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Highlights 1 

 The oxidative reactivity (OR) of size segregated PM was tested at a traffic site  2 

 Ultrafine and fine PM size fractions caused more DNA damage than coarse PM 3 

 PM exhibited more OR in comparison to manufactured carbon black  particles 4 

 Zn (and Fe) were implicated in the generation of reactive oxygen species in PM 5 

 Size, surface area and metals were important particle characteristics for OR 6 

 7 
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Abstract 1 

PM10 (particulate matter 10 microns or less in aerodynamic diameter) has consistently been 2 

linked with adverse human health effects, but the physicochemical properties responsible for 3 

this effect have not been fully elucidated. The aim of this work was to investigate the 4 

potential for carbon black (CB) particles and PM to generate ROS (Reactive Oxygen Species) 5 

and to identify the physicochemical properties of the particles responsible for in vitro 6 

oxidative reactivity (OR). PM10 was collected in 11 size fractions at a traffic site in Swansea, 7 

UK, using an Electrical Low Pressure Impactor (ELPI). The PM physicochemical properties 8 

(including size, morphology, type, and transition metals) were tested. The plasmid scission 9 

assay (PSA) was used for OR testing of all particles. The ultrafine and fine PM (N28-2399; 28 – 10 

2399 nm) caused more DNA damage than coarse PM (N2400-10,000), and the increased capacity 11 

of the smaller particles to exhibit enhanced  (OR) was statistically significant (p<0.05). The 12 

most bioreactive fraction of PM was N94-155 with a toxic dose (TD50; mass dose capable of 13 

generating 50% plasmid DNA damage) of 69 μg/ml. The mean TD35 was lower for PM than 14 

CB particles, indicating enhanced OR for PM. A difference between CB and PM in this study 15 

was the higher transition metal content of PM. Zn was the most abundant transition metal (by 16 

weight) in the ultrafine-fine PM fractions, and Fe in the fine-coarse PM. Through this 17 

comparison, part of the observed increased PM OR was attributed to Zn (and Fe). In this 18 

study PM-derived DNA damage was dependent upon; 1) particle size, 2) surface area, and 2) 19 

transition metals. This study supports the view that ROS formation by PM10 is related to 20 

physicochemistry using evidence with an increased particle size resolution.   21 

 22 

Key Words: Oxidative reactivity, DNA damage, ELPI, PM10, plasmid scission assay (PSA)23 
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1 Introduction 1 

Through respiration, the lung is exposed to a variety of xenobiotics. There is now a well 2 

established link between air pollution and associated adverse health impacts (e.g. Stone et al., 3 

2007; Chuang et al., 2013), especially for those in susceptible groups e.g. children, the elderly 4 

and those with pre-existing conditions e.g. asthma. Of particular current concern is ambient 5 

PM10; particulate matter 10 μm and below. These particles are suspended in the atmosphere 6 

and can be both naturally, e.g. crustal, volcanic, and biological, and anthropogenically, e.g. 7 

traffic and industrially produced (Jones and BéruBé, 2011; Brown et al., 2011). In urban 8 

areas PM10 is a heterogeneous “cocktail” of particle types, morphologies, chemistries, and 9 

sizes, constantly changing in response to factors including meteorological conditions, season, 10 

and geographical location (e.g. Gu et al., 2013; Moreno et al., 2013).  11 

 12 

The oxidative capacity of inhaled particles is strongly implicated as a cause of PM10 mediated 13 

harmful health effects (Ayres et al., 2008; Montiel-Dávalos et al., 2010; Mehta et al., 2013). 14 

Oxidative stress is initiated when there is imbalance between oxidants and antioxidants, 15 

caused either by an increase in oxidants or a decrease in antioxidants (Chuang et al., 2012). It 16 

disrupts the normal functioning of cellular macromolecules, such as lipids, proteins and 17 

DNA, and has been linked with respiratory and cardiovascular diseases, pancreatitis and 18 

cancer (e.g. Stone et al., 2007; Chuang et al., 2013). The Plasmid Scission Assay (PSA) is a 19 

well-established technique for assessing the oxidative capacity, i.e. reactive oxygen species 20 

(ROS) - generating capabilities of PM (Lingard et al., 2005; Moreno et al., 2004; Miller et al., 21 

2012). The generation of ROS by particles has been proposed to result from Fenton-type 22 

reactions (reactions between Fe2+ and hydrogen peroxide (H2O2), which forms the highly 23 

reactive hydroxyl radical; ●OH) catalysed by transition metals, including Fe, V, Cr, Co, Ni, 24 

