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Abstract 21 
Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to 22 
replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products 23 
are the most economic and sustainable alternative; however, plant meals and oils are devoid of 24 
physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), 25 
eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although 26 
replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon 27 

(Salmo salar), several studies have shown major effects on the activity and expression of genes 28 
involved in lipid metabolism. In vertebrates, sterols and LC-PUFA play crucial roles in lipid 29 
metabolism by direct interaction with lipid-sensing transcription factors (TF) and consequent 30 
regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs 31 
in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. 32 
The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and 33 

cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly 34 
conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to 35 
replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to 36 
dietary lipid composition through the transcriptional regulation of gene expression. It may be possible 37 
to further increase efficient and effective use of sustainable alternatives to marine products in 38 
aquaculture by considering these important molecular interactions when formulating diets. 39 
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1. Introduction 46 

Lipid content and composition in feeds for farmed fish has experienced a recent and rapid change, 47 
because, in order to sustain growth of the aquaculture industry, ecologically limited marine fish meal 48 
and fish oil (FO) ingredients have been replaced by terrestrial plant-derived meals and oils. Although 49 
replacement of up to 100% dietary FO with vegetable oil (VO) has little effect on growth in Atlantic 50 
salmon (Salmo salar) [1], some studies have shown major effects on the expression and regulation of 51 

genes involved in fatty acid and cholesterol metabolism [2,3]. This impact was consistent with the 52 
major compositional changes caused by feeding VO to fish including decreased levels of dietary 53 
cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoate (EPA; 20:5n-3), 54 
docosahexaenoate (DHA; 22:6n-3) and arachidonate (ARA, 20:4n-6), which are absent in terrestrial 55 
plants [2]. Cholesterol and LC-PUFA are critical functional components of cellular membranes and 56 
are important precursors of bioactive lipids required for homeostasis, cell signaling, immune and 57 

inflammatory responses [4], and the long-term health and welfare effects of reductions in these 58 

essential dietary nutrients in fish, including salmon, are unknown. 59 

Much effort has been directed toward the understanding of effects of dietary imbalances in LC-PUFA 60 
and cholesterol in humans and mammalian models because of the links between dyslipidemia and a 61 
range of highly prevalent cardiovascular, metabolic and inflammatory diseases [5]. These studies have 62 
shown that cholesterol and fatty acids and their metabolic derivatives can exert major effects on 63 
physiology by interactions with a range of transcription factors [6]. Particular attention has focused on 64 
liver X receptor (LXR), peroxisome proliferator-activated receptors (PPAR) and sterol regulatory 65 
element binding proteins (SREBP) and their activities in liver and monocyte cells. LXR has a pivotal 66 
role in the control of intermediary metabolism mediating cross-regulation between fatty acid and 67 
sterol metabolism [7]. LXR activity is activated by binding oxysterol ligands, catabolic products of 68 
cholesterol [8]. In response to cholesterol overloading, and consequent oxysterol production, LXR 69 

modulates intracellular cholesterol levels by transactivating the expression of cholesterol ester transfer 70 
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protein, apolipoproteins, cholesterol 7alpha-hydroxylase (CYP7α1) and the ATP-binding cassette 71 

transporter 1 (ABCA1), which regulate cholesterol efflux from cells [7].  72 

In response to cholesterol depletion, SREBPs, a family of membrane-bound transcription factors, are 73 
activated. SREBP1 plays a crucial role in the regulation of many lipogenic genes and SREBP2 74 
primarily regulates the transcription of cholesterogenic enzymes [9]. Interactions between these 75 
pathways are to some extent mediated through LXR activating SREBP1 transcription, inducing the 76 

expression of enzymes involved in the synthesis of fatty acids, triacylglycerols and phospholipids. In 77 
addition, some important lipid metabolizing genes, such as fatty acid synthase (FAS), are both LXR 78 
and SREBP1 targets [10]. PPARs, encoded by three genes in mammals, are activated by binding fatty 79 
acids or their oxidized derivatives and act to regulate expression of genes of lipid degradation and 80 
biosynthesis. PPARα and PPARβ, regulate the expression of genes encoding mitochondrial and 81 
peroxisomal fatty acid-catabolizing enzymes, whilst PPARγ has a central role in fat storage by 82 

promoting and maintaining the adipocyte phenotype [6]. Thus, LXR, SREBP and PPAR transcription 83 
factors act as lipid sensors that translate changes in cellular sterol and fatty acid content and 84 

composition into metabolic activity. 85 

Compared to mammals, few studies have addressed the existence or roles of these transcriptional 86 
regulators of lipid metabolism in fish. Our contention is that a greater understanding of lipid-mediated 87 
gene regulatory networks in Atlantic salmon will facilitate the efficient, effective and safe use of 88 
sustainable alternatives to marine products in aquaculture feeds. Recently the genes for Atlantic 89 
salmon Lxr, Srebp1 and Srebp2 and Ppars have been characterized [11-13]. In addition, studies on an 90 
Atlantic salmon cell line (SHK-1) have shown that several lipid metabolic genes are transcriptionally 91 
regulated in response to changes in lipid composition of the medium [13]. The primary aim of the 92 
present study was to elucidate Lxr, Srebp and Ppar gene regulatory mechanisms and key lipid 93 
metabolic target genes in Atlantic salmon and to determine the extent to which dietary modulation of 94 

lipid and fatty acid metabolism in salmon reflects or varies from the patterns of gene regulation 95 

described for mammals. 96 
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 97 

2. Materials & Methods 98 

2.1. Cell lines and cell culture 99 

The established Atlantic salmon cell line derived from head kidney (SHK-1) was grown at 22 °C in an 100 
atmosphere of 4 % carbon dioxide in Dulbecco's modified eagle medium (DMEM) containing 3 g L-1 101 

D-glucose and 55 mg L-1 sodium pyruvate, and supplemented with 10% foetal bovine serum (FBS), 102 
50 U mL-1 penicillin, 50  μg  mL-1 streptomycin,  40  μM  2-mercaptoethanol and 4 mM L-glutamine. For 103 
gene promoter transactivation assays, fathead minnow (Pimephales promelas; FHM) epithelial cells 104 
were maintained at 22 °C  in  Leibovitz’s  L-15 with GlutaMAXTM-1 medium containing 900 mg L-1 D+ 105 
galactose and 550 mg L-1 sodium pyruvate and 10% FBS. All media and supplements were obtained 106 

from Life Technologies (Glasgow, UK).  107 

For subculturing, the cell monolayer was washed twice with phosphate buffer saline (PBS) without 108 
CaCl2 or MgCl2 (Invitrogen, UK), cells detached by incubation with 0.05 % trypsin/0.02 % EDTA 109 
and re-suspended in medium. Viable cells were counted after harvesting using a Neubauer 110 
haemocytometer, 0.4 % Trypan blue (Sigma, Dorset, UK) and an inverted microscope (IMT-2, 111 

