil from transgenic Camelina is a bioavailable source of EPA in mice. These data provide support for the

future assessment of this oil in a human feeding trial. J Nutr doi: 10.3945/jn.115.223941.
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Introduction

Although randomized controlled trials have not been completely
consistent, a large body of human prospective cohort evidence,

as well as animal feeding studies, have shown the beneficial
impact of the n–3 (v-3) long-chain (LC)9 PUFAs EPA (20:5n–3)
and DHA (22:6n–3) on fetal development and cardiovascular
and cognitive health (1–4). In humans, EPA, and to a lesser
extent DHA, can be synthesized de novo from their precursor
essential FA, a-linolenic acid (ALA; 18:3n–3), which is particularly

3 Supplemental Tables 1–5 are available from the ‘‘Online Supporting Material’’

link in the online posting of the article and from the same link in the online table of

contents at http://jn.nutrition.org.
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rich in several seed oils. However, this bioconversion, in which
elongation of very long chain fatty acids proteins (ELOVLs;
encoded by ELOVL2 and ELOVL5) and D5 and D6 desaturases
[encoded by FA desaturases (FADS) 1 (FADS1) and 2 (FADS2)] are
key metabolizing enzymes (5–7), is inefficient (8, 9). Therefore,
based largely on their cardiovascular benefits, international and
national health organizations and societies such as the Interna-
tional Society for the Study of Fatty Acids and Lipids (10), the UK
Scientific Advisory Committee in Nutrition (11), and the Amer-
icanHeartAssociation (12) recommend aminimumdietary intake
of 500 mg preformed EPA+DHA/d (achieved through the
consumption of 1 to 2 portions of oily fish per week), increasing
to 1 g or 2–4 g/d for the secondary prevention of cardiovascular
diseases or as a TG-lowering therapy, respectively.

It has been estimated that, globally, ;1.3 million metric tons
of EPA plus DHA per annum are needed to allow all individuals
to have a minimum intake of 500 mg/d. Current sources, which
are almost exclusively derived from fish, provide only 40% of
this (13) [of which >75% is used in aquaculture (14)], leaving a
large deficit between supply and need. Zooplankton and
microalgae have been investigated (15); however, the availability
of EPA and DHA via these sources presents substantial technolog-
ical and cost challenges, which are generally limiting their use.
Alternatively, seed oils rich in stearidonic acid (SDA; 18:4n–3), an
intermediate in the synthesis of EPA from ALA, have also been
considered as a possible alternative to fish oil (FO). Supplementa-
tion with a genetically engineered soybean oil to contain SDA
resulted in increased EPA, but not DHA, concentrations in human
plasma and erythrocytes (16, 17). In aquaculture, the partial
replacement of FO with either SDA-soybean oil or Echium oil
(naturally rich in SDA) was shown to have ambiguous effects on
growth and performance and did not enhance tissue n–3 LC-PUFA
concentrations, although higher tissue SDA was evident (which
may ultimately improve human EPA status) (18–21). Therefore,
overall, SDA-rich oils have not emerged as an adequate replace-
ment for FO.

Due to the scalability of agriculture-based sources, metabolic
engineering of oilseed crops (which are naturally devoid of EPA
and DHA) to accumulate these FAs is emerging as one of the
most practical solutions to n–3 LC-PUFA supply (22–24).
Camelina sativa is a Brassicaceae crop that naturally has a
high content (45%) of the precursor ALA. By using transgenic
technology and the introduction of heterologous genes (from
microalgae) of the biosynthetic pathway and their regulators
into Camelina, this oilseed has been genetically engineered to
produce oils containing up to 30% EPA or EPA+DHA (25–27).
One of these transgenic seed oils, containing 20% of total FAs as
EPA, was recently used as a replacement for FO in the feeds of
Atlantic salmon (Salmo salar), showing comparable tissue EPA
enrichment to FO (28). The impact on EPA and DHA status
upon direct feeding to humans is currently unknown for this oil.

The aim of the present study was to compare, for the first
time to our knowledge, how equal doses of EPA provided as
EPA-enriched Camelina oil (CO) or EPA-rich concentrated FO
affect tissue FA status in mammals (C57BL/6J mice). Because the
position at which PUFAs are complexed on the glycerol backbone
of TGs (sn1,3) has been shown to affect their bioavailability and

bioefficacy (29, 30), regiospecific analysis of the CO and FO was
performed. Gene expressions of the Elovl and Fads genes along
with transcription factors that modulate the cellular effects of
EPA and DHA, namely peroxisome proliferator–activated recep-
tor (Ppar) a (Ppara) and g (Pparg), sterol regulatory element-
binding protein 1c (Srebp1c), and liver X receptor a (Lxra) (31),
were also investigated.