Cu, Zn and Ti. Alternatively ROS may arise from direct generation on the particle surface, 25 
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which is particularly significant for the ultrafine particles due to high surface area to mass 1 

ratios (Baulig et al., 2009). It has also been proposed that the organic compounds associated 2 

with PM10 generate ROS, as well as endotoxins from bacterial sources (Bonner, 2007).  3 

 4 

The particle properties which are responsible for ROS generation remain unclear (Scapellato 5 

and Lotti, 2007). Particle size/surface area and transition metal content are two properties 6 

which have previously been implicated in particle toxicity (Oberdörster et al., 2005; Koshy et 7 

al., 2009; Chuang et al., 2013). Developing our understanding of the particle properties 8 

responsible for the observed health impacts from PM10 is vital for developing more source-9 

specific air quality policy and for PM reduction targeting (Gil et al., 2010). PM from a 10 

specific source generally has a set of characteristics associated with it, e.g. non-exhaust traffic 11 

particles in PM10 are generally coarse with constituent  metals including Ba, Cu, Fe, Zn and 12 

Cr (Kwak et al., 2013). If we learn that these types of particles are especially harmful to 13 

human health for example, air pollution reductions could be targeted to that source, e.g. funds 14 

directed towards improvements in tyre/brake manufacturing and trialling of road wetting in 15 

the case of non-exhaust traffic.   16 

 17 

The aim of this work was to investigate the potential for CB particles and size-segregated 18 

PM10 to generate ROS. PM10 from an urban traffic hotspot was size-segregated using an ELPI 19 

and the oxidative capacity of the 11 different size fractions was assessed. The enhanced size-20 

segregation of the PM in this study in comparison to previous studies allowed separation of 21 

the complex PM-mixture into parts, thus allowing a clearer understanding of the role of size, 22 

surface area and other factors e.g. metal content to be derived. The objective was to resolve 23 

the particle constituent(s) responsible for ROS generation that may be masked in the urban 24 

PM10 cocktail using high resolution size segregation and comparison with CB. 25 

 26 
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2 Materials and Methods 1 

2.1 Sampling 2 

Particles were collected into 11 size fractions between 28 nm and 10 μm, as previously 3 

described (Price et al., 2010). In brief, particles were collected onto aluminium substrates 4 

using an Electrical Low Pressure Impactor (ELPI; Dekati, Finland) at a UK Air Quality 5 

Management traffic site in the coastal city of Swansea, south Wales, UK. The site is a major 6 

thoroughfare for commuting vehicles into the city, and 16,000 vehicles pass the sampling 7 

point every day. Local industry, biological, sea salt particles and others also contribute to the 8 

“urban cocktail”. Sampling took place during a ten month semi-continuous campaign 9 

(January – October 2008). Prior to testing using the PSA, particles were stored in a freezer. 10 

Particles were removed from substrates using a novel freeze-dry protocol (Price et al., 2010). 11 

Due to the particle yields on individual substrates being below the required mass for the in 12 

vitro assays, samples across the entire sampling period were combined for each size fraction. 13 

The particle sizes in this study are dry particle sizes as determined by the ELPI impactor 14 

separation. Size classifications are given as Nx-y where x is the D50% cut off for the impactor 15 

stage and y is the D50% cut off diameter for the stage above. All sizes are given in nm unless 16 

otherwise stated.  17 

 18 

2.2 Field Emission Scanning Electron Microscopy (FESEM) 19 

FESEM was used for particle imaging following standard procedures (Jones et al., 2006). 20 

Aluminium substrates onto which PM had been collected were dissected and adhered to 12.5 21 

mm aluminium stubs using Epoxy resin (Araldite™). Stubs were coated to improve imaging 22 

with evaporated gold-palladium (Au-Pd 60: 40), using a Bio-Rad SC500 sputter coater in an 23 

inert argon atmosphere, to a thickness of 20 nm. A Veeco FEI Philips XL30 environmental 24 

scanning electron microscope with a field emission gun was used for specimen imaging 25 
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(accelerating voltage 5 kV – 20 kV, working distance 5 mm-10 mm, 50 x to 200,000 x 1 

magnification). 2 

 3 

2.3 Energy Dispersive X-ray (EDX) 4 

For EDX, particles adhered to aluminium stubs using epoxy resin (Araldite™) were carbon 5 

coated using a K450 sputter coater (Quorum, UK). Each of the eleven size fractions collected 6 

at the traffic site were analysed using an INCA EDX (Cambridge Instruments). Two hundred 7 

and fifty individual analyses were carried out for each size fraction of PM10 as recommended 8 

by previous investigations (Tasić et al., 2006) using a grid system (40s, detection limit of 1 9 

weight percent). Due to their homogeneity 100 spectra were analysed for the CB particles.  10 