Olympus).  112 

For transcription factor (TF) ligand treatments, SHK-1 cells were seeded in 6-well clear plates (Nunc, 113 

Denmark) at a density of 4 x 105 cells  per  well  in  a  volume  of  3  ml  Leibovitz’s  L-15 medium. Cells 114 
were approximately 70 % confluent after 48 h growth, when medium was aspirated, cells washed 115 
twice with PBS and fresh medium containing the various treatments as ethanol solutions was added. 116 
Final  concentrations  were  cholesterol  (20  μM),  WY14643  (25  μM),  2-bromopalmitate (25  μM),  or  117 
LXR  agonists  (GW3965  and  T0901317,  10  μM)  or  with  ethanol  carrier  alone  (100% ethanol). After 118 
24 h, the medium was aspirated, the cell monolayer washed twice (PBS) and cells scraped from each 119 
well in 0.5 ml of PBS. Cells were centrifuged for 5 min at 3000 x g, PBS discarded and replaced by 120 
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0.5 ml of TriReagent (Ambion, UK), followed by vigorous mixing to lyse and digest cells.  Cells from 121 

two wells were pooled to produce three replicates per treatment. 122 

2.2. Fish, diets and sampling protocols 123 

Four diets (4 mm pellets) with the same basal protein composition, but coated with four different oils 124 
were formulated at Skretting Technology Centre (Stavanger, Norway) to satisfy the nutritional 125 
requirements of salmonid fish [14]. The oils used were FO (anchovy oil), or 100 % replacement with 126 

rapeseed oil (RO), linseed oil (LO) or soybean oil (SO). Atlantic salmon post-smolts (130 g) were 127 
randomly distributed into 16 tanks at the Skretting Aquaculture Research Centre (Stavanger, Norway). 128 
After a conditioning period of 3 weeks during which the fish received a commercial diet containing 129 
FO, the fish were fed the experimental diets to satiation for a period of 16 weeks. Full descriptions of 130 
the diet compositions and experimental conditions were reported previously [2]. At the end of the trial 131 
fish were anaesthetized with metacain (50 mg/L) and pyloric caeca (intestine), a major organ involved 132 
in uptake and transport of lipids, were dissected from five randomly selected fish from each dietary 133 
treatment. Samples of 0.5 g of caeca were immediately and rapidly disrupted in 5 ml of TriReagent 134 
(Ambion, UK) using an Ultra-Turrax homogenizer (Fisher Scientific, UK), and stored at - 80 ºC prior 135 
to RNA extraction. The dietary trial and all procedures on Atlantic salmon conformed to European 136 

ethical regulations regarding the care and use of farmed animals in research. 137 

2.3. Atlantic salmon LXR activation assay 138 

The ligand binding domain (LBD) (amino acid residues 191-462) [GenBank:FJ470290] of Lxr was 139 
amplified  by  PCR  from  salmon  pyloric  caeca  cDNA  using  primers  (Supplementary  Table  1)  with  5’  140 
restriction sites to allow in-frame subcloning between the BamHI and XbaI sites of the pBIND vector 141 
(Promega, Southampton, UK), which contains the yeast GAL4 DNA-binding domain [8]. The 142 
resulting pBIND-Lxr chimeras were co-transfected with a reporter gene plasmid in which the Firefly 143 
luciferase gene is under the control of a promoter containing UAS (upstream activation sequence), 144 

which is recognized by Gal4. To control differences in transfection efficiency, a constitutively 145 



 

 

7 

expressed control reporter construct encoding for Renilla luciferase was included. Ligand activation 146 
of Lxr was determined by a luciferase-based functional assay using the FHM cell line as described 147 
previously [15]. Twenty-four hours prior to transfection, 2 x 104 cells per well were seeded in a 96-148 
well black-sided, clear-bottom microtitre plate (Corning, NY, USA). Transfection mixtures contained, 149 
per well; 100 ng pBIND-Lxr construct, 60 ng of luc2P/GAL4UAS reporter plasmid (pGL4.31, 150 
Promega), 20 ng of hRluc/CMV internal control reporter plasmid (pGL4.75,  Promega)  and  1.5  μl  of  151 
Polyfect transfection reagent (Qiagen) in 100  μl  of  L-15 medium. Within each experiment, treatments 152 

were performed in triplicate. Experimental controls included treatments in which the pBIND-Lxr 153 
construct was replaced by empty pBIND vectors during transfection, as well as cells transfected with 154 
the appropriate pBIND-Lxr construct and reporters and treated with ethanol carrier only. After 24 h, 155 
transfection mixes were removed and replaced with media containing treatment vehicle (ethanol), 156 
cholesterol, or one of the following LXR agonists: natural oxysterols 20(S)-hydroxycholesterol (20S-157 
OH) and 22(R)-hydroxycholesterol (22R-OH), synthetic agonists T0901317 and GW3965, and the 158 

fungal molecule paxilline (Sigma Aldrich, UK). Compounds of interest were diluted into L-15 from 159 
ethanolic  stock  and  100  μl  of  the  dilution  was  added  per  well  and  incubated  for  24  h.  Cells  were  lysed  160 
by  10  min  incubation  in  75  μl  per  well  of  1x  Passive  Lysis  Buffer  (Promega),  and  Firefly and Renilla 161 
luciferase activities quantified using an assay protocol described previously [15]. Transactivation 162 
activities were obtained using VICTOR X Multilabel plate reader (PerkinElmer, USA) and data were 163 
normalized to the Renilla luciferase activities. Data are presented as means of raw transactivation 164 
activities of three independent assays. The significance of effects of treatments were tested by one-165 
way  analysis  of  variance  (ANOVA),  followed  by  multiple  comparisons  using  Tukey’s  post hoc test at 166 

a significance level of P ≤  0.05  (PASWS  18.0,  SPSS  Inc.,  USA).   167 

2.5. Quantitative RT-PCR (qPCR)  168 

Salmon caecal samples from fish fed different oil sources (n = 5), or SHK-1 cells exposed to Lxr- or 169 