Methods

Animals and design. Experimental procedures and protocols used in

this study were reviewed and approved by the Animal Welfare and
Ethical Review Body and were conducted within the provisions of the

Animals (Scientific Procedures) Act of 1986 (32), under project license

number 80/2533 and following the Laboratory Animal Science Associ-

ation Guiding Principles for Preparing for and Undertaking Aseptic
Surgery (33).

Male C57BL/6J mice (n = 40; 25.9 6 0.4 g), aged 6 wk, were

purchased from Charles River Laboratories (Margate, United Kingdom).
Mice were housed 4 per cage and under controlled temperature (21� 6
2�C) and humidity (55%6 10%) and a standard light-dark cycle (12 h/12 h)

and consumed food and water ad libitum throughout. After a 2-wk

acclimatization period of consuming a standard RM3 diet (Rat and
Mouse No. 3 Breeding Diet; Special Diets Services) (34), which

provided 11% of energy from fat, 27% from protein, and 62% from

carbohydrates, mice (n = 8/group) were allocated to 1 of the 5 following

feed pellet test diets for 10 wk: control (C), EPA-rich Camelina oil, low
dose (COL), EPA-rich Camelina oil, high dose (COH), EPA-rich Fish

oil, low dose (FOL), or EPA-rich Fish oil, high dose (FOH). The nutrient

and FA compositions of the experimental diets are given in Supplemental

Tables 1–3.
Mice were weighed once a week, and food intake was recorded

3 times/wk. The diets were frozen in batches at220�C and defrosted and

replaced every other day to ensure minimal oxidation of the FAs. At the
end of the 10-wk intervention, food was removed for 16 h. The mice

were anesthetized by using 4% isoflurane in medical oxygen, and blood

was drawn by cardiac puncture into serum separation tubes (Becton

Dickinson). Glucose concentrations were measured in whole blood by
using an AlphaTRAK 2 glucose meter (Abbott Laboratories Ltd.).

Blood samples were then allowed to clot for 30 min at room tempera-

ture before serum was separated by centrifugation (10 min, 13003 g,
at room temperature). Mice were transcardially perfused with an ice-
cold saline solution containing sodium heparin (10 U/mL). Livers

were removed, rinsed with ice-cold 150 mmol NaCl/L, blotted, and

weighed. The right lobes were stored in RNALater (Sigma-Aldrich)
for gene expression analysis. The remainder of the liver, muscle

(gastrocnemius), and brain samples were snap-frozen, and all samples

were stored at 280�C for further analysis. These tissues were chosen

due to their central role in EPA and DHA biosynthesis (liver), FA
utilization (muscle), and high n–3 PUFA, and in particular DHA,

content (brain).

Mouse diets. All diets were based on the TestDiet AIN-93M
semipurified diet 58M1 for rodents (TestDiet Europe; IPS Product

Supplies Ltd.) and provided 10% of energy from fat, 20% from protein,

and 70% from carbohydrates (Supplemental Tables 1 and 2). The
control diet contained palm oil (PO; William Hodgson & Co.), which

was chosen as a high-saturated-fat oil source, typical of a Western-

type human diet. Furthermore, PO is low in ALA, thereby limiting

endogenous EPA synthesis in the mouse tissue. Details of the metabolic
engineering, production, and composition of the transgenic EPA-rich

CO have been published previously (35, 36), with the oil providing

20% EPA, 0% DHA, and 16%, 17%, and 66% of total SFAs, MUFAs,

and PUFAs, respectively.
The COL and COH diets contained 0.31% and 2.15% of transgenic

EPA-rich CO and the FOL and FOH diets contained 0.08% and 0.57%

of an EPA-rich FO (EPAX 6015 TG, EPA:DHA-4:1; Epax A/S). The oil

content of all 4 diets was taken up to 10% of energy with the use of PO.

9 Abbreviations used: AA, arachidonic acid; ALA, a-linolenic acid; C, control; CO,

Camelina oil; COH, EPA-rich Camelina oil, high dose; COL, EPA-rich Camelina oil,

low dose; Elovl, elongation of very long chain fatty acids protein; Fads, fatty acid

desaturase; FO, fish oil; FOH, EPA-rich Fish oil, high dose; FOL, EPA-rich Fish oil,

low dose; HED, human equivalent dose; LA, linoleic acid; LC, long-chain; Lxra,

liver X receptor a; PO, palm oil; SDA, stearidonic acid; Srebp1c, sterol regulatory

element-binding protein 1c; TC, total cholesterol; TL, total lipid.
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This resulted in C, COL, COH, FOL, and FOH diets containing 0, 0.4,

3.4, 0.3, and 2.9 g EPA/kg diet, respectively.

