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ABSTRACT 38 

Functional traits provide insight into a variety of ecological questions, yet the optimal 39 

sampling method to estimate the community-level distribution of plant functional trait values 40 

remains a subject of debate, especially in species-rich forests. We present a simulation analysis 41 

of the trait distribution of a set of nine completely sampled permanent plots in the lowland rain 42 

forests of French Guiana. Increased sampling intensity consistently improved accuracy in 43 

estimating community-weighted means and variances of functional trait values, whereas there 44 

was substantial variation among functional traits, and minor differences among sampling 45 

strategies. Thus, investment in intensified sampling yields a greater improvement in the accuracy 46 

of estimation than does an equivalent investment in sampling design complication. Notably, 47 

‘taxon-free’ strategies frequently had greater accuracy than did abundance-based strategies, 48 

which had the additional cost of requiring botanical surveys. We conclude that there is no 49 

substitute for extensive field sampling to accurately characterize the distribution of functional 50 

trait values in species-rich forests. 51 

 52 

 53 
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INTRODUCTION 54 

Functional traits impact plant fitness via their effects on recruitment, growth, 55 

reproduction and survival (Lavorel & Garnier 2002; Violle et al. 2007). Scaling from functional 56 

traits measured on individuals up to community-level distributions of trait values has provided 57 

insight into a variety of issues surrounding community assembly and ecosystem processes 58 

(McGill et al. 2006). Traits have been particularly useful in species-rich forests where the rarity 59 

of many species has stymied efforts to characterize their niche requirements (Baraloto, Paine, 60 

Poorter, et al. 2010; Fortunel et al. 2013). Standardized protocols for the measurement of 61 

functional traits and intensive efforts to compile trait data have fuelled explosive growth of 62 

functional trait databases (Kattge et al. 2011; Pérez-Harguindeguy et al. 2013), which in turn, 63 

support the development of trait-based dynamic global vegetation models (Scheiter, Langan, & 64 

Higgins 2013). 65 

An investigator’s choice of sampling strategy can have a major influence on the 66 

inferences he or she makes regarding the strength and extent of ecological processes. For 67 

example, common sampling designs for coring of trees can systematically bias estimations of 68 

forest growth and productivity (Nehrbass-Ahles et al. 2014). The increasing use of functional 69 

traits in plant ecology spurred Baraloto et al. (2010a) to assess trait-sampling strategies in 70 

species-rich forests. After measuring the traits on every individual tree in nine 1-ha plots of 71 

lowland tropical rain forest, they simulated performing four sampling strategies over a gradient 72 

of sampling intensity. Their study, however, suffered from a number of defects, which we 73 

remedy in the current contribution. First, their analysis did not assess interactions between 74 

strategy and intensity. Second, Baraloto et al. (2010a) classified the results of their simulations 75 

into successes and failures using an arbitrary criterion, then analysed these binomally-distributed 76 



Paine et al.  Optimal trait-sampling strategies 30 Oct 2015 

 Page 5 of 20 

variables as though they followed Gaussian distributions. Third, their analysis did not take into 77 

account variation among sites. Finally, Baraloto et al. (2010a) examined sampling strategies 78 

based on species abundance only in passing, although such strategies are widely used in 79 

functional trait studies in extra-tropical ecosystems (Conti & Díaz 2013; Fisichelli, Frelich, & 80 

Reich 2014; Lavorel et al. 2008; Pakeman & Quested 2007). This paper updates Baraloto et al. 81 

(2010a) with an expanded and refined response to the question: What sampling strategy yields 82 

the most accurate characterization of community-level trait distributions in species-rich forest 83 

communities? 84 

We expand upon Baraloto et al. (2010a) by evaluating the interacting effects of sampling 85 

strategy, sampling intensity, and functional trait identity on the probability of accurately 86 

characterizing the community-level distribution of functional trait values. We characterize the 87 

distribution of trait values in terms of its mean and variance (Díaz et al. 2007; Violle et al. 2007). 88 

