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Abstract

Let G be a finite graph with H as a star complement for a non-zero
eigenvalue µ. Let κ′(G), δ(G) denote respectively the edge-connectivity
and minimum degree of G. We show that κ′(G) is controlled by δ(G)
and κ′(H). We describe the possibilities for a minimum cutset of G
when µ 6∈ {−1, 0}. For such µ, we establish a relation between κ′(G)
and the spectrum of H when G has a non-trivial minimum cutset
E 6⊆ E(H).
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1 Introduction

Let G be a finite simple graph with µ as an eigenvalue of multiplicity k.
(Thus the corresponding eigenspace E(µ) of a (0, 1)-adjacency matrix A of
G has dimension k.) A star set for µ in G is a subset X of the vertex-set
V (G) such that |X| = k and the induced subgraph G−X does not have µ
as an eigenvalue. In this situation, G−X is called a star complement for µ
in G. We use the notation of [8], where the basic properties of star sets and
star complements are established in Chapter 5.

If G has H as a star complement of order t, for an eigenvalue µ 6∈ {−1, 0},
then either (a) G has order at most

(t+1
2

)
, or (b) µ = 1 and G = K2 or

2K2 [2, Theorem 2.3]. Thus there are only finitely many graphs with a
prescribed star complement H for some eigenvalue other than 0 or −1. In
these circumstances, it is of interest to investigate properties of H that are
reflected inG: connectedness is one such property, as observed in [11, Section
2]. It was shown in [13] that the vertex-connectivity κ(G) is controlled by
κ(H) and the minimum degree δ(G). In particular, for each k ∈ IN , there
exists a smallest non-negative integer f(k) such that

µ 6∈ {−1, 0}, κ(H) ≥ k, δ(G) ≥ f(k)⇒ κ(G) ≥ k.

Here we first establish an analogous result for edge-connectivity: for each
k ∈ IN , there exists a smallest non-negative integer g(k) such that

µ 6= 0, κ′(H) ≥ k, δ(G) ≥ g(k)⇒ κ′(G) ≥ k. (1)

The arguments for κ′(G) are quite different from those for κ(G), and
rely on a property of dominating sets. Moreover, whereas little is known
about the function f , we find that g(1) = 0 and g(k) = k for all k > 1.
(It was shown in [13] that k ≤ f(k) ≤ 1

2(k − 1)(k + 2), while f(1) = 0,
f(2) = 2, f(3) = 3, f(4) = 5, f(5) = 7 and f(6) ≥ 8.)

We go on to investigate the nature of minimum cutsets of G when µ 6∈
{−1, 0}. Following [9], we say that such a cutset E is trivial if E consists of
the edges containing a vertex v (necessarily of degree δ(G)). The interesting
case is that in which G has a nontrivial minimum cutset E not in E(H),
for then we can find an upper bound for κ′(G) in terms of the spectrum of
H. We note some consequences in the case that H is regular and µ is not a
main eigenvalue.

2 Preliminaries

We take V (G) = {1, . . . , n}, and write u ∼ v to mean that vertices u and v
are adjacent. The eigenvaues of G are denoted by λ1(G), λ2(G), . . . , λn(G),
in non-increasing order. For S ⊆ V (G), we write GS for the subgraph
induced by S, and ∆S(u) for the S-neighbourhood {v ∈ S : v ∼ u}. For the
subgraph H of G we write ∆H(u) for ∆V (H)(u). An all-1 vector is denoted
by j, its length determined by context.

The following result, known as the Reconstruction Theorem, is funda-
mental to the theory of star complements.
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Theorem 2.1. (See [8, Theorem 5.1.7].) Let X be a set of k vertices in G

and suppose that G has adjacency matrix

(
AX B>

B C

)
, where AX is the

adjacency matrix of GX .
(i) Then X is a star set for µ in G if and only if µ is not an eigenvalue of
C and

µI −AX = B>(µI − C)−1B. (2)

(ii) If X is a star set for µ then E(µ) consists of the vectors

(
x

(µI − C)−1Bx

)
(x ∈ IRk).