These amounts of oils were chosen to provide human equivalent
doses (HEDs) of EPA of 500 mg COL and FO/d and 3.5 g COH and

FOH/d, which represent the minimal recommended EPA+DHA intake

(500 mg/d) and the 2- to 4-g/d dose, respectively, recommended by the

American Heart Association for TG lowering (12). The equivalent

animal doses (AD) were determined on the basis of allometric scaling

and body surface area–based calculations considering the HED in a

normal-weight adult (70 kg) with the use of the following formula: HED

(mg/kg) = AD (mg/kg) 3 [weight mouse (kg)/weight human (kg)](0.33)

and assuming a daily food intake of 5 g/d (37).

Lipid blood tests and FA analysis. Serum concentrations of total

cholesterol (TC), HDL cholesterol, and TGs in feed-deprived mice were

quantified with commercially available kits from Instrumentation

Laboratories on a clinical chemistry analyzer IL650 (Instrumentation

Laboratories). Total lipids (TLs) were extracted from 200 mg ground

diets, 150 mg liver, 200 mg brain, and 100 mg muscle samples by using

chloroform/methanol (2:1 vol:vol) containing 0.01% BHT as an

antioxidant. FAs were analyzed by GC-Flame Ionization Detector

following the method described previously (38).

RNA isolation and real-time qPCR. Total RNAwas isolated from the

livers of 6 mice per dietary treatment after being homogenized in 1 mL

TriReagent (Sigma-Aldrich), and cDNA was synthesized as detailed in

Betancor et al. (39). The expression of genes of interest (Supplemental

Table 4) was determined by qPCR, normalizing the results against

b-actin. qPCR was performed by using a Biometra TOptical Thermo-

cycler (Analytik Jena).

TG purification and positional analysis. The TG fraction from the
experimental oils was separated by thin layer chromatography as

previously described (40). FAME composition of these TG fractions was

obtained by heating the samples in methanol:toluene:H2SO4 (88:10:2,

by volume) (41). Positional analysis of purified TGs was performed

according to Ruiz-Lopez et al. (26).

Statistical analysis. Body weight, food intake, blood glucose, serum
lipids, and tissue FAs are presented as means 6 SEMs. The data were

checked for normality of distribution by using the Kolmogorov-Smirnoff

test and log-transformed when necessary. Homogeneity of variance was

established by using the Levene test. Statistical analyses of body weight

and food intake were performed by using 2-factor ANOVA with

repeated measures followed by Bonferroni�s multiple-comparison tests.

One-factor ANOVAwas used to test for the effects of diet on serum lipids
and tissue FA compositions, measured at 10 wk. Tukey�s multiple-

comparison tests were used to establish intergroup differences when the

F value was significant. The statistical analysis was performed by using

the SPSS package (version 16.0; SPSS, Inc.), with P < 0.05 taken as
being significant. Gene expression results were analyzed by using

the relative expression software tool (REST) (42), which uses a

pairwise fixed reallocation randomization test (10,000 randomizations)

with efficiency correction.

Results

Body weight and food intake. There were no mouse deaths or
indications of ill health over the 10-wk intervention period, with
no impact of treatment on liver weight (Figure 1C). All of the
groups had a significant increase in body weight, ranging from
14% for the C group to 21–22% for the FOH and COH groups
(P = 0.002), with the change from baseline being significantly
higher in the COH and FOH groups relative to the C group
(Figure 1A). A significant difference in body weight (P < 0.005)
was observed between C and FOH groups from 6 wk onward,
which was associated with higher food consumption in the FOH
group compared with the C group (P < 0.001) (Figure 1B). A
higher body weight was also evident in the COH mice than in C
mice (P < 0.005) from week 8 onward, which was not reflected
in differences in food intake.

Diet analysis. Both EPA-rich CO diets (COL and COH) had a
higher content of linoleic acid (LA; 18:2n–6), total n–6 PUFAs,
and ALA than did the C or FOL and FOH diets (Supplemental
Table 3). These results are reflective of the presence of Camelina
sativa, a naturally C18-PUFA–rich oil.

The amounts of EPA were comparable in both the COL
and FOL (0.9% and 0.6%) and the COH and FOH (8.3% and
7.1%) diets, with 0.1% and 2.3% DHA present in the FOL and
FOH diets as a result of the inclusion of FO. The regiospecific
analysis of the TG fraction in the experimental oils showed that
almost all of the palmitic acid (16:0) and stearic acid (18:0) were

FIGURE 1 Body weight (A), food consumption (B), and liver weight (C) in male C57BL/6J mice after 10 wk of feeding diets providing EPA as

EPA-rich transgenic Camelina oil or EPA-rich fish oil relative to a control diet. Values are means 6 SEMs, n = 8. *,#,xDifferences between groups

(P , 0.05, 2-factor ANOVA with repeated measures followed by Bonferroni�s multiple-comparison tests): *C compared with FOH, #C compared

with COH, xCOL compared with FOH. Week 10 data are not presented in panels A and B because mice had their food removed for 16 h before

killing, and therefore the data are not directly comparable to weeks 1–9. C, control diet; COH, EPA-rich Camelina oil, high dose; COL, EPA-rich

Camelina oil, low dose; FOH, EPA-rich fish oil, high dose; FOL, EPA-rich fish oil, low dose.
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in the sn-2 position in the FO, compared with;20% in the CO.
Comparable proportions of EPA were present in sn-2 in the FO
(46.0%) and CO (51.5%) (Supplemental Table 5).

