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Abstract

Let G be a connected cubic graph of order n with p as an eigenvalue
of multiplicity k. We show that (i) if 4 ¢ {—1,0} then k < In, with
equality if and only if 4 = 1 and G is the Petersen graph; (ii) If u = —1
then k < $n + 1, with equality if and only if G = Ky; (iii) If 4 =0
then k < in + 1, with equality if and only if G = 2K3.
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1 Introduction

Let G be a regular graph of order n with 4 as an eigenvalue of multiplicity
k, and let t = n — k. Thus the corresponding eigenspace £(u) of a (0, 1)-
adjacency matrix A of G has dimension k and codimension ¢. From [,
Theorem 3.1], we know that if 4 ¢ {—1,0} and ¢ > 2 then k <n — J(-1+
V8n +9), equivalently k < %(t + 1)(t — 2). For cubic graphs, this quadratic
bound improves an earlier cubic bound noted in [4, p.162]. In fact, when
1 # 0 and G is connected, a linear bound follows easily from the equation
tr(4) = 0. To see this, note first that if k¥ > in then p is an integer,
for otherwise it has an algebraic conjugate which is a second eigenvalue
of multiplicity %n It follows that if G is a connected cubic graph then
pe {-2,-1,0,1,2} (see [3, Sections 1.3 and 3.2]). If k = n — 1 then G is

complete, n = 4 and u = —1; otherwise let d be the mean of the eigenvalues
other than 3 and p, so that 34+ ku+(n—k—1)d = 0. We have —3 < d < 3;
moreover, if d = —3 then G is bipartite, ¥k = n — 2 and p = 0 (see [3,

Theorems 3.2.3 and 3.2.4]). We deduce:

(a) if p = —2 then k < %n, ie k<3t

(b) if p = —1 then k < 9n, ie. k < 3t;

(c) if 4 =0 then k <n —2;

(d) if =1 then k < 3n — 3, ie. k < 3t —6;

(e)if p=2then k < in— g ie k< 3t—3.

We use star complements to improve these bounds, and to determine all
the graphs for which the new bounds are attained. Our main result is the

following; here and throughout we use the notation of the monograph [3].

Theorem 1.1. Let G be a connected cubic graph of order n with v as an
etgenvalue of multiplicity k.

(i) If p & {—1,0} then k < %n, with equality if and only if © = 1 and G is
the Petersen graph.

(ii) If p = —1 then k < %n + 1, with equality if and only if G = K4.

(iii) If u =0 then k < %n + 1, with equality if and only if G = 2K3.

It follows that if G is a connected cubic graph of order n > 10 with pu
as an eigenvalue of multiplicity k then k < %n — 1 when p ¢ {-1,0}, and
k< %n otherwise.

2 Preliminaries

Let G be a graph of order n with p as an eigenvalue of multiplicity k. A
star set for p in G is a subset X of the vertex-set V(G) such that | X| =k
and the induced subgraph G — X does not have p as an eigenvalue. In this
situation, G — X is called a star complement for p in G. The fundamental
properties of star sets and star complements are established in [3, Chapter
5]. We shall require the following results, where for any X C V(G), we write
Gx for the subgraph of G induced by X. We take V(G) = {1,...,n}, and

write u ~ v to mean that vertices © and v are adjacent.



Theorem 2.1. (See [3, Theorem 5.1.7].) Let X be a set of k vertices in G
Ax BT

and suppose that G has adjacency matrix ( B C

), where Ax 1is the

adjacency matriz of Gx.
(i) Then X is a star set for p in G if and only if u is not an eigenvalue of
C and

pl — Ax = BT (uI — C)7'B. (1)

. . . x
(ii) If X is a star set for p then E(u) consists of the vectors ( (ul — C)~'Bx )

(x € R).
Let H = G — X, where X is a star set for . The columns b, (v € X)

of B are the characteristic vectors of the H-neighbourhoods Ay (u) = {v €
V(H):u~v} (ue X). Eq. (1) shows that

wif u=wv
b, (ul —C) by ={ —lifu~wv
0 otherwise,

and we deduce from Theorem 2.1:

Lemma 2.2. If X is a star set for p, and p ¢ {—1,0}, then the neighbour-
hoods Ag(u) (u € X) are non-empty and distinct.