 11 

2.4 High Resolution-Transmission Electron Microscopy (HR-TEM) 12 

To investigate the insoluble particles collected during the measurement campaign, and to 13 

supplement the FESEM investigations, sampled particles were visualised using HR-TEM. 14 

Particles were suspended in molecular biology (MB) grade water (Sigma-Aldrich, UK; 2 μg 15 

PM/1 μl H2O) and 40 μl of this suspension was pipetted onto the surface of a 200 mesh Au 16 

grid with carbon film (Agar Scientific). Samples were imaged using a Philips CM12 HR-17 

TEM at 80 kV accelerating voltage. Images were taken with a SIS MegaView III digital 18 

camera. 19 

 20 

2.5 Plasmid Scission Assay (PSA) 21 

Cell-free in vitro techniques are useful initial indicators for the OR of different substances. 22 

The PSA was chosen for use in this study due to the large number of tests required; it allowed 23 

comparison of eleven size fractions of PM (n = 5), while providing results which have been 24 

generally shown to correlate with other cell-free in vitro techniques (Chuang et al., 2011).    25 

 26 
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The plasmid ΦX174 RF (Promega, London, UK) was used in this study to assess ROS and/or 1 

metal-based damage caused to DNA by both CB particles and PM10. The assay uses purified 2 

bacterial DNA (without a cell wall or other cellular components) and therefore can be used to 3 

investigate the ROS-sensitivity of different samples, rather than replicate conditions in vivo. 4 

It is an extremely useful comparative technique and has previously been used to investigate 5 

the potential for PM10 to damage bacterial DNA (Moreno et al., 2004; Lingard et al., 2005; 6 

Chuang et al., 2011; Chuang et al., 2012; Reche et al., 2012).  7 

 8 

Particles were suspended in MB H2O at concentrations between 10 µg/ml and 1 mg/ml. The 9 

wide dose range simulated environmental exposure to acute exposure conditions for 10 

comparison. Increased resolution of the lower dose range (up to 200 µg/ml) was used to 11 

investigate the more “biologically-relevant” concentrations, i.e. lower concentrations which 12 

the public is more likely to be exposed to. Nineteen microlitres of the suspensions were then 13 

incubated with 200 ng ΦX174 RF DNA for 6 hours at room temperature and gently agitated 14 

(Vortex Genie 2; Jencons). Replicates (n=5) were used to assess the precision of the assay. A 15 

negative control was run with each batch. The negative control consisted of 19 µl MB grade 16 

H2O incubated with the DNA, with damage levels <10% accepted. The enzyme PST-I 17 

(Phenol-Sulfotransferase; Promega, London, UK) was used as a positive control, achieving 18 

100% damage during the 6 hour incubation. Following incubation, 3.33 µl loading dye 19 

(Promega, London, UK) was added to each sample. Samples were electrophoresed on a gel 20 

consisting of 0.6% agarose (for separation of large DNA fragments) and 0.25% ethidium 21 

bromide (for visualisation under UV light when intercalated into DNA). The gel was run for 22 

16 hours at 30 V in a 1 x Tris-Borate-EDTA buffer. Gels were imaged (Visionworks® 23 

software, Ultraviolet Products Ltd., UK) to produce an image that could be semi-quantified 24 

using Genetools® (Syngene® Systems, UK) via densitometric analysis. Damage levels were 25 

derived from the proportion of damaged DNA relative to the proportion of undamaged DNA, 26 
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and this was given as a percentage damage value. The negative control (MB H2O) averaged 1 

damage percentage was subtracted from all samples. At even the lowest concentration (10 2 

μg/ml), approximately 25% DNA damage was achieved by both CB particles and PM10. This 3 

is either due to intrinsic OR, or represents a baseline to the measurement technique. This was 4 

not removed for the calculation of TD50s as it has also been identified in other studies (e.g. 5 

Reche et al., 2012). In that study, this baseline was not accounted for and therefore for 6 

comparison with previous work this was also not accounted for in our calculations.   7 