Fasting glucose and blood lipids. Fasting blood glucose
concentrations were lower in the COH- and FOH-fed mice
relative to C mice (P = 0.01) (Figure 2A). No significant impact
of treatment on fasting serum TC, TGs, or HDL cholesterol was
observed (Figure 2B).

FA composition. The PUFA composition of the TLs in the liver
(Table 1) reflected, in general terms, the composition of the diets.
Significantly higher concentrations of EPAwere evident in all of
the experimental groups relative to the C group (P < 0.001), with
EPA enrichments in the following order: FOH = COH > COL >
FOL > C. DHA biosynthesis was evident in all of the groups,
with the concentrations of this FA 3–4 times higher in mice fed
the experimental diets compared with the C group (P < 0.001).
The liver TL total n–3 PUFA concentrations were in the
following order: COH = FOH > COL = FOL > C (P < 0.001).
The concentrations of LAwere higher in all of the experimental
groups compared with the C group (P < 0.000). Mice fed the C
diet showed higher concentrations of metabolites derived from
LA (20:2n–6, 20:3n–6, and 20:4n–6; 1.2%, 0.7%, and 8.2%,
respectively) when compared with FOH mice (0.1%, 0.3%, and
2.8%, respectively). SFA percentages were similar between
groups, with the exception of palmitic acid (P < 0.001).

In brain tissue (Table 2), the expected low concentrations of
EPA (0.2%) were observed, with no impact of diet. Relative to
all other groups, modestly higher DHA concentrations were
evident after the FOH intervention (P = 0.006), with associated
lower docosapentaenoic acid (22:5n–3) (except when compared
with FOL; P < 0.019) and arachidonic acid (AA; 20:4n–6; P <
0.001). A significant impact of intervention on total n–3 PUFAs

(P = 0.004) and n–3 to n–6 PUFA ratio (P < 0.001) was also
evident. No significant impact of treatment on the SFA content
of brain tissue was observed.

Muscle EPA concentrations were <0.5%, with no impact of
diet on EPA or DHA content (Table 3). Total n–3 PUFAs were
not different between treatments, and the n–3 to n–6 ratio was
higher after the FOH diet (P = 0.037) than after the C diet. This
difference in the n–3 to n–6 ratio was the result of the low
concentration of total n–6 PUFAs observed in the FOH group
(P = 0.016), attributable to lower concentrations of LA metab-
olites (20:2n–6, 20:3n–6, and 20:4n–6; P < 0.001). No significant
impact of treatment on muscle SFA content was observed.

FIGURE 2 Effects of 10 wk of feeding diets providing EPA as EPA-

rich transgenic Camelina oil or EPA-rich fish oil relative to a control diet

on serum glucose (A) and lipids (B) in male C57BL/6J mice. Food

was removed for 16 h before blood sample collection. Values are

means 6 SEMs, n = 8. Labeled means without a common letter

differ, P , 0.05 (1-factor ANOVA followed by Tukey�s multiple-

comparison tests). C, control diet; COH, EPA-rich Camelina oil, high

dose; COL, EPA-rich Camelina oil, low dose; FOH, EPA-rich fish oil,

high dose; FOL, EPA-rich fish oil, low dose; HDL-C, HDL cholesterol;

TC, total cholesterol.

TABLE 1 Main FAs ($0.5 g/100 g FAs) in liver total lipids of male C57BL/6J mice after 10 wk of
feeding diets providing EPA as EPA-rich transgenic Camelina oil or EPA-rich fish oil relative to a control
diet1