Let P be the matrix of the orthogonal projection of IR™ onto &£(u) with
respect to the standard orthonormal basis {e;,es,...,e,} of IR™. Since P
is a polynomial in A [3, Equation 1.5] we have uPe; = APe; = PAe; (i =
1,...,n), whence:

Lemma 2.3. puPej =3, ,Pe; (i=1,...,n).
The next observation follows from [3, Proposition 5.1.1].

Lemma 2.4. The subset S of V(G) lies in a star set for p if and only if
the vectors Pe; (i € S) are linearly independent.

By interlacing [3, Corollary 1.3.12] we have:

Lemma 2.5. If S is a star set for p in G and if U is a proper subset of S
then S\ U is a star set for p in G —U.

We shall also require:

Lemma 2.6. (See [3, Theorem 5.1.6].) Let v be an eigenvalue of the graph
G. If G is connected then G has a connected star complement for p.

In the case of connected cubic graphs, we can therefore make use of the
following result.

Proposition 2..7. Let G be a connected cubic graph of order n with u as
an eigenvalue of multiplicity k > %n Let H be a connected star complement
forp, and let H=G — X, X =V(H), |X| =t. Then each vertex in X is
adjacent to some vertex in X, and one of the following holds:



(a) k=t, |E(X,X)| =t and H is unicyclic,

(b) k=t, |E(X,X)|=t+2 and H is a tree,

(c)k=t+2, |[E(X,X)|=t+2, u€{-1,0} and H is a tree.

Proof. Ifu € X then uPey, = Yica  (u)PeitXjen ;(u)Pej, where Ax (u) =
{i € X :i ~u}. It now follows from Lemma 2.4 that Ay (u) # 0. For j € X,
let dj = [Ag(5)], ej = |Ax(j)|. Then

E(X,X)| = £, xe; =3t — £, o¢d; = 3t — 2| E(H)|.

Since |E(H)| >t — 1 we deduce that |E(X,X)| < ¢+ 2. Since k > in and
each vertex in X has a neighbour in X, we have

t<k<|BE(X,X)|<t+2 and |E(H)|<t.

If |[E(H)| =t then H is unicyclic and t = k = |E(X, X)|: this is case (a) of
the Proposition. If |[E(H)| =t — 1 then H is a tree and |E(X, X)| =t + 2;
moreover, k is t or t + 2 because n is even. If kK =t we have case (b). If
k =t+2 then |[Ag(i)] = 1 for each ¢ € X and so there are two vertices
in X with a common H-neighbourhood. We deduce from Lemma 2.2 that
p € {—1,0} and so we have case (c). O

It follows that k < $n when p ¢ {—1,0}, and k < $n + 1 when p €
{—1,0}. In Sections 3 and 4 we determine the graphs in which these bounds
are attained. It is clear from Proposition 2.7 that the edges between X and
X play a crucial role. The authors of [2] have determined all the graphs for
which E(X, X) is a perfect matching, equivalently all the graphs for which
B =1 in Eq.(1). Their result is the following.

Theorem 2.8. Let G be a graph with X as a star set for the eigenvalue
p. If E(X,X) is a perfect matching then one of the following holds: (a)
G =Ky and p = =1, (b) G =C4 and p =0, (c) G is the Petersen graph
and p=1.