First, we obtain the true community-level distributions by assessing the trait values of every 89 

individual tree (Baraloto et al. 2010). Then, in simulation, we estimate the mean and variance of 90 

functional traits that result from applying each sampling strategy over a range of sampling 91 

intensities. We compare these estimates with the true values to determine the accuracy of 92 

estimation for every combination of strategy, intensity and trait. We include sampling strategies 93 

in which individuals are selected based upon their regional or local stem density or basal area, as 94 

measures of abundance, and we analyse their accuracy using mixed-effect models.  95 

 96 

METHODS 97 

We sampled functional traits on 4672 individual trees representing 668 species in nine 1-98 

ha plots of lowland rain forest in French Guiana between November 2007 and September 2009 99 
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(Baraloto, Paine, Patiño, et al. 2010). In each plot, all trees >10 cm diameter at breast height 100 

(d.b.h.) were mapped, measured for d.b.h. and climbed to obtain a branch for leaf samples. For 101 

the current study, we used the same 10 functional traits as analysed by Baraloto et al. (2010a). 102 

The eight leaf traits are correlated with the global leaf economics spectrum (Díaz et al. 2004; 103 

Wright et al. 2004): chlorophyll content, concentrations of 13C, N and 15N, C:N ratio, thickness, 104 

toughness and specific leaf area (SLA), one is associated with the global wood economics 105 

spectrum (Chave et al. 2009): bole density, and one is of uncertain affinities (Baraloto, Paine, 106 

Poorter, et al. 2010): laminar surface area. The methods of trait sampling in the field and 107 

subsequent laboratory analysis are detailed in Baraloto et al. (2010a). 108 

We investigated the accuracy of 12 plot-based strategies. Three are based on abundance 109 

estimated as basal area, three are based on abundance estimated as number of stems, three are 110 

‘taxon-free’ (sensu Lavorel et al. 2008), and the final three have varying motivations. The 111 

strategies vary widely in the amount of field data required prior to trait sampling, and each 112 

emphasizes different aspects of the tree community (Table 1). Most strategies were included 113 

because they have recently been used in published studies. The BA REGION and BA LOCAL 114 

strategies sample individuals on the basis of the basal area of their conspecifics in the region or 115 

local plot, respectively. BA INDIVIDUAL, on the other hand, samples individuals on the basis 116 

of their own basal area. It, therefore, tends to sample very large individuals. As such, BA 117 

REGION requires botanical inventories and d.b.h. measurements from multiple plots, whereas 118 

BA LOCAL and BA INDIVIDUAL require botanical inventories and d.b.h. measurements from 119 

a single local plot. Variants of these strategies have been applied in non-tropical communities 120 

(Conti & Díaz 2013; Fisichelli et al. 2014; Lavorel et al. 2008; Pakeman & Quested 2007). The 121 

commonness strategies (COMMON REGION and COMMON LOCAL) are similar, but are 122 
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based on stem density in the region or in the local plot, and require either regional or local 123 

botanical inventories, respectively. The SPECIES strategy flips COMMON LOCAL on its head, 124 

and weights species inversely by their local abundance, thus emphasizing relatively rare species.  125 

The three taxon-free strategies require no botanical determinations. In CLUMP, three 126 

random spatial locations within the plot are selected, and trees were selected based on their 127 

proximity to these foci. A variant of CLUMP has been used by the RAINFOR project (Patiño et 128 

al. 2009). The SIZE strategy stratifies the tree community into five equally spaced size-classes 129 

based on d.b.h, from which individuals were drawn at random (Poorter, Bongers, & Bongers 130 

2006). In RANDOM, individual trees are randomly selected from the plot. Although we have not 131 

seen this strategy used in the literature, it provides a basis for comparison with other more 132 

complicated strategies. 133 

The final three strategies are more idiosyncratic. The ONE PER SP strategy samples a 134 

single individual from each species in each plot. Trait values for all individuals of each species in 135 

the plot are then set equal to the conspecifics of the sampled individuals (Kraft, Valencia, & 136 