 8 

2.6 Carbon black (CB) particles 9 

CB particles were used for comparison with PM10 to help to elucidate the importance of 10 

transition metals in the generation of observed OR. Tested particles were two commercially 11 

available CBs (CB-1 and CB-2). CB particles were chosen to mimic the carbon particles 12 

which predominate in the nano and fine fractions of PM10; single particles, chains and 13 

agglomerates of spherical/sub-spherical carbon. 14 

 15 

2.7 Data analysis 16 

Microsoft Excel and SPSS (version 21; SPSS Inc., USA) were used for basic statistical 17 

analyses and data plotting. Toxic Dose 50% (TD50) values generated from the PSA were 18 

calculated for each size fraction by applying a non-linear regression model (R2 value, >0.84 19 

for each size fraction) as used in previous studies (Chuang et al., 2012). The independent t-20 

test (SPSS version 21; SPSS Inc., USA) was used to compare the mean TD50s for size-21 

fractionated PM10 in three size fractions; UF (ultrafine, defined here as 28 nm – 262 nm), fine 22 

(263 nm – 2399 nm) and coarse (2400 nm – 10,000 nm). The level of significance for all 23 

statistical analyses was chosen as p < 0.05. 24 

 25 

3 Results and discussion 26 
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3.1 Carbon black (CB) physicochemistry 1 

CB particles were used in this study for comparison with heterogeneous airborne PM10 2 

mixtures. The physicochemistry of the CB particles (Table 1) highlights similarities with sub-3 

fractions of PM10, particularly the ultrafine-fine PM fractions which are dominated by 4 

spherical to sub-spherical carbon particles generated by moving and stationary exhausts 5 

(Chuang et al., 2011). For both CB-1 and CB-2, the main constituents (by weight %) were 6 

carbon and oxygen. Contamination of CB-1 was below 1% (S, Cu, Si) and for CB-2 below 7 

5% (Cu, Fe, Pb, S, Si). 8 

 9 

Table 1 Summary of carbon black physicochemistry. Particle size and morphology obtained 10 

from FESEM analysis, and contamination percentage from EDX analysis. Contaminant 11 

defined as any unexpected element. 12 

Particle Particle size (nm) Morphology Contamination (%) 

Carbon black (CB-1) 100 - 250 Sub-spherical < 1 (S, Cu, Si) 

Carbon black (CB-2) 50 - 200 Sub-spherical < 5 (Cu, Fe, Pb, S, Si) 

 13 

3.2 PM10 physicochemistry  14 

Particles from a number of different sources were identified at the urban traffic site (Figure 15 

1).  16 

 17 

Combustion particles were the most abundant particle type collected at the site by number. 18 

Individual soot particles were resolved in size fractions below 100 nm (Figures 1a and 1b), 19 

while agglomerates and clusters (Figure 1c) were also found in the fine fractions. These were 20 

predominantly carbon particles, but due to the combustion formation process, they were often 21 

also associated with surface-bound transition metals (Table 2; Donaldson et al., 2003).  22 

 23 
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Table 2 Transition metal content of size-segregated PM at the traffic site 1 

 Size fraction 

(nm) 

Transition metal 

content (%) 

Specific contributors (%) 

N28 – 55 4.7 Zn (3.6%), Fe (1.0%) 

N56-93 4.5 Zn (3.2%), Fe (1.1%), Mn (0.2%) 

N94-155 15.4 Zn (14.7%), Fe (0.6%) 

N156-262 23.6 Zn (23.1%), Fe (0.5%) 

N263-383 14.1 Zn (11.0%), Fe (2.9%), Mn (0.3%) 

N384-615 23.2 Zn (22.6%), Fe (0.5%) 

N616-952 9.4 Fe (7.4%), Zn (1.0%), Mn (1.0%) 

N953-1609 12.3 Fe (10.5%), Mn (1.3%), Zn (0.4%) 

N1610-2399 13.7 Fe (11.2%), Zn (1.0%), Mn (1.4%) 

N2400-4009 11.5 Fe (8.0%), Zn (2.6%), Mn (0.7%), Cu (0.1%) 

N4010-10,000 10.5 Fe (9.2%), Mn (0.5%), Cu (0.3%), Ti (0.2%) 

 2 

In urban air these are generally the most numerous particles in PM10, especially in the fine 3 

and nano-size fractions. Combustion-derived nanoparticles are emitted from sources 4 

including mobile and stationary engines, and traffic combustion particles are considered to be 5 

the most harmful common particles to human health (Reche et al., 2012). Industrial particles 6 

were discovered in the fine and coarse size fractions (Figure 2), and were of respirable size.  7 

 8 

Industrial particles have previously been linked with bioreactivity (Brown et al., 2011). The 9 

chemical composition of these particles varied but included transition metals identified in the 10 

EDX analysis (Table 2). They were distinct from naturally derived or soot particles due to 11 

their larger size and often spherical morphologies from high temperature formation processes 12 
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and non-carbon chemical signatures. Mineral particles dominated the coarse fractions of 1 