Diet, g/100 g FAs

FAs C COL COH FOL FOH P 2

14:0 0.5 6 0.0 0.5 6 0.1 0.6 6 0.0 0.5 6 0.1 0.6 6 0.1 NS

16:0 22.2 6 0.3d 23.6 6 0.5c,d 25.7 6 0.4a,b 24.3 6 0.3b,c 26.4 6 0.7a ,0.001

16:1n–7 6.4 6 0.4 6.2 6 0.5 5.1 6 0.4 5.5 6 0.6 6.0 6 0.5 NS

18:0 5.9 6 0.4 5.5 6 0.5 6.3 6 0.5 7.2 6 0.7 5.7 6 0.4 NS

18:13 43.9 6 1.4a 36.9 6 1.1b 26.6 6 0.8c 35.4 6 1.5b 33.2 6 0.7b ,0.001

18:2n–6 6.6 6 0.4d 9.2 6 0.4b,c 13.4 6 0.4a 7.8 6 0.3c,d 9.4 6 0.4b ,0.001

18:3n–3 0.0 6 0.0c 0.2 6 0.0b 1.2 6 0.1a 0.0 6 0.0c 0.1 6 0.0b ,0.001

20:1n–9 0.7 6 0.1a 0.2 6 0.1b 0.4 6 0.1a,b 0.2 6 0.1b 0.1 6 0.0b ,0.001

20:2n–6 1.2 6 0.1a 0.6 6 0.0c 0.3 6 0.0d 0.8 6 0.1b 0.1 6 0.0e ,0.001

20:3n–6 0.7 6 0.1a 0.7 6 0.1a 0.5 6 0.0a 0.8 6 0.1a 0.3 6 0.0b ,0.001

20:4n–6 8.2 6 0.7a 7.5 6 0.0a 6.4 6 0.5a 8.8 6 0.8a 2.8 6 0.2b ,0.001

20:5n–3 0.0 6 0.0d 0.4 6 0.0b 2.9 6 0.1a 0.2 6 0.0c 3.6 6 0.2a ,0.001

24:1 0.1 6 0.0c 0.4 6 0.0b 1.6 6 0.3a 0.3 6 0.0b 1.3 6 0.3a,b 0.001

22:6n–3 2.4 6 0.1b 7.2 6 0.8a 7.7 6 0.6a 7.2 6 0.6a 9.5 6 0.5a ,0.001

Total n–3 PUFAs 2.8 6 0.2c 8.0 6 0.8b 12.2 6 0.7a 7.7 6 0.6b 13.4 6 0.7a ,0.001

Total n–6 PUFAs 17.0 6 1.0b 18.3 6 0.9a,b 20.9 6 0.6a 18.5 6 0.9a,b 12.7 6 0.5c ,0.001

n–3 to n–6 PUFA ratio 0.2 6 0.0d 0.4 6 0.0c 0.6 6 0.0b 0.4 6 0.0c 1.0 6 0.0a ,0.001

1 Values are means 6 SEMs, n = 8. Totals include some minor components not shown. Labeled means in a row without a common letter

differ, P , 0.05. C, control; COH, EPA-rich Camelina oil, high dose; COL, EPA-rich Camelina oil, low dose; FOH, EPA-rich fish oil, high dose;

FOL, EPA-rich fish oil, low dose.
2 Derived by using 1-factor ANOVA followed by Tukey�s multiple-comparison tests.
3 Contains n–9 and n–7 isomers.
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Gene expression. There were no significant differences in the
expression of Elovl2 and Elovl5 between treatments. Relative to
the C group, the expression of Fads1 was significantly lower in
the COH and FOH groups (P = 0.015), with COL and COH

feeding resulting in higher Fads2 expression (P = 0.045) (Figure
3A).

No significant impact of treatment on Lxra and Srebp1c gene
expression was observed (Figure 3B). A significant impact of diet

TABLE 2 Main FAs ($0.5 g/100 g FAs) in brain total lipids of male C57BL/6J mice after 10 wk of
feeding diets providing EPA as EPA-rich transgenic Camelina oil or EPA-rich fish oil relative to a control
diet1