Ackerly 2008). This strategy requires a full botanical inventory prior to sampling. The 137 

DATABASE strategy samples one individual per species from the region and applies that 138 

individual’s trait values to all conspecifics (Paine et al. 2012; ter Steege et al. 2006). Note that 139 

our implementation of the DATABASE strategy may overestimate its accuracy, because the trait 140 

values we use come from a regional data base including only the plots under consideration, 141 

rather than from other regions, and because species–trait combinations for which no data were 142 

available were left as missing data, rather than being replaced with genus- or family level means 143 

(Baraloto, Paine, Patiño, et al. 2010). Finally, the basis of comparison for all sampling strategies 144 

was the BRIDGE strategy, in which every individual in the plot is sampled (Baraloto et al. 2012). 145 
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We simulated each strategy 500 times in each of the nine plots in the BRIDGE network. 146 

Sampling strategies, except those for which sampling intensity does not vary (BRIDGE, 147 

DATABASE and ONE PER SP), were executed over a gradient of sampling intensity (1, 2, 3, 5, 148 

10, 20, 30, 40 and 50% of individuals sampled per plot). Sampling intensities greater than 50% 149 

are impractical as they require essentially as much work as does 100% (BRIDGE) sampling. In 150 

contrast to Baraloto et al. (2010a), the sampling of individuals was probabilistic. Thus, in 151 

RANDOM, all individuals in a plot had an equivalent probability of being sampled (equal 152 

weights for all individuals), whereas unequal weights were used in all other strategies. In BA 153 

REGION, for example, an individual’s probability of being sampled was proportional to the BA 154 

of its conspecifics in the region (Table 1).  155 

We assessed the performance of each sampling strategy, sampling intensity and trait as 156 

the accuracy in recovering the true mean and variance of trait values. Baraloto et al. (2010), 157 

considered resampling events as successes (or failures) with respect to an arbitrary threshold. We, 158 

in contrast, define accuracy as the absolute value of the per cent difference between the trait 159 

values estimated in each re-sampling event to those derived from BRIDGE sampling. We 160 

analysed the performance of each of the nine strategies for which intensity was varied using a 161 

linear mixed-effect model. Accuracy values were log-transformed for analysis to improve the 162 

normality of residuals, and back-transformed for presentation. Tests of significance are irrelevant 163 

in the analysis of simulation output. Rather, our primary interest was to assess the relative 164 

importance of variation among sampling strategies, functional traits, and sampling intensity in 165 

determining the accuracy of estimation of the mean and variance in trait values. Thus, we 166 

modelled the log-transformed accuracy of estimation as a normally distributed variable based on 167 

the three-way interaction of sampling intensity, strategy and trait. Plots were included as a 168 
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random effect. We calculated the percentage of variance in the accuracy of estimations explained 169 

by sampling strategy, intensity and trait identity using the method of Nakagawa and Schielzeth 170 

(2013). Simulations and mixed-effect models were implemented in R 3.1.1 (R Core 171 

Development Team 2014) using the lme4 package (Bates et al. 2014). The R script used to 172 

conduct the simulations is available as Appendix S1 in Supporting Information.  173 

 174 

RESULTS 175 

Sampling intensity, sampling strategy, and the trait under consideration affected the 176 

probability of accurately estimating the true mean and variance in functional trait values (Fig. 1). 177 

Executed at low sampling intensities, all strategies yielded inaccurate estimates of trait means 178 

and variances, but increased intensity consistently increased the accuracy of estimation. Over a 179 

broad range of sampling intensity, the taxon-free strategies of CLUMP, SIZE and RANDOM 180 

had consistently superior performance in estimating both the mean and variance of most traits. 181 

Contrastingly, the strategies based upon basal area or commonness, whether assessed locally or 182 

regionally, performed less well. In general, performing botanical inventories prior to trait 183 

sampling did not improve the accuracy of estimating the mean or, especially, the variance in trait 184 

values. The error in estimates of the trait variances exceeded that of trait means by an order of 185 

magnitude, on average. Despite sampling of every species, and approximately one-third of the 186 

individuals in a plot, the ONE PER SP strategy performed no better than sampling an equivalent 187 

number of randomly selected individuals. Notably, the DATABASE strategy estimated means 188 

and variances approximately as well as field-based sampling strategies that were executed at 189 