PM10 and were considered to be fugitive dust. These particles are generally derived from 2 

wind-driven erosion of soil components, resuspension of road dust, and/or construction 3 

activities. Fugitive dust components would have contributed to the higher levels of Fe, Mg, 4 

and Mn in the fine–coarse particles (Table 2). Marine particles were also found in the coarse 5 

fractions of PM (Figure 1e). These can be either directly sourced from the sea or resuspended 6 

from road salt during the winter months. Biological particles were identified in some 7 

samples, and generally resided in the coarse fractions. Biogenic particles included spores 8 

(Figure 1d) which have been linked to allergenic reactions (Donaldson et al., 2003).  9 

 10 

3.3 Particle oxidative reactivity (OR) 11 

3.3.1 Carbon black (CB) particles 12 

As the mass-based concentration of CB to which the DNA was exposed to increased, the 13 

percentage of DNA damaged during the incubation increased (Figure 3). Neither of the CBs 14 

were bioreactive enough to generate a TD50; samples unable to generate 50% plasmid DNA 15 

damage are considered to be non-bioreactive (Koshy, 2010). The CBs showed very similar 16 

changes in OR with increasing concentration; probably related to their nearly identical sizes 17 

and compositions. CB-1 had a TD35 of 132 μg/ml while CB-2 was not reactive enough to 18 

generate a TD35. 19 

 20 

3.3.2 PM10 21 

Concentration-response curves were identified for all PM10 size fractions (Figure 4) with the 22 

associated TD20s, TD35s and TD50s given in Table 3 for comparison with previous studies 23 

using the PSA. As the concentration of particles to which the DNA was exposed to increased, 24 

the percentage of DNA damaged during the incubation increased. This was identified for all 25 

size fractions.  The shape of the concentration-response curve was similar for particles below 26 
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2400 nm. In the coarse range (>2400 nm) a flattened response was found. This suggests that 1 

increasing the concentration higher than 100 μg/ml had a limited effect on the OR for coarse 2 

PM.  3 

 4 

The most bioreactive fractions of PM in Swansea were dominated by combustion-derived 5 

nanoparticles (CDNP) from the street canyon (Figure 1). CDNP were likely to have 6 

originated from vehicle exhausts. Soot particles with nano-powder carbon cores have 7 

previously been linked with ROS production (Rouse et al., 2008; Chuang et al., 2011). The 8 

least bioreactive fractions of PM were dominated by mineral and sea salt particles. Therefore, 9 

the differential chemistry of the coarse, fine and nano-fractions in this study (Table 2) may be 10 

linked to source-specific ROS profiles. 11 

 12 

Table 3 Comparison of TDs for this study compared to previous studies. TDx in μg/ml. TSP = 13 

Total suspended particulate. WS = Water soluble. 14 

Particle size 

(nm) 

TD20 TD35 TD50 Study description Reference Proposed 

biological 

driver 

N28-55 13 34 93 Street, Wales, UK This study Particle 

size/surface 

area, Zn, (Fe) 

 

 

 

 

 

 

 

N56-93 11 30 80 Street, Wales, UK This study 

N94-155 11 27 69 Street, Wales, UK This study 

N156-262 15 53 192 Street, Wales, UK This study 

N263-383 11 38 126 Street, Wales, UK This study 

N384-615 10 34 120 Street, Wales, UK This study 

N616-952 20 30 116 Street, Wales, UK This study 

N953-1609 17 49 145 Street, Wales, UK This study 

N1610-2399 18 54 162 Street, Wales, UK This study 

N2400-4009 12 91 677 Street, Wales, UK This study 



 

15 
 

N4010-10,000 10 79 625 Street, Wales, UK This study 

PM10-2.5   128-147 Barcelona, Spain Reche et al., 

2012 

Size, surface 

area PM2.5-0.1   28-44 Barcelona, Spain 

PM10   37-102 Incense PM; 3 types 

tested 

Chuang et 

al., 2011 

Size, Cu 

PM2.5-0.1   185 Urban, Cardiff, UK Koshy et al., 

2009 

Size 

PM10-2.5   493 Urban, Cardiff, UK 

PM2.5-0.1   28 Urban-landfill, Cardiff, 

UK 

PM10 53-260   Satellite city, suburban 

Beijing, China 

Zhou and 

Song, 2009 

Size, WS Zn 

PM10 28-480   Clean air site, Beijing, 

China 

PM2.5   10-51 Urban Shanghai, China Senlin et al., 

2008 

Size/metals 

PM10   100 Indoor smoker, Beijing, 

China 

Shao et al., 

2007 

WS metals 

(Zn) 