Writing H = G −X, we see that the columns bu (u ∈ X) of B are the
characteristic vectors of the H-neighbourhoods ∆H(u) (u ∈ X). Thus G is
determined by µ, a star complement H for µ, and the H-neighbourhoods
∆H(u) (u ∈ X). From Eq. (2) we have

b>u (µI − C)−1bv =


µ if u = v
−1 if u ∼ v

0 otherwise.
(3)

From Eq. (3) we deduce:

Lemma 2.2. (See [8, Proposition 5.1.4].) Let X be a star set for µ in G,
and let H = G−X.
(i) If µ 6= 0 then V (H) is a dominating set in G.
(ii)If µ 6∈ {−1, 0}, then V (H) is a location-dominating set in G, that is, the
H-neighbourhoods ∆H(u) (u ∈ X) are non-empty and distinct.

We shall also need the following observation, which follows from the fact
the multiplicity of an eigenvalue changes by 1 at most when a vertex is
deleted (cf. [8, Corollary 1.3.12]).

Lemma 2.3. If S is a star set for µ in G and if U is a proper subset of S
then S \ U is a star set for µ in G− U .

The next lemma extends the result of [2] mentioned in Section 1.

Lemma 2.4. (See [13, Proposition 1.5(ii)] Let G be a graph with X as a
star set for µ, and let H = G −X. If µ 6∈ {−1, 0} and | ∪i∈X ∆H(i)| = d,
then |X| ≤

(d+1
2

)
.

Recall that µ is said to be a main eigenvalue of G if G has a µ-eigenvector
not orthogonal to the all-1 vector in IRn. From the description of E(µ) in
Theorem 2.1(ii), we have:

Lemma 2.5. (See [6, Proposition 0.3].) The eigenvalue µ is non-main if
and only if b>u (µI − C)−1j = −1 for all u ∈ X.

Recall that a (κ, τ)-regular set in a graph G is a set S of vertices such
that (i) S induces a κ-regular subgraph, and (ii) every vertex not in S has
τ neighbours in S. The following observation is implicit in [12, Proposition
1.5]; an alternative argument is given in [1, Theorem 3.2].
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Lemma 2.6. Let G be a graph with a κ-regular star complement H for the
eigenvalue µ. Then µ is a non-main eigenvalue of G if and only if V (H) is
(κ, τ)-regular with τ = κ− µ.

Proof. Let H = G − X. By Lemma 2.5, µ is a non-main eigenvalue if
and only if bTu (µ− κ)−1j = −1 for all u ∈ X, equivalently |∆H(u)| = κ− µ
for all u ∈ X. 2

Several structural conditions sufficient to ensure that κ′(G) = δ(G) may
be found in the survey paper [9]. An early example is the following result,
due to Chartrand [3].

Lemma 2.7. If the graph G has order n ≤ 2δ(G) + 1 then κ′(G) = δ(G).

Finally we note a recent result of Cioabǎ [4] relevant to our consideration
of regular star complements.

Theorem 2.8. (See [4, Theorem 1.3].) Let k, s be integers such that s ≥
k ≥ 2, and let H be an s-regular graph of order t. If λ2(H) ≤ s− (k−1)t

(s+1)(t−s−1)
then κ′(H) ≥ k.

3 Edge-connectivity

Theorem 3.1. Let k ∈ IN , and let G be a graph with H as a star com-
plement for a non-zero eigenvalue µ. If κ′(H) ≥ k and δ(G) ≥ k then
κ′(G) ≥ k.

Proof. The result holds for k = 1 because V (H) is a dominating set by
Lemma 2.2(i). Accordingly we assume that k > 1 and suppose by way
of contradiction that G has a cutset E with |E| ≤ k − 1. Let V (G) =
U ∪̇ V , where each edge in E joins U to V . If V (H) meets both U and V
then κ′(H) < k, contrary to assumption, and so without loss of generality,
V (H) ⊆ U . Let u1, . . . , up be the vertices of U adjacent to V , and let
V = {v1, . . . , vq}. Since V (H) is a dominating set, each vertex of V is
adjacent to U . Now we use an argument of Plesnik [10, Theorem 6].

Let si = |∆U (vi)| (i = 1, . . . , q). Since vi is adjacent to at most q − 1
vertices of V , we have

si + q − 1 ≥ deg(vi) ≥ k ≥ |E|+ 1 (i = 1, . . . , q).

Hence
∑q
i=1 si + q(q − 1) ≥ q(|E|+ 1), that is, |E|+ q(q − 1) ≥ q(|E|+ 1).