10% sampling intensity. There was considerable variation among traits in the probability of 190 

correctly estimating their mean and variance, as certain traits were recalcitrant to intensified 191 
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sampling. Accurate estimates of mean leaf toughness and 15N were achieved only rarely, 192 

regardless of the sampling intensity or strategy employed.  193 

We partitioned the variance in the accuracy of estimating means and variances of 194 

functional trait values to determine the relative importance of sampling strategy, sampling 195 

intensity and trait identity (Fig. 2). The most important determinants of accurately estimating the 196 

mean and variance in trait values were the trait under investigation and sampling intensity, 197 

respectively. Sampling strategy, in contrast, was far less important in determining the accuracy 198 

of estimation. Interactions among sampling intensity, strategy, and trait were weak, implying that 199 

increasing sampling intensity increases the probability of accurate estimation for all traits and 200 

strategies, not only some. Similarly, sampling strategies performed equivalently well (or poorly) 201 

in estimating mean and variance for all traits. Finally, sampling strategy, intensity and trait 202 

together jointly explained more variance in the accuracy of estimation for means, whereas the 203 

percentage of variance that remained unexplained was greater for trait variance.  204 

 205 

DISCUSSION 206 

Investment in sampling strategy and sampling intensity 207 

By assessing the interactions between sampling strategy, sampling intensity and trait identity, we 208 

dissected the relative contributions of each to the accurate estimation of trait distributions. 209 

Overall, sampling intensity was the single best predictor of accuracy in the estimation of the 210 

mean and variance of trait values (Fig. 2). Statistical interactions with trait identity and sampling 211 

strategy were weak, indicating that more-intense sampling consistently yielded more accurate 212 

estimations. Moreover, sampling intensity explained far more variance in the probability of 213 

accurate estimation than did sampling strategy, indicating that an investment in sampling 214 
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intensity would yield a greater improvement in the accuracy of estimation than would an 215 

equivalent investment in a complicated sampling design. Sampling intensity was an especially 216 

strong predictor of the variance in trait values (Fig. 2). In other words, intense sampling is 217 

essential for accurately estimating trait variance. It is not possible to advocate a minimal 218 

intensity of trait sampling for all trait-based studies, however, as their tolerance of inaccuracy in 219 

functional trait estimation will vary, depending on their objectives. Nevertheless, sampling just 220 

10% of individuals is likely to yield sufficiently small estimation errors in most cases.  221 

Traits varied widely in terms of the accuracy at which their distributions could be 222 

estimated. Means and variances for some, such as foliar thickness and 13C, were accurately 223 

estimated by sampling relatively few individuals. Others, including foliar toughness and 15N, 224 

defied accurate estimation. Accordingly, trait identity affected the accuracy of estimation of trait 225 

means (Fig. 2). Interestingly, among-trait variation was much less in the estimation of trait 226 

variance. Similar variation among traits has been reported for temperate herbaceous communities 227 

(Pakeman & Quested 2007, Lavorel et al. 2008). The reasons behind this variation among traits 228 

remain unclear. One possibility is that leaf toughness and 15N are more sensitive than other 229 

traits we analysed to extrinsic sources of error, which affect their measurement, and thereby 230 

complicate efforts to estimate their distributions. Variation in soil isotopic signatures can cause 231 

substantial variation in 15N (Nardoto et al. 2014), whereas leaf toughness, in this study, was 232 

prone to measurement error arising from variation in the distance of the punch test to veins in the 233 

leaf blade (Baraloto et al. 2010a). Though reducing sources of extrinsic variation may increase 234 

the accuracy of estimating trait values, we do not know why the sampling necessary to obtain 235 

accurate estimates varies among traits. 236 
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Taxon-free strategies have superior performance 237 