PM10   116 Urban, Beijing, China Shao et al., 

2006 

WS Zn 

TSP   163 1950s black smoke, 

London, UK 

Whittaker et 

al., 2004 

Chemical 

composition 

PM10   85-106 Industrial area, Wales, 

UK 

Moreno et 

al., 2004 

Chemical 

composition 

PM10-2.5   13 Urban, Cardiff, UK Greenwell et 

al., 2002 

Chemical 

composition PM2.5   20 Urban, Cardiff, UK 

 1 

3.3.3. Comparison to previous studies 2 

Calculated TD50 values were within the range of previous studies for different particle size 3 

fractions collected in locations worldwide (Table 3), including an industrial area in south 4 

Wales (Moreno et al., 2004; TD50 = 85 - 106 µg/ml), indoor particles from a smoker’s home 5 
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in Beijing (Shao et al., 2007; TD50 = 100 µg/ml), and London 1950s black smoke (Whittaker 1 

et al., 2004; TD50 = 163 µg/ml). In a study by Koshy et al. (2009), particles collected in 2 

Cardiff, south Wales were divided into two size fractions; PM2.5-0.1 and PM10-2.5. Both Cardiff 3 

and Swansea can be considered “large” UK cities by population and are located 50 km apart. 4 

In the Koshy study (Cardiff) and this study (Swansea), sampling was undertaken centrally to 5 

the city. Both sampling sites were located at the edge of busy routes bisecting the cities. By 6 

averaging the size fractions, the TD50 for fine (N28-2399) particles in Swansea was 123 μg/ml. 7 

This is very similar to the TD50 identified for Cardiff in the Koshy study for PM2.5-0.1 (185 8 

μg/ml). At both sites traffic particles (particularly exhaust-derived) would have dominated the 9 

collected particles in this size fraction, and due to the proximity of the sampling locations 10 

(and hence similarities between the two vehicle fleets) this similarity was expected. The 11 

increased OR for fine particles in Swansea is probably related to the lower cut off diameter in 12 

Swansea (28 nm) than in Cardiff (100 nm). In the coarse size range, the TD50 for PM10-2.5 in 13 

Cardiff was 493 μg/ml, which was slightly lower than in Swansea (651 μg/ml) for N2400-10,000. 14 

For similar sampling settings in two geographically close cities the ROS generation potential 15 

of the PM was similar. This comparability suggests that OR could be generalised more 16 

widely than a singular sampling site as long as the site types were the same.  17 

 18 

The results from Swansea suggested lower oxidative activity for fine and coarse particles in 19 

comparison to “mega cities” and southern European cities. Senlin et al. (2008) collected 20 

PM2.5 in an urban area in Shanghai, China. Calculated TD50s were between 10-51 μg/ml, 21 

which was lower than the equivalent size fraction in Swansea (123 μg/ml). At an urban site in 22 

Beijing, China, for PM10 a TD50 of 116 μg/ml was calculated (Shao et al., 2006). Reche et al. 23 

(2012) collected PM in two size fractions (PM10-2.5 and PM2.5-0.1) at an urban site in SW 24 

Barcelona. The particles were collected 150m away from one of the busiest roads in the city 25 

with a traffic flow of 132,000 vehicles day−1. The TD50 for PM2.5-0.1 was between 28-44 26 
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μg/ml, which was much lower than in Swansea (123 μg/ml for N28-2399). This shows that for a 1 

similar size fraction, the Barcelona PM exhibited greater bioreactivity than Swansea PM. The 2 

same was true for coarse particles (128 – 147 μg/ml in Barcelona and 651 μg/ml in Swansea). 3 

Barcelona is situated between the mountains and the sea and therefore has one of the highest 4 

traffic densities in Europe (6100 cars km−2 in comparison to the European average of 1000–5 

1500 cars km−2; Reche et al., 2012). This could account for the increased oxidative activity of 6 

the Barcelona PM. In addition, vehicle factors such as fuel composition, vehicle age and type 7 

are likely to contribute to differences in the bioreactivity between the two cities. 8 

 9 

3.4 Effect of particle size  10 

The nano-size fractions were capable of generating the greatest bioreactive response, as 11 

shown by the TD50 values (Table 3). The N94-155 fraction with a TD50 of 69 µg/ml constituted 12 

the most bioreactive fraction, but all the sub-100 nm size fractions exhibited TD50s below 100 13 

µg/ml. This supported the results of previous PSA studies with similar size-dependent results 14 