Hence q(q − 1) ≥ (q − 1)|E|+ q. Since |E| ≥ q, this is a contradiction. 2

Corollary 3.2. Let G be a graph with H as a star complement for a non-
zero eigenvalue µ.
(i) If κ′(H) ≥ δ(G) then κ′(G) = δ(G).
(ii) If G is regular and κ′(H) ≥ k then κ′(G) ≥ k.

Proof. (i) Applying Theorem 3.1 with k = δ(G), we have κ′(G) ≥ δ(G).
Always κ′(G) ≤ δ(G), and so the result follows.
(ii) Here Theorem 3.1 applies because δ(G) ≥ δ(H) ≥ κ′(H) ≥ k. 2

We see that κ′(G) is controlled by κ′(H) and δ(G); explicitly, we have
min{κ′(H), δ(G)} ≤ κ′(G) ≤ δ(G). Moreover, for each k ∈ IN , there exists
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a least non-negative integer g(k) ≤ k such that the relation (1) holds. The
following example shows that g(k) = k for all k > 1. (We know already that
g(1) = 0, because G is connected whenever H is connected.)

Example 3.3. For k ≥ 2, let Gk be the graph obtained from a (k + 1)-
clique Hk by adding a vertex of degree k− 1, and let µ = λ1(Gk). Since Gk
is connected, we have µ > λ1(Hk), and so Hk is a star complement for µ in
Gk. Now κ′(Gk) = k − 1 = δ(Gk), while κ′(Hk) = k. Hence g(k) ≥ k. 2

In what follows, we investigate the situations in which a strict inequality
holds in the hypotheses of Theorem 3.1, that is either (a) κ′(H) ≥ k and
δ(G) ≥ k + 1 (see Corollary 3.5), or (b) κ′(H) ≥ k + 1 and δ(G) ≥ k (see
Corollary 3.7).

Proposition 3.4. Let G be a graph with H as a star complement for
a non-zero eigenvalue µ. If κ′(H) = κ′(G) and G has a minimum cutset
E 6⊆ E(H) then κ′(G) = δ(G).

Proof. We define U and V as in Theorem 3.1. Again we may take V (H) ⊆
U , for otherwise H can be disconnected by removing the edges in E ∩ E(H).
If κ′(G) < δ(G) then we have

si + q − 1 ≥ deg(vi) ≥ δ(G) ≥ |E|+ 1 (i = 1, . . . , q),

and we obtain a contradiction as before. 2

Corollary 3.5 Let G be a graph with H as a star complement for a non-zero
eigenvalue µ. If κ′(H) ≥ k and δ(G) ≥ k + 1 then either (a) κ′(G) ≥ k + 1
or (b) κ′(H) = κ′(G) = k and every minimum cutset of G lies in E(H).

Proof. By Theorem 3.1, we have κ′(G) ≥ k; moreover, (a) holds if κ′(H) ≥
k + 1. If κ′(G) = k then κ′(H) = k, and (b) holds by Proposition 3.4. 2

We remark in passing that if E is a non-trivial cutset of G in E(H) then
the multiplicity of µ is subject to an upper bound which improves that given
in [2, Theorem 2.3]. This last result says that if H = G−X of order t > 4
then |X| ≤

(t
2

)
. On the other hand, if V (H) = V1 ∪̇ V2, where each edge in

E joins V1 to V2, let |Vi| = ti, Xi = {u ∈ X : ∆H(u) ⊆ Vi} (i = 1, 2). Then
t = t1 + t2, where t1 ≥ 2 and t2 ≥ 2 because E is non-trivial. Moreover,
X = X1 ∪̇ X2 and by Lemma 2.3 we may apply Lemma 2.4 to G − X1,
G −X2 to deduce that |X| ≤

(t1+1
2

)
+
(t2+1

2

)
. Now when t1 ≥ 2 and t2 ≥ 2

we have
(t1+1

2

)
+
(t2+1

2

)
≤
(t1+t2

2

)
, with strict inequality unless t1 = t2 = 2.

We say that a set E of edges in G is a k-clique matching if E consists of
independent edges uivi (i = 1, . . . , k) such that the vertices v1, . . . , vk induce
a clique which is a component of G−E. (Note that, in a connected graph, a
1-clique matching is a trivial minimum cutset consisting of a pendant edge.)
For a vertex v of G we write E(v) for the set of edges containing v.