Ppar-ligands (n = 3) were used for relative and absolute qPCR analyses, respectively. For gene 170 
expression analysis, samples were immediately and rapidly disrupted in TriReagent, and stored at - 80 171 
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ºC  prior  RNA  extraction.  Total  RNA  was  extracted  following  the  manufacturer’s  instructions  172 
(Ambion, UK), and the quantity and quality of isolated RNA determined by electrophoresis and 173 
spectrophotometry (Nanodrop 1000, Thermo Scientific, USA). One microgram of total RNA was 174 
reverse transcribed into cDNA using the Verso cDNA synthesis kit (Thermo Scientific, UK) and 175 
primed with random hexamers and oligo(dT) in a 3:1 molar ratio. The resulting cDNA was diluted 20-176 
fold with nuclease-free water. For quantitative qPCR, oligonucleotide primers for target genes and 177 
housekeeping genes (elf-1α and β-actin)  (Supplementary  Table  1)  were  used  at  0.3  μM  with  one-178 

fortieth  of  the  cDNA  synthesis  reaction  (5  μl  of  a  1:20  dilution)  and  10  μl  of  SYBR-green qPCR mix 179 
(ABgene,  UK)  in  a  total  volume  of  20  μl.  Reactions  were  run  in  a  Mastercycler  RealPlex2 (Eppendorf, 180 
UK). Amplifications were carried out including systematic negative controls containing no cDNA 181 
(NTC, no template control) and omitting reverse transcriptase enzyme (-RT) to check for DNA 182 
contamination. Thermal cycle and melting curves were performed as described previously with 183 
specific annealing temperatures for each primer pair shown in Supplementary Table 1 [16]. The qPCR 184 

product sizes were checked by agarose gel electrophoresis and the identity of random samples 185 
confirmed by sequencing. Absolute quantification was achieved by including a parallel set of 186 
reactions containing spectrophotometrically-determined standards consisting of serial dilutions of 187 
known copy numbers of linearised plasmid that contain the predicted amplification product for each 188 
measured gene. Results were expressed as mean normalized ratios (± SE) between the copy number 189 
of target genes and the mean copy number of the reference genes (elf-1α and β-actin). Differences in 190 
the expression of target genes among different treatments were determined by one-way analysis of 191 
variance  (ANOVA),  followed  by  multiple  comparisons  using  Tukey’s  post hoc test (PASWS 18.0, 192 
SPSS Inc., USA). In contrast, the effects of diet on TF expression were analyzed for statistical 193 
significance using the relative expression software tool (REST-MCS, 2009 V2 [http://www.gene-194 
quantification.de/rest-2009.html]), and normalized by two housekeeping genes (elf-1α and β-actin). 195 
Gene expression was presented as the relative expression ratio of each gene in fish fed one of the VOs 196 

or FO. A significance of P ≤  0.05  was  applied  to  all  statistical  tests  performed.   197 

2.6. Expression constructs and cell transfection assays 198 
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Atlantic salmon transcription factors Lxr [GenBank: FJ470290], Pparα [GenBank: AM230809], 199 
Pparβ1a [GenBank: AJ416953], Srebp1 [GenBank: HM561860] and Srebp2 [GenBank: 200 
HM561861NM_004599] had been previously described [12,13]. The entire open reading frame of Lxr 201 
(Lxr ORF, 1-462 amino acids), Pparα (Pparα ORF, 1-464 aa), Pparβ1a (Pparβ ORF, 1-443 aa), and 202 
the soluble N-terminal domains of Srebp1 (nSrebp1, 1-476 aa) and Srebp2 (nSrebp2, 1-460 aa) were 203 
amplified from caecal cDNA samples using the primers detailed in Supplementary Table 1, which 204 
included suitable restriction sites, EcoRI and XhoI, for subsequent insertion into the CMV-based 205 

constitutive expression vector pcDNA3 (Invitrogen, UK). Positive clones were selected by enzymatic 206 
digestion and sequenced (CEQ-8800 Beckman Coulter Inc., USA). The putative promoter regions, 207 
first non-coding exon, first intron and the ATG start codon of Atlantic salmon elovl5a (-3618, 208 
[GenBank:GU238431]), elovl5b (-3141, [GenBank:GU324549]), and fads2d6a (-1791, 209 
[GenBank:AY736067]) were amplified from genomic DNA using high-fidelity PfuTurbo DNA 210 
Polymerase (Statagene, UK) and primers containing restriction sites (Supplementary Table 1). These 211 

fragments were cloned into SacI and NcoI or XhoI sites encompassing the luciferase start codon of a 212 
promoterless reporter plasmid [pGL4.10, luc2] (Promega, USA), which encodes Firefly luciferase. 213 

For luciferase assays, FHM cells were co-transfected, under the conditions described previously, with 214 
the salmon elovl5 or fads2d6a reporter constructs, Lxr, Pparα, Pparβ1a, nSrebp1 or nSrebp2 215 
expression constructs to overexpress the protein product. Briefly, stock FHM cells were seeded in 96-216 
well opaque plates at a density of 2 x 104 per well 24 h prior to transfection. Transfection mixtures 217 

consisted of 50 ng of pGL4.10 reporter construct (empty pGL4.10 vector in controls), 30 ng of 218 
pcDNA3 expression construct (empty pcDNA3 vector in controls), 20 ng of Renilla pGL4.75  and  1  μl  219 
of  Polyfect  transfection  reagent  to  100  μl  of  L-15 medium. Within each transfection experiment, each 220 
treatment was performed in triplicate. After 24 h, the medium was aspirated, monolayer washed twice 221 
with PBS, cells lysed, and Firefly and Renilla luciferase activities quantified as described previously 222 
[15]. Transactivation activities were obtained, data normalized and statistical analyses performed as 223 

described above. 224 
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 225 

3. Results 226 

3.1. Ligand specificity of Atlantic salmon LXR 227 

Prior to testing for Lxr-dependent gene expression the ligand binding specificity of S. salar Lxr was 228 
determined. The salmon Lxr/Gal4 chimera was activated by synthetic Lxr ligands, including 229 