Diet, g/100 g FAs

FAs C COL COH FOL FOH P 2

16:0 20.2 6 0.1 20.0 6 0.4 19.9 6 0.3 20.6 6 0.2 20.8 6 0.1 NS

16:1n–7 0.6 6 0.0 0.7 6 0.0 0.7 6 0.0 0.7 6 0.0 0.7 6 0.0 NS

18:0 20.8 6 0.2 20.1 6 0.6 20.6 6 0.2 20.8 6 0.2 21.0 6 0.2 NS

18:13 24.1 6 0.5 23.8 6 0.5 23.9 6 0.3 24.5 6 0.3 24.5 6 0.6 NS

18:2n–6 0.3 6 0.0b 0.5 6 0.0a 0.5 6 0.0a 0.5 6 0.0a 0.3 6 0.1a,b 0.043

18:4n–3 0.7 6 0.1 0.4 6 0.0 0.5 6 0.0 0.9 6 0.2 0.8 6 0.2 NS

20:1n–9 2.6 6 0.2a 1.9 6 0.3a 1.2 6 0.4a,b 0.5 6 0.0b 0.5 6 0.0b 0.002

20:3n–6 0.4 6 0.0b 0.5 6 0.0a 0.5 6 0.0a 0.5 6 0.0a 0.5 6 0.0a ,0.001

20:4n–6 9.7 6 0.1a 9.6 6 0.1a 8.9 6 0.2a 9.3 6 0.1a 7.2 6 0.2b ,0.001

20:4n–3 0.3 6 0.0 0.4 6 0.0 0.4 6 0.0 0.4 6 0.0 0.4 6 0.0 NS

20:5n–3 0.2 6 0.0 0.2 6 0.0 0.2 6 0.0 0.2 6 0.0 0.2 6 0.0 NS

22:5n–3 2.2 6 0.1a 2.2 6 0.0a 2.2 6 0.0a 2.2 6 0.2a,b 1.8 6 0.0b 0.019

24:1 0.1 6 0.0c 0.3 6 0.0b 0.7 6 0.0a 0.1 6 0.0b,c 0.8 6 0.0a ,0.001

22:6n–3 15.2 6 0.3b 16.8 6 0.6a,b 16.4 6 0.2a,b 16.4 6 0.2a,b 17.7 6 0.2a 0.006

Total n–3 PUFAs 18.7 6 0.2b 20.0 6 0.6a,b 19.7 6 0.2a,b 20.1 6 0.3a,b 20.8 6 0.2a 0.004

Total n–6 PUFAs 11.0 6 0.1a 11.0 6 0.2a 10.1 6 0.2b 10.8 6 0.1a,b 8.4 6 0.2c ,0.001

n–3 to n–6 PUFA ratio 1.7 6 0.0c 1.8 6 0.0b,c 2.0 6 0.0b 1.9 6 0.0b,c 2.5 6 0.1a ,0.001

1 Values are means 6 SEMs, n = 8. Totals include some minor components not shown. Labeled means in a row without a common letter

differ, P , 0.05. C, control; COH, EPA-rich Camelina oil, high dose; COL, EPA-rich Camelina oil, low dose; FOH, EPA-rich fish oil, high dose;

FOL, EPA-rich fish oil, low dose.
2 Derived by using 1-factor ANOVA followed by Tukey�s multiple-comparison tests.
3 Contains n–9 and n–7 isomers.

TABLE 3 Main FAs ($0.5 g/100 g FAs) in muscle total lipids of male C57BL/6J mice after 10 wk of
feeding diets providing EPA as EPA-rich transgenic Camelina oil or EPA-rich fish oil relative to a control
diet1

Diet, g/100 g FAs

FAs C COL COH FOL FOH P 2

14:0 1.1 6 0.1b 1.2 6 0.0a,b 1.4 6 0.0a 1.3 6 0. 0a,b 1.4 6 0.0a 0.010

16:0 22.9 6 0.2 23.8 6 0.2 24.3 6 0.8 23.9 6 0.7 24.2 6 0.3 NS

16:1n–7 8.3 6 0.9 11.3 6 0.8 10.1 6 1.1 9.0 6 1.0 11.0 6 1.2 NS

18:0 6.4 6 0.6 5.3 6 0.4 5.6 6 0.8 6.6 6 1.1 4.1 6 0.5 NS

18:13 41.3 6 1.2a 36.7 6 1.3a,b 30.9 6 2.0b 38.6 6 2.8a,b 41.4 6 1.7a 0.017

18:2n–6 6.6 6 0.3 7.0 6 0.3 9.5 6 0.8 7.0 6 0.2 7.0 6 0.4 NS

20:1n–9 0.8 6 0.1 0.6 6 0.0 1.3 6 0.2 0.7 6 0.0 0.8 6 0.1 NS

20:2n–6 0.8 6 0.1a 0.4 6 0.0b 0.4 6 0.0b 0.5 6 0.1a,b,c 0.1 6 0.0c 0.002

20:3n–6 0.9 6 0.1a 0.8 6 0.1a 0.7 6 0.1a,b 0.7 6 0.1a,b 0.2 6 0.0b 0.013

20:4n–6 5.4 6 0.7a 4.6 6 0.4a 3.0 6 0.5a,b 4.1 6 0.7a 1.0 6 0.2b 0.002

22:1n–9 0.0 6 0.0b 0.1 6 0.0b 0.6 6 0.0a 0.1 6 0.0b 0.5 6 0.0a 0.000

24:1 0.4 6 0.0b 1.1 6 0.1a 3.0 6 0.5a 0.9 6 0.2a,b 1.6 6 0.3a,b 0.001

22:6n–3 4.0 6 1.4 6.3 6 0.8 6.5 6 1.2 5.7 6 1.2 6.0 6 1.0 NS

Total n–3 PUFAs 4.5 6 0.3 6.6 6 0.8 8.9 6 1.1 6.0 6 1.2 6.4 6 1.0 NS

Total n–6 PUFAs 14.0 6 1.0a 13.0 6 0.8a 13.7 6 0.4a 12.6 6 0.8a,b 8.4 6 0.3b 0.016

n–3 to n–6 PUFA ratio 0.3 6 0.0b 0.5 6 0.0a,b 0.7 6 0.1a,b 0.5 6 0.1a,b 0.8 6 0.1a 0.037

1 Values are means 6 SEMs, n = 8. Totals include some minor components not shown. Labeled means in a row without a common letter

differ, P , 0.05. C, control; COH, EPA-rich Camelina oil, high dose; COL, EPA-rich Camelina oil, low dose; FOH, EPA-rich fish oil, high dose;

FOL, EPA-rich fish oil, low dose.
2 Derived by using 1-factor ANOVA followed by Tukey�s multiple-comparison tests.
3 Contains n–9 and n–7 isomers.
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on Ppara (P = 0.04) and Pparg (P = 0.013) expression was
observed, with higher expression for the COL compared with
the C diet for Ppara and the COH compared with the C diet for
Pparg.