We shall see that when E(X, X) is not a perfect matching, and G is a
connected cubic graph with k£ > %n, it suffices to consider a limited num-
ber of configurations from which we can construct a fragment of G. In
most cases, we invoke Lemmas 2.3 and 2.4 to obtain a contradiction. In
the remaining cases, either the fragment is G itself or we derive a contra-
diction from Theorem 2.1(ii). The configurations that we consider when
uw & {—1,0} are illustrated in Fig. 1, labelled in accordance with various
subcases described in Section 3.

3 The case p & {—1,0}

We retain the notation of Section 2. We assume that G is a connected cubic
graph, with p ¢ {—1,0} and k = %n Thus u € {-2,1,2}. By Lemma
2.6, we know that GG has a connected star complement H for u; accordingly
we have to deal with cases (a) and (b) of Proposition 2.7. In case (a), the
t edges in E(X,X) form a perfect matching (and H is a cycle) because
the vertices in X have distinct H-neighbourhoods. Thus ¢ = 1 and G is
the Petersen graph, by Theorem 2.8. For the remainder of this section, we
therefore assume that |E(X, X)| =t + 2 and H is a tree.
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Figure 1: Configurations in the case u ¢ {—1,0}

We take X = {1,2,...,t}, X = {1,2/,...,¢}, and for each i € X
we denote Y{Pej, : h € Ax(i)} by v;. We distinguish two cases: (1) X
contains a vertex adjacent to three vertices of H, (2) X contains two vertices
with H-neighbourhoods of size 2. In case (1), we may take |[Agy(1)] = 3
and Ag(i) = {i'} (i = 2,...,t). There are two subcases: without loss of
generality, either (1,1) Ay (1) = {2/,3/,4'} or (1,2) Ag(1) = {1/,2/,3'}. In
subcase (1,1), we have

uPey = Pey + Pey + Pey = pPes — vy + pPes — vy + uPey — vy.
For = —2,1,2 respectively we obtain :
2Pe; = 2Pes + vo + 2e3 + vy + 2Pey + vy,
Pe| + vy + vy + vy = Pey + Pes + Pvy,

2Pe| +vo 4+ vy + vy = 2Pey 4+ 2Pe3 + 2Pvy.

In each case, the imbalance of summands of the form Pe; (i € X) yields a
contradiction to Lemma 2.4.
In subcase (1,2), H has degree sequence 13, 2(t=2) and so H is a path; its
endvertices are 2’ and 3'. Note that ¢t > 3 because 2 ¢ 1 ¢ 3. Hence, without
loss of generality, either (1,2,1) Ay (1") = {2/,4'} or (1,2,2) Ay (1') = {4',5'}.
In subcase (1,2,1), we have uPe; = Peys + Pey + Pes, whence

u?Pe| = Pe| + Pey + Pey + pPey + pPesy
that is,

p?Pe; = Pey + (1 + 1)(uPey — vy) + pu(uPes — v3) + pPey — vy, (2)



Now a parity check shows that = 1. (If 4 = 2 then Eq.(2) can be written
in the form ;e xa;Pe; = 0 with ¥;cxa; # 0 mod 2.) Hence

2vy + vy + v4 = 2Pes + Pes + Pey,

and this too contradicts Lemma 2.4
In subcase (1,2,2), again uPe; = Pey + Pey + Peg, and now

u?Pey = Pej + Pey + Pes + pPey + pPes,
that is,
p?Pe; = Pey + pPey — vy + pPes — vs + pu(puPes — vo) + p(puPes — v3).
A parity check shows that ¢ = 1. Hence

vo + v + v4 + v = Pey + Peg + Pey + Pes,

and this contradicts Lemma 2.4.
It remains to consider case (2), where without loss of generality we take
‘AH(l)’ = |AH(2)| = 2 and AH(Z) = {Z/} (Z =3,... ,t).