(Lingard et al., 2005; Koshy et al., 2009; Brown et al., 2011), but improved the size 15 

resolution. The mean TD50s calculated for different size fractions were compared statistically 16 

using the independent t-test. For the comparison, particle data were divided into UF (ultrafine 17 

28 nm – 262 nm), fine (263 nm – 2399 nm) and coarse (2400 nm – 10,000 nm). The TD50s 18 

for UF and fine size ranges were not found to be statistically significantly different (t = -.957, 19 

p>0.05), however the TD50s for coarse particles (M = 651 μg/ml, SE = 26.0) were found to be 20 

higher than UF (M = 108 μg/ml, SE = 28.3) and fine (M = 134 μg/ml, SE = 8.6) particles, and 21 

this difference was significant (t = -11.982, p<0.05 and t = 26.007, p<0.05 respectively). This 22 

shows that there was a statistically significant higher oxidative activity capacity for UF and 23 

fine particles in comparison to coarse particles. Classically, low toxicity particles (e.g. CB), 24 

below 100 nm, have been shown to induce an increased inflammatory response in 25 

comparison to their larger counterparts, and as such particle size is now considered to be a 26 
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dominant parameter in influencing lung toxicity (Bonner, 2007). In this study, the enhanced 1 

size fractionation achieved by using the ELPI has elucidated the variability in TD50 values by 2 

size, in comparison to the complex non-fractionated mixtures analysed in previous studies. It 3 

has shown for the first time the variability in ROS-generating potential between PM 4 

segregated with such high resolution. 5 

 6 

3.5 Effect of particle surface area  7 

Particle surface area has been proposed as a driving factor for the enhanced OR of 8 

nanoparticles compared to larger particles. Ultrafine particles feature a higher surface area to 9 

mass ratio, and therefore, increased surface area per μg in contact with cellular macromoles 10 

(i.e. DNA) from which to exert their toxic effects. The surface area per microgram of 11 

particles was calculated for all size fractions using a combination of averaged mass and 12 

number data acquired by the ELPI during the measurements (Figure 5). This was plotted 13 

against the TD50 for the corresponding size fraction to illustrate the quantitative relationship 14 

between particle surface area and the TD50 with high size resolution. An increase in particle 15 

surface area was associated with a lower TD50, i.e. greater OR, in comparison to the size 16 

fractions with lower surface areas per mass (µg) of particles. It should be noted that the ELPI 17 

size fractionates particles using the aerodynamic diameter which assumes a spherical particle 18 

shape. While some urban air particles are spherical (e.g. exhaust PM), there are numerous 19 

other morphologies observed, e.g. cubic sea salt and elongate flaky mineral particles. The 20 

surface area determinations calculated in this study are therefore considered minimum values, 21 

and in reality are probably much higher. The trend noted relies on the high TD50s of the two 22 

most coarse particle fractions and suggests a two-tiered effect for nano/fine and coarse 23 

particles as statistically determined previously.  24 

 25 

3.6 Effect of particle-bound transition metals 26 
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Surface-bound transition metals are considered to be a further source of OR in PM10 (e.g. 1 

Lingard et al., 2005). Below 200 nm, PM is generally considered to consist of a carbon core 2 

with surface metals. A comparison was made between the TD35s of the urban PM between 3 

100 and 400 nm, and CB-1 (Figure 6), which was found to consist of 100-250 nm diameter 4 

carbon particles with <1% transition metal content (Table 1). Only CB-1 was compared since 5 

CB-2 was not capable of generating either a TD50 or TD35 using non-linear modelling. The 6 

TD35 values for the urban PM were up to four times lower than for the CB. In contrast to the 7 

<1% transition metal content of the CB particles, the urban PM was comprised of between 14 8 

and 24% transition metals (by weight). At this site Zn and Fe were important metals in the 9 

PM; Zn was the dominant transition metal below 615 nm and Fe was the dominant transition 10 

metal above 616 nm. The enhanced OR of UF and fine particles in comparison to CB 11 

suggests a driving role for Zn in this study, though this could not be proven statistically. 12 

 13 

In a previous study, a similar comparison was made, and the greater inflammatory response 14 

from fine PM in comparison to CB was attributed to the surface coating of the fine particles 15 

(Pozzi et al., 2003). Transition metals are hypothesised to cause oxidative damage by the 16 

generation of ROS through Fenton type reactions and act as catalysts for Haber-Weiss 17 

reactions (Könczöl et al., 2013). In a previous study in south Wales, UK, lower TD50 levels 18 

were associated with Fe, Mn, Ni, Molybdenum (Mo), and especially Zn (Moreno et al., 19 

2004). A study in Beijing found a negative relationship between the TD20 and Zn levels 20 