Discussion

Although the impact of EPA and DHA on overall mortality and
the incidence and risk of a number of chronic diseases are well
recognized (43), the supply of EPA and DHA is limited, and
there is a great need to identify alternative and sustainable
sources of these beneficial FAs. Given the technological and
nutritional limitations associated with alternative sources under
investigation (microalgae, zooplankton, SDA-rich oils, etc.),
transgenic oilseed crops currently present the most effective
solution for the large-scale production of these n–3 LC-PU-
FAs (14). Here we show for the first time, to our knowledge, that
EPA-rich CO (20% total FAs as EPA), when used as a dietary
supplement in mice and providing doses physiologically relevant
to humans, is a bioavailable source of EPA, resulting in compa-
rable enrichment of EPA in the liver.

The oils were well tolerated, with no deaths during the study,
and the mice were in apparent good health. Previous studies in
C57BL/6J mice have shown that the inclusion of FO in the diet is
accompanied by weight loss (44, 45). However, in the present
study, higher EPA-rich CO and FO intakes (COH and FOH), as
part of a 10% of energy from fat diet, were associated with body
weight gain, and no differences were observed in liver weight.
These findings are more consistent with previous studies in
which FO was fed to mice (46, 47) and rats (48) as part of low-
fat regimes, which showed no major differences in body and
liver weight.

In the present study, and independent of oil source, n–3
LC-PUFA supplementation decreased fasting glucose concentra-
tions in a dose-dependent manner. These observations are in line

with previous rodent studies (49), but in humans FO supple-
mentation has not consistently affected glucose concentrations
(50–53). With regard to serum lipids, feeding mice CO and FO
did not modify TC, HDL-cholesterol, or TG concentrations. The
TG-lowering effect of FOs in both normolipidemic and hyper-
triglyceridemic individuals is well documented (54, 55). In
contrast and similar to our results, no differences in plasma TGs
or TC have been reported previously in mice fed low doses of FO
as part of low-fat treatments (56). Significant differences in
lipoprotein profiles and metabolism between rodents and
humans are likely to explain, in large part, the interspecies
differences in responsiveness of serum lipids to EPA and DHA
supplementation.

The effect of regiospecificity of dietary TG bioavailability has
been previously studied (29, 30), indicating a preferential
absorption of FAs when present at the TG sn-2 position.
Moreover, FO functional characteristics seem to be related to the
positional distribution of EPA and DHA on TGs (29, 57). For
example, in a recent study in C57BL/6J mice by Yoshinaga et al.
(29), DHA in the sn-2 position was associated with greater liver
DHA accumulation and serum and liver TG lowering, whereas
EPA in the sn-1 and -3 positions had a greater impact on
lowering hepatic cholesterol concentrations. In the present
study, regiospecific analysis showed similar proportions of
EPA in the sn-2 position of TGs in the CO and FO. This is
consistent with the uniform response of serum lipids and
tissue EPA concentrations reported in mice fed the FO- and
CO-based diets.

Our results showed that the EPA-rich CO was as efficient as
FO at enriching liver EPA in a dose-dependent manner. Many
rodent studies reported increases in hepatic EPA and DHA after
FO supplementation, with the enrichment being variable and
dependent on the EPA+DHA dose, the EPA to DHA ratio, and
the overall composition of the diets (48, 58, 59). Increases in
EPA, observed after COH and FOH feeding, were comparable

FIGURE 3 Expression measured by qPCR of long-chain PUFA biosynthesis pathway genes (A) and transcription factor genes (B) in livers of

male C57BL/6J mice after 10 wk of feeding diets providing EPA as EPA-rich transgenic Camelina oil or EPA-rich fish oil relative to a control diet.

Values are normalized expression ratios (means 6 SEMs; n = 6) relative to the mean expression in mice fed the control diet. Statistical

differences were determined by a randomization test (REST). Labeled means without a common letter differ, P , 0.05. C, control diet; COH,

EPA-rich Camelina oil, high dose; COL, EPA-rich Camelina oil, low dose; Elovl2, elongation of very-long-chain FA 2; Elovl5, elongation of very-long-

chain FA 5; Fads1, FA desaturase 1; Fads2, FA desaturase 2; FOH, EPA-rich fish oil, high dose; FOL, EPA-rich fish oil, low dose; Lxra, liver X

receptor a; Ppara, peroxisome proliferator–activated receptor a; Pparg, peroxisome proliferator–activated receptor g; Srebp1c, sterol regulatory

element-binding protein 1c.
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to those reported for the phospholipid fraction of liver from
mice fed an FO providing comparable EPA intakes (59).