T0901317, GW3965 and paxilline, and also by the physiological oxysterols, 22(R)-OH and 20(S)-OH 230 
(Fig.1). The concentration-response curve for activation of Lxr indicated that T0901317 and GW3965 231 
were the most potent agonists (Fig. 1). T0901317 and GW3965 activated salmon Lxr at micromolar 232 
concentrations with maximal effect observed  at  10  μM.  The  synthetic  agonist  paxilline  exhibited  the  233 
lowest  effect,  whereas  cholesterol  had  no  effect.  No  response  was  detected  at  100  μM  for  most  234 

agonists, perhaps due to toxic effects.  235 

3.2. Gene expression in SHK-1 cells  236 

Salmon SHK-1 cells were incubated with Lxr (T091317 and GW3965) and Ppar (Wy14643 and 2-237 
bromopalmitate) agonists to identify respective target genes. Incubation with synthetic Lxr ligands 238 
caused potent induction of srebp genes, with up to 9-fold increase for srebp1 and 2-fold for srebp2 239 
(Fig. 2). Lxr agonists GW3965 and T091317 increased the expression of fas mRNA 3- and 6-fold, 240 
respectively (Fig. 3). Fatty acyl desaturases, fads2d6a (~3.3-fold), fads2d6b (~2.4-fold) and fads2d5 241 

(4-fold) mRNAs were increased by GW3965. Only fads2d5 expression was affected by T091317 242 
being increased < 2-fold (Fig. 3). The expression of mRNA for abca1 transporter, which regulates 243 
cholesterol efflux, was strongly upregulated by both Lxr agonists, with ~14-fold increases (Fig. 3). In 244 
the presence of Ppar agonists, only srebp2 expression responded, relatively weakly, to 2-245 
bromopalmitate (Fig. 2), which is a dual Pparα and Pparβ agonist. However, Wy1465, a specific 246 
Pparα agonist had no significant effect on srebp2 expression. The expression of acyl-CoA oxidase 247 
(acox), HMG-CoA reductase (hmgCoAR) and fatty acid elongases, elovl4, elovl5a and elovl5b (Fig. 3) 248 

and ppars (Fig. 2) did not change significantly after incubation with Lxr or Ppar ligands.  249 
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3.3. Trans-regulation of genes related to LC-PUFA metabolism by Srebp, Lxr and Ppar 250 

To investigate the regulatory role of Srebp, Lxr and Ppar on the expression of key genes of LC-PUFA 251 
biosynthesis, we established Atlantic salmon promoter luciferase assays in FHM cells. The Srebp 252 
transcriptional regulation of duplicated elovl5a and elovl5b elongases, and fads2d6a desaturase 253 
promoters was assessed by co-transfecting with the active nuclear DNA-binding region of either 254 
Srebp1 or Srebp2. Consistent with previous in vitro observations that fads2d6a contains an SRE 255 

response element in the promoter region [17] the data indicate that both Srebp1 and Srebp2 promote 256 
the expression of fads2d6a. The promoters of both elovl5a and elovl5b duplicated genes were also 257 
highly activated (Fig. 4) and Srebp2 showed higher activity than Srebp1 for elovl5b and fads2d6a, 258 
whereas elovl5a was activated equally by both Srebp mature proteins. Co-transfection of FHM cells 259 
with ligand-activated salmon Ppars did not stimulate expression from elovl5a, elovl5b, or fads2d6a; 260 

promoters, however the fads2d6a promoter was significantly activated by Lxr (Fig. 5).  261 

3.4. Nutritional regulation of the expression of transcription factors 262 

Regulation of TF genes in response to dietary lipid composition was examined in pyloric caeca from 263 
salmon post-smolts fed diets containing either FO rich in EPA, DHA and cholesterol, or VOs rich in 264 
C18 FA, 18:1n-9 (RO), 18:2n-6 (SO), or 18:3n-3 (LO) but lacking LC-PUFA and cholesterol [2]. 265 
Compared to the FO-fed group, there was a significant increase of srebp1 and srebp2 transcripts in the 266 
pyloric caeca of fish fed the RO and LO diets (Fig. 6). The same trend was observed in fish fed the 267 

SO diet suggesting biological significance although not statistically. No differences were found 268 
between the dietary groups with regard to the expression of lxr or ppar α, β or γ. 269 

 270 

4. Discussion 271 

Elucidating the regulation of lipid and fatty acid metabolism in fish at a fundamental level is critical to 272 

understanding the relationships between lipid biosynthesis and metabolism and dietary lipid supply in 273 
fish, and will be crucially important to sustain the growth of aquaculture against a background of 274 
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static or diminishing supplies of fish oil derived from wild fisheries. To address these relationships we 275 
have undertaken this study to investigate the role of key lipid-regulated TFs on several salmon genes 276 
in an Atlantic salmon cell line, SHK-1, with a focus on genes of the LC-PUFA biosynthetic pathway. 277 
The SHK-1 cell line was initially developed from salmon head kidney tissue and is possibly 278 
leucocyte-derived, showing both macrophage- or dendritic-like phenotypes [18]. However, as a 279 
suitable salmon liver- or intestine-like cell line is lacking, the SHK-1 cell line was recently 280 
successfully utilized as a model for studying salmon lipid metabolism [13] on the basis that the 281 

critical transcriptional regulators of macrophage lipid homeostasis were the same as those in liver and 282 
they regulated similar target genes [19,20]. Thus, the response of this cell line to supplementation or 283 
depletion of cholesterol or fatty acids suggested the involvement of Srebp and Lxr in regulating 284 
several critical lipid biosynthetic genes [13]. To extend these studies and investigate the roles of 285 
individual TFs and their target genes more specifically we first characterized the ligand-activation 286 
dependency of Lxr and developed promoter/reporter gene constructs to investigate the role of Srebp, 287 

Lxr and Ppar in Atlantic salmon. 288 

4.1. Lxr ligand activation 289 

A single Lxr subtype has been identified in various fish species (compared to two in mammals), and 290 
all show a highly conserved structure across teleost fish, amphibians, birds and mammals [8]. 291 
Although a salmon lxr cDNA had been characterized the response of the corresponding receptor to 292 
activating ligands had not been tested [12]. Accordingly, concentration-response curves for Lxr 293 
ligands indicated that natural oxysterols including 20S-OH and 22R-OH (but not cholesterol) and the 294 
fungal metabolite paxilline were activators of Atlantic salmon Lxr. As with other vertebrate LXRs [8], 295 
the synthetic agonists T0901317 and GW3965 were strong activators of Atlantic salmon Lxr. Thus the 296 
synthetic agonists T0901317 and GW3965 were considered suitable tools for cellular assays of Lxr 297 
function. 298 