Our simulations indicate that simple, taxon-free, sampling strategies can often 238 

characterise community-level functional trait distributions more accurately than can more-239 

intricate strategies. Notably, strategies based on stem density or basal area of species, whether 240 

assessed locally or regionally, performed less well than did taxon-free sampling strategies for a 241 

given level of sampling intensity (Fig. 1). Abundance-based sampling also implies a greater 242 

commitment of resources to field sampling, because it must be preceded by local or regional 243 

botanical inventories (Table 1). The SIZE strategy, which entailed the random sampling of size-244 

stratified individuals, yielded the least-biased estimates of community-level trait distributions, 245 

with CLUMP and RANDOM running closely behind. These results are consistent with Baraloto 246 

et al. (2010a), though that study examined only one, slightly different, abundance-based strategy. 247 

They also agree with a recent examination of sampling designs for dendrochronology studies, in 248 

which random sampling yielded the least-biased estimates of tree growth and productivity 249 

(Nehrbass-Ahles et al. 2014).  250 

Therefore, we advocate the use of taxon-free sampling techniques for estimating 251 

community-level trait distributions in species-rich forests, though they have relatively poor 252 

performance in Alpine grasslands (Lavorel et al. 2008). As a practical matter, concentrating field 253 

sampling at a few spatial foci, as in CLUMP, is likely to simplify logistics, accounts for spatial 254 

variation in species composition, and may provide a minor improvement in accuracy over 255 

random sampling.  256 

What explains the poor performance of abundance-based strategies? In diverse 257 

ecosystems, such as those studied here, even the most common species represent a small 258 

proportion of individuals. For example, the most common tree species in the forests we studied, 259 
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Eschweilera coriacea (Lecythidaceae), represented only 3.4% of all observed individuals. 260 

Across our nine forests, the ten most-common species together represent only 20% of individuals. 261 

Contrastingly, at the scale of the Amazon basin, E. coriacea and 226 other ‘hyperdominants’ 262 

(1.4% of the approximately 16,000 species of Neotropical trees), represent 50% of all individual 263 

trees. Their broad-scale dominance is attributable to their wide spatial ranges, however, rather 264 

than to numerical abundance at local sites (ter Steege et al. 2013). In less species-rich plant 265 

communities, or those with a less-equitable distribution of individuals among species, 266 

abundance-based sampling strategies may be more appropriate. The accuracy of abundance-267 

based sampling strategies would also be reduced if the most-common species did not have the 268 

most-typical trait values. This situation should be uncommon, because environmental filtering, 269 

which leads to the sorting of species along environmental gradients (Grime 2006), is strong in 270 

Neotropical forests (Kraft et al. 2008; Paine et al. 2011). In a recent study of French Guiana trees, 271 

species abundance was negatively correlated with the distinctiveness of trait values, as predicted 272 

by environmental filtering (Mouillot et al. 2013). Mouillot et al. found similar relationships for 273 

herbaceous plants in the Alps, and fish on coral reefs in the Pacific. Abundance-based trait 274 

sampling strategies therefore yield poor results in diverse ecosystems not because common 275 

species have atypical traits, but rather because even the common species in such species-rich 276 

ecosystems are represented by few individuals. They should be more accurate in ecosystems in 277 

which more individuals are concentrated among fewer species.  278 

We reiterate the caution sounded by Baraloto et al. (2010a) regarding the use of database-279 

derived trait values to estimate community-level trait distributions. They are tempting because 280 

the cost associated with extracting trait data from a database is minuscule, compared to that 281 

incurred through even low-intensity field work (Baraloto et al. 2010a). Moreover, global trait 282 
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databases such as TRY (Kattge et al. 2011) are essential for broad-scale comparative studies. At 283 

the relatively small scale of this study, however, the DATABASE strategy rarely yielded 284 

accurate estimations of means or variances. Sampling as few as 10% of individuals was typically 285 

sufficient to yield more accurate estimates that those obtained through DATABASE lookups. 286 

The ONE PER SP strategy (Kraft et al. 2008) yielded good performance in almost all cases (Fig. 287 

1). In diverse ecosystems, however, it could require sampling of half of all individuals (Pitman et 288 

al. 2001). We conclude that, despite the commitment of time and money required, there is no 289 

substitute for extensive field sampling to accurately characterize the distribution of trait values in 290 

species-rich forests.  291 
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TABLES 420 
Table 1 Trait sampling strategies investigated in this study. 421 

Type Name How are 

individuals 

sampled? 