Proposition 3.6. Let G be a graph with H as a star complement for an
eigenvalue µ 6∈ {−1, 0}. If κ′(H) ≥ κ′(G) = k and E is a minimum cutset
of G then one of the following holds:
(a) κ′(H) = k and E ⊆ E(H);
(b) E = E(v) for some v 6∈ V (H);
(c) E ∩ E(H) = ∅ and E is a k-clique matching.
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Proof. Note first that if E ⊆ E(H) then κ′(H) = k, and (a) holds. Now
suppose that E 6⊆ E(H). Since κ′(H) ≥ k we have E ∩ E(H) = ∅, and we
may define U, V as before, with V (H) ⊆ U . In the notation of Theorem 3.1
we have

si + q − 1 ≥ deg(vi) ≥ δ(G) ≥ κ′(G) = |E| (i = 1, . . . , q), (4)

whence
∑q
i=1 si + q(q − 1) ≥ q|E|, that is,

q(q − 1) ≥ (q − 1)|E|.

If q = 1, we have case (b). If q > 1 then q ≥ |E| and necessarily q = |E| = k.
In this situation,

∑q
i=1 si = q and so all si are equal to 1. By Lemma 2.2(ii),

the edges in E are independent. Since equality holds throughout Eq. (4),
the vertices v1, . . . , vq induce a clique, and so E is a k-clique matching. 2

Corollary 3.7. Let G be a graph with H as a star complement for an
eigenvalue µ 6∈ {−1, 0}. If κ′(H) ≥ k + 1 and δ(G) ≥ k then either (a)
κ′(G) ≥ k + 1 or (b) κ′(G) = k and every nontrivial minimum cutset of G
is a k-clique matching.

Proof. We first apply Theorem 3.1: if δ(G) ≥ k+1 then κ′(G) ≥ k+1, and
if δ(G) = k then κ′(G) = k. In the latter case, (b) follows from Proposition
3.6 because a cutset of size k cannot lie in E(H). 2

Next we investigate case (c) of Proposition 3.6: we establish a connection
between k and the spectrum of H when κ′(H) ≥ k and G has a k-clique
matching E 6⊆ E(H). Recall that the condition κ′(H) ≥ k ensures that
E ∩ E(H) = ∅.

Theorem 3.8. Let G be a graph with H as a star complement for an
eigenvalue µ 6∈ {−1, 0}, with κ′(H) ≥ κ′(G) = k > 1. Suppose that G has a
k-clique matching E 6⊆ E(H), and let ν1, ν2, . . . , νt be the eigenvalues of H
in non-increasing order.

(i) If µ > −1 then there exists a smallest h such that νh < µ. In this
case, t ≥ h+ k − 2 and νh+k−2 ≥ µ− 1

µ+1 .

(ii) If µ < −1 then there exists a largest m such that νm > µ. In this
case, m ≥ k, νm−k+1 ≤ µ− 1

µ+1 and νm ≤ µ+ 1
k−µ−1 .

Proof. As before, we let V (G) = U ∪̇ V , where each edge in E joins U
to V and V (H) ⊆ U . We apply Theorem 2.1 to the graph obtained from
G by deleting the vertices in U \ V (H); by Lemma 2.3, H remains a star
complement for µ. We have

(µ+ 1)I − J = B>(µI − C)−1B (5)

where J is the all-1 matrix of size k×k, C is the adjacency matrix of H and
without loss of generality, B> = (I|O). Since B>B = I, the eigenvalues of
(µ+ 1)I − J interlace those of (µI − C)−1 in accordance with [8, Theorem
1.3.11].

(i) The case µ > −1. If νt > µ then all eigenvalues of H exceed −1 and
so H = Kt, a contradiction since κ′(H) ≥ 2. Hence there is a smallest h
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such that νh < µ, and (µI −C)−1 has t−h+ 1 positive eigenvalues, namely
(µ − νh)−1, (µ − νh+1)

−1, . . . , (µ − νt)−1 in non-increasing order. Now the
k−1 largest eigenvalues of (µ+1)I−J are all equal to µ+1. By interlacing,
λi((µI − C)−1) ≥ µ + 1 > 0 (i = 1, . . . , k − 1), and so t − h + 1 ≥ k − 1;
moreover µ+ 1 ≤ (µ− νh+k−2)−1. equivalently, νh+k−2 ≥ µ− 1

µ+1 .