4.2. Transcriptional regulation of genes of the lipid metabolism 299 
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The genetic control of lipid metabolism involves a complex interplay of transcription factors and 300 
regulatory loops acting on many genes of lipid metabolism and transport. For example, in mammals, 301 
LXR can mediate the regulation of lipogenesis through the direct activation of genes involved in lipid 302 
biosynthesis, or in a SREBP1c-dependent manner [10,21,22]. In mammals, two SREBP1 isoforms, 303 
SREBP1a and SREBP1c, are encoded by a single gene through the use of alternative start 304 
transcription sites, while a separate gene encodes Srebp2 [23]. Given this complexity, elucidated from 305 
studies in human and mammalian models, the present study aimed to determine if similar regulatory 306 

systems exist in fish due to the increasing importance of understanding basic lipid metabolic 307 
processes in modern aquaculture. In agreement with recent studies performed in rainbow trout 308 
(Oncorhynchus mykiss) [24,25], treatment of Atlantic salmon SHK-1 cells with Lxr agonists resulted 309 
in the upregulation of mRNAs for several important lipid metabolic genes, including fas involved in 310 
de novo biosynthesis of fatty acids and abca1, which controls the reverse cholesterol efflux (See 311 
diagram in Fig. 7). Ligand-activated Lxr also induced the expression of both srebp1 and srebp2 in 312 

SHK-1 cells. Similarly, SREBP1c and also FAS and ABCA1 are established direct LXR targets in 313 
various human and rodent systems [10,21,26]. However, the LXR-mediated induction of Srebp2 is not 314 
observed in mammals [22], and may be specific to Atlantic salmon.  According to our results, several 315 
groups have reported LXR autoregulatory behavior in mammals through binding to LXRE (LXR 316 

response element) present in LXRα promoter [26]. 317 

Although vertebrates have the capability for endogenous synthesis of monounsaturated fatty acids 318 

from the saturated fatty acid products of FAS through the action of stearoyl CoA desaturase (SCD or 319 

'9 desaturase), they are incapable of creating LC-PUFA de novo. Vertebrates thus require either 320 

dietary LC-PUFA directly or, depending upon species, they can produce the physiologically important 321 
ARA, EPA and DHA by desaturation and elongation of dietary shorter chain PUFA, linoleic (18:2n-322 
6) and α-linolenic (18:3n-3) acids, through the action of Fads1 and 2 and Elovl5 [27]. Intense interest 323 
has been paid to vertebrate LC-PUFA enzymes given their hormonal, ontogenetic and/or nutritional 324 

regulation in vertebrates [28,29]. Salmon Elovl5 enzymes are encoded by two very similar duplicated 325 
genes [3]. Neither mRNA was affected by Lxr agonist in SHK-1 cells, despite the elovl5 gene 326 
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promoters being activated by co-transfection with nSrebps, which indicates that, although Srebps 327 
were induced in the cell line, under the experimental condition used they were not processed to 328 
transcriptionally active forms. In mammals, Elovl5 is also not an LXR target, but is secondarily 329 
activated through LXR effects on Srebp1c [30]. Salmon fads2 was significantly increased by Lxr 330 
agonist in vitro, and strongly activated by nSrebps indicating that this gene is a direct target of both 331 
transcription factors. In mammals, LXR agonist increased Fads1 and Fads2 expression although the 332 
results were attributed to a secondary LXR-dependent induction of SREBP1c [31]. The promoter 333 

element of the Fads2 gene conferring Srebp1 response is highly conserved in several vertebrates 334 

including Atlantic salmon, with a potential SRE site and a NF-Y cofactor site [17].  335 

Notably, Atlantic salmon elovl5 duplicates exhibit differential tissue expression patterns and respond 336 
differently to dietary nutrients [3,32]. Accordingly, our results show that elovl5a is equally regulated 337 
by both Srebp1 and Srebp2, whereas elovl5b regulation by Srebp2 is 2-fold greater than that exhibited 338 

in response to Srebp1, possibly as result of sequence divergence in the promoter regions of these 339 

genes.  340 

PPARs are also central to the transcriptional control of lipid metabolism and several interactions with 341 
LXRs and SREBPs have been proposed [33,34]. Mice knockout assays and subsequent in silico 342 
analysis confirmed that PPARα induces Srebp1 and Srebp2 expression through the interaction with 343 
PPRE (PPAR response element) in the mammalian Srebp2 promoter [34]. In SHK-1 cells, few effects 344 
were observed upon treatment with WY14643, a Pparα specific ligand, or 2-bromopalmitate, a non-345 
metabolizable fatty acid activator of teleost Pparα and Pparβ [15]. However, bromopalmitate induced 346 
the expression of srebp2, whereas WY14643 had no effect. This suggests a Pparβ-mediated effect, 347 
although it is also possible that the lack of response to the Pparα-specific WY14643 is due to a limited 348 

ppar subtype expression profile in SHK-1 cells. 349 

4.3. Dietary regulation of lipid transcription factors 350 



 

 

15 

The in vivo significance of the results from the SHK-1 cell line and promoter assays was previously 351 
shown by the observation that hepatic srebp2 mRNA levels and LC-PUFA biosynthetic gene 352 
expression and biosynthesis increased in salmon fed diets containing high levels of VO [2]. In this 353 
study, similar results for the expression of LC-PUFA biosynthetic genes were observed in the 354 
intestine (pyloric caeca) of salmon fed VO [3]. The pyloric caeca of salmon constitutes the major 355 
tissue in terms of nutrient uptake, and lipid digestion and transport [35], and is also the tissue that 356 
exhibited the highest level of expression of srebps and lxr mRNAs in Atlantic salmon [13]. Therefore, 357 

if the LC-PUFA biosynthetic genes, elovl5 and fads2, are driven by Srebps in vivo, then the same 358 
increase in Srebps should be observed in intestine from VO-fed fish. As the present study has shown, 359 
this was indeed the case. Our results indicated that, among the transcription factors studied, only 360 
srebp1 and srebp2 expression was increased significantly in the pyloric caeca of Atlantic salmon fed 361 
rapeseed oil (RO) and linseed oil (LO) compared to the expression in fish fed FO. Plant-derived 362 
products constitute the perfect activation ground for SREBPs. In the absence of sterols, the TF amino-363 