Weighting* Requirement* Intensity 

Abundance-

based 

BA REGION Proportional to 

species basal area 

in the region 

Overweights species 

that are regionally 

common, widespread 

and large-statured 

Botanical 

inventories and 

d.b.h. from the 

region 

1-50% 

 BA LOCAL Proportional to 

species basal area 

in the local plot 

Overweights species 

that are locally common 

and large-statured 

Botanical 

inventory and 

d.b.h. from local 

plot  

1-50% 

 BA 

INDIVIDUAL 

Proportional to 

individual basal 

area 

Overweights species 

with large-statured 

individuals, regardless 

of abundance 

Botanical 

inventory and 

d.b.h. from local 

plot 

1-50% 

 COMMON 

REGION 

Proportional to 

regional 

abundance 

Overweights species 

that are common and 

widespread, regardless 

of stature 

Botanical 

inventories from 

the region 

1-50% 

 COMMON 

LOCAL 

Proportional to 

local abundance 

Overweights species 

that are locally 

common, regardless of 

stature or regional 

abundance 

Botanical 

inventory of 

local plot 

1-50% 

 SPECIES Inversely 

proportional to 

local abundance 

Overweights species 

that are locally rare 

Botanical 

inventory of 

local plot 

1-50% 

Taxon-free RANDOM Randomly Accurately reflects local 

species composition 

None 1-50% 

 SIZE  Stratify individuals 

by stature. Draw 

individuals 

randomly from 

strata 

Overweights species 

with large individuals 

d.b.h. from local 

plot, but no 

botanical 

inventory 

1-50% 

 CLUMP  Rank individuals 

by distance to 

three randomly 

located foci. Draw 

individuals based 

on their proximity 

to nearest focus.  

Accurately reflects local 

relative abundance. 

Accounts for 

geographic variation in 

species composition 

None 1-50% 

Special ONE PER SP  Draw one 

individual from the 

Overweights species 

that are locally rare 

Botanical 

inventory of 

~33% 
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plot to represent 

each species 

local plot 

 DATABASE  Draw one 

individual from the 

region to represent 

each species 

Overweights species 

that are locally rare 

Regional 

checklist of 

species 

100% 

 BRIDGE  Select all 

individuals 

Accurately reflects local 

species composition 

Botanical 

inventory of 

local plot 

100% 

Notes:  422 

 Weighting is defined with respect to drawing individuals at random.  423 

Requirement indicates field work required prior to trait sampling. 424 
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FIGURES 425 

Figure 1  426 

The probability of correctly estimating the community mean or variance in functional 427 

trait values increases with increasing sampling intensity and varies among sampling strategies 428 

and the trait under consideration. Lines show predictions from linear mixed-effect models, 429 

applied to simulation output. Larger values represent less-accurate estimates of the true mean and 430 

variance. Note that the X-axis is log-transformed. Results from the ONE PER SP, DATABASE 431 

and BRIDGE strategies are shown as points because they are only defined at a single sampling 432 

intensity (Table 1). Vertical arrows indicate that the estimation error of DATABASE and ONE 433 

PER SP exceed the plotted region for Leaf 15N. 434 

 435 

Figure 2  436 

The per cent variance in the probability of accurately estimating community mean and 437 

variance in trait values explained by sampling intensity (I), sampling strategy (S), the sampled 438 

trait (T) and their interactions. Note that the per cent variance explained by some interactions is 439 

so slight that their bars are scarcely visible.  440 