Previously, dietary EPA, although significantly elevating
hepatic and circulating EPA in mice, had only modest effects
on DHA accumulation (60). Consistent with these results, the
Japan EPA Intervention Study (JELIS) showed that feeding 1.8 g
EPA/d had little impact on plasma DHA concentrations in
humans (61). In the present study, CO and FO feeding translated
into comparable concentrations of liver DHA, with no dose-
response evident, showing de novo synthesis in mice that
received little (FOL) or no (COL, COH) DHA. The accumula-
tion of DHA in mice fed the EPA-CO can be explained by the
high amounts of ALA present in the COL and COH diets, which
is characteristic of the CO, and the higher Fads2 expression
observed in the CO groups. This enzyme is responsible for the
first and last desaturation steps required to synthesize DHA from
ALA (62), and its expression has been shown to be upregulated
in the livers of n–3 PUFA–deprived rats (63) and downregulated
after feeding n–3 LC-PUFAs (31).

Feeding EPA and DHA in both rodent and human studies
resulted in a marked increase in n–3 LC-PUFAs in tissues at the
expense of n–6 FAs (64). Similar to previous studies (60), we also
observed that dietary DHA, more than EPA, lowered hepatic AA
content, which may be partly due to the downregulation of
Fads1 expression observed, which is involved in AA synthesis
from LA. Because elongases are also essential in the biosynthesis
of LC-PUFAs, we analyzed the effect of CO and FO on the
hepatic expression of Elovl2 and Elovl5, and no impact of
treatment on their expression was evident. Previously, feeding
FO had no effect on Elovl2 mRNA abundance, but a down-
regulation on Elovl5 mRNA levels has been observed (65, 66).

At the transcription level, both desaturases are regulated by
the transcription factors Ppara and Srebp1 (67). Ppara is a
ligand-activated transcriptional factor central to lipid homeo-
stasis and which is influenced by FA status (31, 65, 66). Previous
studies have shown that Ppara activation is increased by n–3 and
n–6 PUFAs (68), and this activation led to increased expression
of FA oxidation genes, which resulted in decreased hepatic and
plasma TGs (69). In the present study, consistent with these
observations, there was a general trend toward increased Ppara
and Pparg after CO and FO feeding, with the etiologic basis of
the greatest expression after COL currently unknown.

Srebp1c is a major transcriptional factor that regulates
enzymes involved in FA and TG synthesis (67). Liver Srebp1c
expression has been shown to be downregulated in C57BL/6J
mice fed FO as part of both high-fat (70) and low-fat (67)
regimes. The present results showed no changes in hepatic
Srebp1c mRNA levels after EPA administration, which was con-
sistent with some previous research in which mRNA expression
levels of Srebp1c in mice remained unchanged after EPA ethyl
ester treatment, although changes in Srebp1c mature protein con-
centrations were evident (64). Lxra represents a further molecular
target of dietary PUFAs, which regulates lipogenic gene expression
either directly or via regulation of transcription of the Srebp1c
gene (71). In the present study, no significant differences were
found in Lxra, which could explain, at least in part, the lack of
impact of intervention on Srebp1c.

No impact of treatment on brain EPA concentrations was
observed, with EPA constituting 0.2% of the FA pool across all
groups. This finding is consistent with previous observations, in
which, despite comparable potential for transfer across the
blood-brain barrier to DHA, EPA represented only a minor
component of brain membranes, with supplementation failing to
result in EPA enrichment (72). Although some increases in brain

DHAwere observed, total n–3 PUFAs and the n–3 to n–6 ratiowere
similar between treatments and less pronounced than in liver.

In contrast to the liver, skeletal muscle EPA concentrations
were constitutively low and supplementation with CO and
FO had no significant effect on n–3 LC-PUFAs or total n–3
concentrations. Several studies have corroborated that the
accumulation of n–3 PUFAs is tissue-dependent (62). The
skeletal muscle is mainly involved in lipid oxidation to produce
chemical energy. This may explain why DHA is the only n–3
PUFA that accumulates in this tissue given that it has the longest
acyl chain length and the highest degree of unsaturation, which
can lead to steroisomeric-induced resistance to b-oxidation (73).

In conclusion, EPA from oil derived from genetically mod-
ified Camelina had comparable effects on liver EPA status,
relative to equivalent doses derived from FO. These data could
help support any future licensing of this EPA-rich CO for
consumption in randomized controlled trials to allow its
establishment as a bioavailable and efficacious alternative
sustainable source of EPA in humans.
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