terminus is proteolytically released from the endoplasmic reticulum membrane and transported into 364 
the nucleus where it binds SRE (serum response element) of specific sets of target genes [36]. In 365 
mammals, SREBP1 recognizes SRE sites in the promoters of Srepb1 and Srebp2 [37], thus it is likely 366 
that salmon Srebp1 activated in low sterol conditions, induced by the inclusion of VO, promoted its 367 
own expression and that of srebp2 in a positive-feedback mechanism. Despite TF responses to dietary 368 
lipid variations in fish have been reported at specific developmental stages [12], no effects of VO 369 

inclusion were observed in the expression of lxr or ppar in this study.  370 

5. Conclusions 371 

The results of the present study showed that the fatty acyl elongases and desaturases responsible for 372 
endogenous production of LC-PUFA from PUFA in Atlantic salmon were primarily regulated by 373 
Srebps, and that Lxr may also be involved in regulating desaturases, but not elongases, whereas there 374 

was no evidence for a direct role of Ppars, at least in the salmon cell line tested. ABCA1, a gene 375 
central to the process of reverse cholesterol transport, and which is a direct LXR target in mammals, 376 
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was also a target of Lxr in salmon. Furthermore fas and both srebp genes, responsible for the major 377 
steps of lipogenesis, are direct Lxr targets in salmon as they are in mammals. Thus, overall, the 378 
transcriptional regulatory systems that drive cholesterol transport from the cellular space to 379 
lipoprotein, initiate lipogenesis, and regulate LC-PUFA biosynthesis in mammals are largely 380 
conserved in Atlantic salmon. This knowledge will be key to deriving a conceptual framework for 381 
future experiments designed to answer more applied questions related to lipid metabolism and 382 
nutrition with regard to the development and optimization of more sustainable aquaculture feeds. 383 

Importantly the present results also showed that these lipid regulatory factors and the genes that they 384 
target are ancient, likely to be have arisen early in vertebrate evolution. Thus, further basic studies of 385 
evolutionarily conserved pathways of lipid metabolic control across vertebrates might also elucidate, 386 
through definition of fundamental regulatory mechanisms, medically relevant aspects of human lipid 387 

nutrition and metabolism. 388 

 389 

Acknowledgements 390 

We thank Dr. Sofia Morais who kindly provided Atlantic salmon pyloric caeca RNA samples. This 391 
research was supported by a Horizon Scholarship to Greta Carmona-Antoñanzas awarded by the 392 

University of Stirling (Scotland). 393 

 394 

Conflict of interest 395 

The authors declare that there are no conflicts of interest. 396 

 397 

References 398 

[1] B.E. Torstensen, J.G. Bell, G. Rosenlund, R.J. Henderson, I.E. Graff, D.R. Tocher, Ø. Lie, J.R. 399 
Sargent, Tailoring of Atlantic salmon (Salmo salar L.) flesh lipid composition and sensory 400 



 

 

17 

quality by replacing fish oil with a vegetable oil blend, J. Agric. Food Chem. 53 (2005) 10166-401 
10178. 402 

[2] M.J. Leaver, L.A.N. Villeneuve, A. Obach, L. Jensen, J.E. Bron, D.R. Tocher, J.B. Taggart, 403 
Functional genomics reveals increased cholesterol and highly unsaturated fatty acid 404 
biosynthesis after dietary substitution of fish oil with vegetable oils in Atlantic salmon (Salmo 405 
salar), BMC Genomics 9 (2008) 299. 406 

[3] S. Morais, O. Monroig, X.Z. Zheng, M.J. Leaver, D.R. Tocher, Highly unsaturated fatty acid 407 

synthesis in Atlantic salmon: Characterization of ELOVL5-and ELOVL2-like elongases, Mar. 408 
Biotechnol. 11 (2009) 627-639. 409 

[4] A.P. Simopoulos, The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular 410 
disease and other chronic diseases, Exp. Biol. Med. (Maywood) 233 (2008) 674-688. 411 

[5] P.W. Wilson, R.B. D'Agostino, H. Parise, L. Sullivan, J.B. Meigs, Metabolic syndrome as a 412 
precursor of cardiovascular disease and type 2 diabetes mellitus, Circulation 112 (2005) 3066-413 

3072. 414 
[6] B. Desvergne, L. Michalik, W. Wahli, Transcriptional regulation of metabolism, Physiol. Rev. 415 

86 (2006) 465-514. 416 
[7] T. Jakobsson, E. Treuter, J.Å. Gustafsson, K.R. Steffensen, Liver X receptor biology and 417 

pharmacology: new pathways, challenges and opportunities, Trends Pharmacol. Sci. 33 (2012) 418 
394-404. 419 

[8] E.J. Reschly, N. Ai, W.J. Welsh, S. Ekins, L.R. Hagey, M.D. Krasowski, Ligand specificity and 420 
evolution of liver X receptors, J. Steroid Biochem. Mol. Biol. 110 (2008) 83-94. 421 

[9] T.I. Jeon, T.F. Osborne, SREBPs: metabolic integrators in physiology and metabolism, Trends 422 
Endocrinol. Metab. 23 (2012) 65-72. 423 

[10] S.B. Joseph, B.A. Laffitte, P.H. Patel, M.A. Watson, K.E. Matsukuma, R. Walczak, J.L. Collins, 424 
T.F. Osborne, P. Tontonoz, Direct and indirect mechanisms for regulation of fatty acid synthase 425 
gene expression by liver X receptors, J. Biol. Chem. 277 (2002) 11019-11025. 426 



 

 

18 

[11] M.J. Leaver, M.T. Ezaz, S. Fontagne, D.R. Tocher, E. Boukouvala, G. Krey, Multiple 427 
peroxisome proliferator-activated receptor  β  subtypes  from  Atlantic  salmon  (Salmo salar), J. 428 
Mol. Endocrinol. 33 (2007) 391-400. 429 

[12] L. Cruz-Garcia, M. Minghetti, I. Navarro, D.R. Tocher, Molecular cloning, tissue expression 430 
and regulation of liver X receptor (LXR) transcription factors of Atlantic salmon (Salmo salar) 431 
and rainbow trout (Oncorhynchus mykiss), Comp. Biochem. Physiol. 153 (2009) 81-88. 432 

[13] M. Minghetti, M.J. Leaver, D.R. Tocher, Transcriptional control mechanisms of genes of lipid 433 

and fatty metabolism in the Atlantic salmon (Salmo salar L.) established cell line, SHK-1, 434 
Biochim. Biophys. Acta 1811 (2011) 194-202. 435 

[14]   National Research Council (NRC), Nutrient requirements of fish and shrimp, National 436 
Academies Press, Washington D.C., 2011. 437 