(Zhou and Song, 2009), and a study in Xuan Wei, China also found a link between high PM 21 

Zn levels and low TD50s (Shao et al., 2013). Fe in PM10 has also been implicated in mediating 22 

oxidative damage by driving a modified Haber-Weiss or Fenton reaction (Mossman et al., 23 

2007), resulting in the generation of the hydroxyl radical (·OH). It is also important to note 24 

that in addition to particle size/surface area and transition metals, there may also be other 25 
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particle properties which drive the oxidative response which were not analysed in this study 1 

(e.g. particle charge and organic constituents).  2 

 3 

4. Conclusion 4 

The PSA is an early stage assay for testing the OR of particles and can be considered an 5 

initial step towards investigating more holistic health effects of inhalation exposure to PM10. 6 

In this study, the oxidative potential of PM10 was linked with particle size and surface area; 7 

particles within the ultrafine and fine fractions were capable of generating higher levels of 8 

oxidative activity than coarse particles. Despite similar particle sizes, the CB particles were 9 

less bioreactive than PM10 (by TD35), suggesting the generation of oxidative stress by surface 10 

reactions on the PM10. An investigation of the transition metal content of the PM implicated 11 

Zn (and Fe) in the generation of oxidative activity, though this was not proven directly.  12 

 13 

This study has added to previous work by using an enhanced particle size resolution; this 14 

allowed the most in-depth analysis of the effect of particle size on OR using the PSA that has 15 

been completed to date. A comparison between PM and a surrogate particle type, CB, 16 

provided a method to test the contribution to OR of the non-size related physicochemical 17 

characteristics. Working with ‘cocktails’ of PM10 from different sources has many 18 

confounding factors which complicate the identification of the driver of any biological effect. 19 

In this study size segregating the particles was a useful step towards disentangling particles 20 

from different sources and with different properties. Future work should continue analysing 21 

the OR of particles subdivided into as many size fractions as possible, while moving towards 22 

more comprehensive assessment systems, e.g. further in vitro assays, testing on cell lines and 23 

in vivo work. In addition, the use of interventions, e.g. chelators could be used to provide 24 

information on the specific chemical constituents which caused OR. Developing our 25 

understanding of the particle properties responsible for the observed health impacts from 26 
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PM10 is important as it has the potential to allow the development of source-specific air 1 

quality policy and for PM reduction targeting. 2 
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Figures 1 

 2 

Figure 1: Morphology of typical particles identified during sampling at an urban street 3 

canyon; a) and b) combustion derived particles, c) agglomerate of combustion derived 4 

particles, d) spherical particle with nodular surface and C-signature suggesting a biogenic 5 

particle, e) aged NaCl particle, and f) mineral 6 

particle.7 

 8 

 9 

10 



 

26 
 

Figure 2: Industrial particles were generally identified in the fine size range; a) aluminium 1 

silicate glass particle of 1 μm diameter, and b) spherical carbon-dominated particle of 2.5 μm 2 

diameter, both identified using HR-TEM/ EPXMA. 3 

 4 

 5 
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Figure 3: Concentration-response profiles for the carbon black particles; CB-1 and CB-2. 1 

Error bars represent 1 SD ± mean, based on n=5.  2 

 3 

 4 
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Figure 4: Concentration-response profiles for street canyon PM10 (N28-N10,000, a-k). Graphs 1 

depict mean ± 1 SD, n = 5. Profiles (a) and (b) represent size fractions below 100nm. Profiles 2 

(c) to (i) illustrate results for fine particulate matter. Profiles (j) and (k) are the coarse PM 3 

fraction. TD50 values were calculated using a non-linear regression model. 4 

 5 

 6 
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Figure 5: An increase in surface area (SA) is linked with an increase in oxidative reactivity; 1 

comparison of TD50 and SA for the different PM10 fractions; (a) increase in SA with particle 2 

size, (b) change in particle mass and particle number in the different particle size fractions. 3 

Mass = 1 week average. PNC is depicted by triangles and mass is depicted by squares, (c) 4 

scatter plot comparing the calculated SA per microgram of sample with the TD50 for each 5 

ELPI size fraction. 6 
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Figure 6: Comparison of carbon black particles (CB-1; 100 - 250 nm) and street canyon 1 

particles of an equivalent size; N94-155, N156-262 and N263-383, with their TD35 values in µg/ml. 2 

Above the graph is shown in diagrammatic form the differential composition of the CB 3 

particles and street canyon particles; the CB particles consisted of a carbon core only, whilst 4 

the urban air PM was comprised of a carbon core with surface-bound species.  5 
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