(ii) The case µ < −1. Since µ < 0, we have ν1 > µ and so there is
a largest m such that νm > µ. The negative eigenvalues of (µI − C)−1

are (µ− νm)−1, (µ− νm−1)−1, . . . , (µ− ν1)−1 in non-decreasing order, while
(µ + 1)I − J has k negative eigenvalues. Hence m ≥ k. By interlacing,
λt−k+1((µI − C)−1) ≤ λ1((µ + 1)I − J), that is, (µ − νm−k+1)

−1 ≤ µ + 1,
equivalently νm−k+1 ≤ µ − 1

µ+1 . Also by interlacing, λt((µI − C)−1) ≤
λk((µ+1)I−J), that is, (µ−νm)−1 ≤ µ+1−k, equivalently νm ≤ µ+ 1

k−µ−1 .
2

Corollary 3.9. Let G be a graph with H as a star complement for an
eigenvalue µ 6∈ {−1, 0}, with κ′(H) ≥ κ′(G) = k > 1. Suppose that G has a
k-clique matching E 6⊆ E(H).

(i) If µ > −1 then k − 1 is bounded above by the number of eigenvalues
of H in the interval [µ− 1

µ+1 , µ).

(ii) If µ < −1 then k is bounded above by the number of eigenvalues of
H in the interval (µ, µ− 1

µ+1 ].

We see that (in the situation of Corollary 3.9) for any µ 6∈ {−1, 0}, we
have κ′(G) ≤ 1 + eH(µ), where eH(µ) is the number of eigenvalues of H
between µ and µ − 1

µ+1 inclusive. We shall give an example in which this

bound is attained for κ′(G) = 3. The example arises in the context of the
following result, where we apply Theorem 3.8 in the case that H is regular
and µ is non-main.

Theorem 3.10. Let G be a graph with the s-regular graph H as a star
complement for the non-main eigenvalue µ. Let κ′(G) = k, where s ≥
k > 1 and let ν1, ν2, . . . , νt be the eigenvalues of H in non-increasing order.
Suppose that G has a k-clique matching E 6⊆ E(H). Then µ = s − 1 and
the following hold.

(i) If ν2 ≤ s− 2(k−1)
s+1 then κ′(H) ≥ k.

(ii) If κ′(H) ≥ k, l > 2 and νl < s− 1− 1
s then k ≤ l − 1.

Proof. We use the notation of Theorem 3.8. Let G∗ be the graph obtained
from G by deleting the vertices in U \ V (H). Note that µ remains a non-
main eigenvalue of G∗ by Lemma 2.5. Since V (H) is an (s, 1)-regular set in
G∗, we have µ = s− 1 by Lemma 2.6.

Assertion (i), due to Cioabǎ [4], holds whether or not µ is a main eigen-
value. Indeed, if H has order t ≤ 2s + 1 then κ′(H) = s ≥ k by Lemma

2.7, while if t ≥ 2s+ 2 then ν2 ≤ s− 2(k−1)
s+1 ≤ s− (k−1)t

(s+1)(t−s−1) and we have

κ′(H) ≥ k by Theorem 2.8.
For (ii) we note that ν1 = s, and so if νl < s− 1− 1

s then H has at most
l − 2 eigenvalues in the interval [s − 1 − 1

s , s − 1). By Corollary 3.9(i), we
have k − 1 ≤ l − 2. 2
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We illustrate Theorem 3.10 with the following example, found experi-
mentally using the computer package GRAPH [5].

Example 3.11. Let H be the 3-regular graph of order 10 which appears
as the second graph in the list of exceptional regular graphs given in [7,
Appendix A3.3]. Let G be the graph obtained from H by adding a 3-clique
and the 3-clique matching E shown in Fig. 1, where the edges in E join
white vertices to black. Note that κ′(H) = 3, either directly or by Theorem
3.10(i), and κ′(G) = 3 by construction. The spectrum of G is

3.2731, 2(3), 0.8596, 0(2),−1(2),−2(3),−2.1326,

where non-integer eigenvalues are given to four decimal places. The spec-
trum of H is

3, 1.8794(2), 1,−0.3473(2),−1.5321(2),−2(2),

and so H is a star complement for 2. By Lemma 2.6, 2 is a non-main eigen-
value of G. In the notation of Theorem 3.10, we have 1 = ν4 < s−1− 1

s = 5
3 ,

and so the bound in Theorem 3.10(ii) is sharp for l = 4. Similarly, the
bound in Corollary 3.9(i) is sharp for µ = 2. 2
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Fig. 1. The graph of Example 3.12.
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