[15] L. Colliar, A. Sturm, M.J. Leaver, Tributyltin is a potent inhibitor of piscine peroxisome 438 
proliferator-activated  receptor  α  and  β,  Comp.  Biochem.  Physiol.  153  (2011)  168-173. 439 

[16] G. Carmona-Antoñanzas, O. Monroig, J.R. Dick, A. Davie, D.R. Tocher, Biosynthesis of very 440 
long-chain fatty acids (C > 24) in Atlantic salmon: Cloning, functional characterisation, and 441 
tissue distribution of an Elovl4 elongase, Comp. Biochem. Physiol. B Comp. Biochem. 159 442 
(2011) 122-129. 443 

[17] X. Zheng, M.J. Leaver, D.R. Tocher, Long-chain polyunsaturated fatty acid synthesis in fish: 444 
Comparative analysis of Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) 445 

'6 fatty acyl desaturase gene promoters, Comp. Biochem. Physiol. 154 (2009) 255-263. 446 

[18] B.H. Dannevig, B.E. Brudeseth, T. Gjøen, M. Rode, H.I. Wergeland, Ø. Evensen, C.M. Press, 447 
Characterisation of a long-term cell line (SHK-1) developed from the head kidney of Atlantic 448 
salmon (Salmo salar L.), Fish Shellfish Immunol. 7 (1997) 213-226. 449 

[19] A. Castrillo, P. Tontonoz, Nuclear receptors in macrophage biology: at the crossroads of lipid 450 
metabolism and inflammation, Annu. Rev. Cell Dev. Biol. 20 (2004) 455-480. 451 



 

 

19 

[20] A. Caimari, P. Oliver, J. Keijer, A. Palou, Peripheral blood mononuclear cells as a model to 452 
study the response of energy homeostasis-related genes to acute changes in feeding conditions, 453 
OMICS 14 (2010) 129-141. 454 

[21] J.J. Repa, S.D. Turley, J.A. Lobaccaro, J. Medina, L. Li, K. Lustig, B. Shan, R.A. Heyman, J.M. 455 
Dietschy, D.J. Mangelsdorf, Regulation of absorption and ABC1-mediated efflux of cholesterol 456 
by RXR heterodimers, Science 289 (2000) 1524-1529. 457 

[22] J.J. Repa, G. Liang, J. Ou, Y. Bashmakov, J.M. Lobaccaro, I. Shimomura, B. Shan, M.S. 458 

Brown, J.L. Goldstein, D.J. Mangelsdorf, Regulation of mouse sterol regulatory element-459 
binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta, Genes 460 
Dev. 14 (2000) 2819-2830. 461 

[23] X. Hua, J. Wu, J.L. Goldstein, M.S. Brown, H.H. Hobbs, Structure of the human gene encoding 462 
sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and 463 
SREBF2 to chromosomes 17p11.2 and 22q13, Genomics 25 (1995) 667-673. 464 

[24]    L. Cruz-Garcia, J. Sánchez-Gurmaches, J. Gutiérrez, I. Navarro, Regulation of LXR by fatty 465 
acids, insulin, growth hormone and tumor necrosis factor-a in rainbow trout myocytes, Comp. 466 
Biochem. Physiol. 160 (2011) 125-136. 467 

[25] L. Cruz-Garcia, J. Sánchez-Gurmaches, J. Gutiérrez, I. Navarro, Role of LXR in trout 468 
adipocytes: Target genes, hormonal regulation, adipocyte differentiation and relation to 469 
lipolysis, Comp. Biochem. Physiol. 163 (2012), 120-126. 470 

[26] B.A. Laffitte, S.B. Joseph, R. Walczak, L. Pei, D.C. Wilpitz, J.L. Collins, P. Tontonoz, 471 
Autoregulation of the human liver X receptor alpha promoter, Mol. Cell. Biol. 21 (2001) 7558-472 
7568. 473 

[27] D.R. Tocher, Metabolism and functions of lipids and fatty acids in teleost fish, Rev. Fish. Sci. 474 
11 (2003) 107-184. 475 

[28] Y. Wang, D. Botolin, B. Christian, J. Busik, J. Xu, D.B. Jump, Tissue-specific, nutritional, and 476 
developmental regulation of rat fatty acid elongases, J. Lipid Res. 46 (2005) 706-715. 477 



 

 

20 

[29] Y. Wang, D. Botolin, J. Xu, B. Christian, E. Mitchell, B. Jayaprakasam, M.G. Nair, J.M. Peters, 478 
J.V. Busik, L.K. Olson, D.B. Jump, Regulation of hepatic fatty acid elongase and desaturase 479 
expression in diabetes and obesity, J. Lipid Res. 47 (2006) 2028-2041. 480 

[30] Y. Qin, K.T. Dalen, J.A. Gustafsson, H.I. Nebb, Regulation of hepatic fatty acid elongase 5 by 481 
LXRalpha-SREBP-1c, Biochim. Biophys. Acta 1791 (2009) 140-147. 482 

[31]   T.Y. Nara, W.S. He, C. Tang, S.D. Clarke, M.T. Nakamura, The E-box like sterol regulatory 483 
element mediates the suppression of human Delta-6 desaturase gene by highly unsaturated fatty 484 

acids, Biochem. Biophys. Res. Commun. 296 (2002) 111-117.  485 
[32] G. Carmona-Antoñanzas, D.R. Tocher, J.B. Taggart, M.J. Leaver, An evolutionary perspective 486 

on Elovl5 fatty acid elongase: comparison of Northern pike and duplicated paralogs from 487 
Atlantic salmon, BMC Evol. Biol. 13 (2013) 85. 488 

[33] L. Michalik, J. Auwerx, J.P. Berger, V.K. Chatterjee, C.K. Glass, F.J. González, P.A. Grimaldi, 489 
T. Kadowaki, M.A. Lazar, S. O'Rahilly, C.N.A. Palmer, J. Plutzky, J.K. Reddy, B.M. 490 

Spiegelman, B. Staels, W. Wahli, International Union of Pharmacology. LXI. Peroxisome 491 
proliferator-activated receptors, Pharmacol. Rev. 58 (2006) 726-741. 492 

[34]   K. Martens, E. Ver Loren van Themaat, M.F. van Batenburg, M. Heinäniemi, S. Huyghe, P. 493 
Van Hummelen, C. Carlberg, P.P. Van Veldhoven, A. Van Kampen, M. Baes, Coordinate 494 
induction of PPAR alpha and SREBP2 in multifunctional protein 2 deficient mice, Biochim. 495 
Biophys. Acta 1781 (2008) 694-702. 496 

[35]   Å. Krogdahl, S. Nordrum, M. Sørensen, L. Brudeseth, C. Røsjø, Effects of diet composition on 497 
apparent nutrient absorption along the intestinal tract and of subsequent fasting on mucosal 498 
disaccharidase activities and plasma nutrient concentration in Atlantic salmon Salmo salar L., 499 
Aquacult. Nutr. 5 (1999) 121-133. 500 

[36] P.J. Espenshade, SREBPs: sterol-regulated transcription factors, J. Cell Sci. 119 (2006) 973-501 
976. 502 

[37] M. Amemiya-Kudo, H. Shimano, A.H. Hasty, N. Yahagi, T. Yoshikawa, T. Matsuzaka, H. 503 
Okazaki, Y. Tamura, Y. Iizuka, K. Ohashi, J.I. Osuga, K. Harada, T. Gotoda, R. Sato, S. 504 



 

 

21 

Kimura, S. Ishibashi, N. Yamada, Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to 505 
different target promoters of lipogenic and cholesterogenic genes, J. Lipid Res. 43 (2002) 1220-506 
1235. 507 

 508 

Figure captions 509 

Figure 1. Activation of Atlantic salmon LXR. 510 

Concentration-response curve for activation of Atlantic salmon LXR ligand-binding domain by 511 
T091317, GW3965, paxilline, cholesterol and oxysterols (20S-OH and 22R-OH). FHM cells were 512 
transfected with Gal4-LXR constructs, firefly luciferase reported plasmid pGL4.31 and an internal 513 
Renilla luciferase reporter to correct for transfection efficiencies. The ordinate represents activation of 514 
LXR as arbitrary units of firefly luciferase normalized to Renilla luciferase. Data points represent the 515 

mean of three independent experiments (n = 9). 516 

Figure 2. Effects LXR and PPAR agonists on transcription factor gene expression in Atlantic 517 

salmon SHK-1 cells. 518 

Expression of lxr, srebp1, srebp2, pparα, pparβ and pparγ in SHK-1 cells exposed to 20  μM  519 
cholesterol  (Chol),  10  μM  of  LXR  agonists  T0901317  (T0)  or  GW3965  (GW),  25  μM  of  PPAR  520 
agonists 2-bromopalmitate (2-BP) or WY14643 (WY), or carrier alone (EtOH). Gene expression is 521 

expressed as mean normalized ratios (n = 3, ± SE) between the copy numbers of target genes and the 522 
mean copy number of the reference genes (elf-1α and β-actin). Bars bearing different letters are 523 

significantly  different  (ANOVA;;  Tukey’s  test;;  P < 0.05). 524 

Figure 3. Effects LXR and PPAR agonists on lipid metabolic gene expression in Atlantic salmon 525 

SHK-1 cells. 526 

Expression of Atlantic salmon lipid metabolic genes in SHK-1  cells  exposed  to  20  μM  cholesterol  527 
(Chol),  10  μM  of  LXR  agonists  T0901317  (T0)  or  GW3965  (GW),  25  μM  of  PPAR  agonists  2-528 
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bromopalmitate (2-BP) or WY14643 (WY), or carrier alone (EtOH). Gene expression was expressed 529 
as mean normalized ratios (n = 3, ± SE) between the copy numbers of target genes and the mean copy 530 
number of the reference genes (elf-1α and β-actin). Bars bearing different letters are significantly 531 
different  (ANOVA;;  Tukey’s  test;;  P < 0.05).  532 

Figure 4. Effects of SREBPs on LC-PUFA gene promoters. 533 

Co-transfection in FHM cells with Srebp1, or Srebp2 expression constructs (empty pcDNA3 534 

expression vector as control), and reporter pGL4.10 [luc2] directed by the promoters of salmon 535 
elovl5a (- 3618 nt), elovl5b (- 3141 nt), or fads2d6a (- 1791 nt). Error bars indicate SE between data 536 
points (n = 3) of independent luciferase assays. * Significant differences between treatments are 537 

indicated  (ANOVA;;  Tukey’s  test;;  P < 0.05). 538 

Figure 5. Effects of LXR and PPARs on LC-PUFA gene promoters. 539 

Co-transfection in FHM cells with Pparα or Pparβ expression constructs (empty pcDNA3 expression 540 
vector as control), and reporter pGL4.10 [luc2] directed by the promoters of salmon elovl5a (- 3618 541 
nt), elovl5b (- 3141 nt), or fads2d6a (- 1791 nt). After transfection, FHM cells were incubated with 542 
Ppar agonists WY14643 (25 µM) or 2-bromopalmitate (2-BP, 25 µM), Lxr synthetic agonist GW3965 543 
(10 µM), or ethanol carrier (EtOH). Error bars indicate SE between data points (n = 3) of independent 544 
luciferase assays.  *  Significant  differences  between  treatments  are  indicated  (ANOVA;;  Tukey’s  test;;  545 

P < 0.05). 546 

Figure 6. Nutritional regulation of transcription factor mRNA in Atlantic salmon intestine. 547 

lxr, srebp1, srebp2, pparα, pparβ and pparγ mRNA expression in Atlantic salmon fed diets containing 548 
fish oil (FO), rapeseed oil (RO), soybean oil (SO), or linseed oil (LO) in the pyloric caeca determined 549 
by RT-qPCR. The results shown are means (n = 5) ± SE of normalized  expression  (β-actin and 550 
elongation factor-1alpha reference genes) in relative units (RU). Bars bearing different letters 551 

represent significant differences between dietary treatments for the respective transcripts (REST-MCS 552 

2009 V2; P < 0.05). 553 



 

 

23 

Figure 7. Diagram indicating LXR and SREBP target genes.  554 

A) SHK-1 cells incubated with synthetic Lxr agonists (T0901317 and GW3965) showed that Lxr 555 
regulates multiple genes of the lipid biosynthetic pathway, mediating cross-regulation between 556 
cholesterol and fatty acid biosynthesis. Transcriptional expression of srebp was induced by Lxr 557 
agonist in vitro and dietary lipids (vegetable oils) in salmon intestine. B) Co-transfection assays in 558 
FHM cells indicated that Srebp1 and Srebp2 promote the transcription of elovl5 and fads2, genes of 559 

the LC-PUFA biosynthesis; ER, endoplasmic reticulum; n, amino-terminus.  560 
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