Lemma 3.1 In Case (2), neither vertex 1 nor vertex 2 is adjacent to two
vertices in {3',4', ... t'}.
Proof. It suffices to rule out the case that Ay (2) = {3',4’}. Here we have
uPes = vy + Pey + Pey = vo + pPes — vy + uPey — v4. A parity check
shows that p = 1. Hence

Pey + vy + vy = vo + Pes + Pey.
and this contradicts Lemma 2.4. O

In view of Lemma 3.1, we may assume that Ag(2) = {2/,3'}. We dis-
tinguish two subcases: (2,1) 1 # 1, (2,2) 1 ~ 1’. In subcase (2,1), we
have 1 ~ 2’ by Lemma 3.1. Moreover, since vertices 1 and 2 have distinct
H-neighbourhoods, we may assume that Ay (1) = {2/,4’}. Now we have

uPe; =vi + Pey + Pey = v + uPey — Peg — vo + uPey — vy

=v1 + uPey — uPes + vy — vo + uPey — vy.
If u =2 then

2Pe1—|—2Pe3—|—v2—|—V4:2Pe2+2Pe4+v1+V3,

and we obtain a contradiction by equating coefficients of Pe;j.
If 4 = —2 then

2Pe1 —|-2P83 + V] +Vvy = 2P62 +2Pe4 + Vg + Vy,

whence vo = Pej + Pegs, a contradiction.
Hence ¢ =1 and we have

Pel—|—P63—|—V2—|—V4:P62+Pe4—|—V1—|—V3.



It follows that Ax (1) = {3}, Ax(2) = {4}, Ax(3) = {1,h} and Ax(4) =
{2,h} for some h > 4. Without loss of generality, h = 5. Thus the ver-
tices 1,2,3,4,5 induce a path which is component of Gx, while any other
component of Gx is a cycle.

By Theorem 2.1(ii), G has a 1-eigenvector x = (x(i));cv () such that
z(l)=1and z(i) =0 (i = 2,...,t). By Lemma 2.3, we have z(i') = 0 for
alli > 5. Let 2(2') = a, so that 2(3') = —a and 2(4") = 1—a. Fori = 2,3,4,
let Agy(i') = {i"}. Then 2(2") =a—1, 2(3") = 0 and z(4”) = —a. Since
vertices 2/,3',4" are endvertices of H, they constitute an independent set.
Thus if 3 ~ 1’ then z(1') = 0 and so z(2") = z(4”) = 0, a contradiction.
Hence 3’ ~ j’ for some j > 5 and we have:

Pey = Pey + Pey + Pey = Pe; — Pey — Peg + Pes + Pesg + Pej + Pey

:Pe1—Pe4+V4—Pe3+Pe2+P63+PeJ~—Vj+Pe4.

Hence v; = Pej + Pej + vy, a contradiction.

Now we turn to subcase (2,2), where 1’ ~ 1 ¢ 3’ and we may assume
that either (2,2,1) 1 ~ 2" or (2,2,2) 1 ~ 4’. In subcase (2,2,1), H has degree
sequence 12, 2(0=2) and so H is a path; its endvertices are 2’ and 3. Since
Ap(2) = {2/,3'}, the subgraph of G induced by V(H) U {2} is a (¢t + 1)-
cycle. By Lemma 2.5, this subgraph has p as a simple eigenvalue, and so
w=x2.

Since 1’ is not adjacent to both 2’ and 3’, we should consider just three
possibilities: (2,2,1,1) Ay (1') = {4,5'}, (2,2,1,2) Ap(1') = {2/,4'}, (2,2,1,3)
Ap(1) ={3,4'}.

In subcase (2,2,1,1) we have uPe; = vy + Pey + Pey, whence

p?Pei = uvy + Pey + Pey + Pey + puPey

= pvy + Pe; + pPey — vy + pPes — vy + p(uPeg — va — Pey)
= pv1 + Pey + pPey — vy + pPes — vs + p>Pey — vy — p(pPes — vs).

Now a parity check gives a contradiction.
In subcase (2,2,1,2), we have uPe; = vi + Pey + Pey, and so

p?Pey = pvi+Pei+Pey+Pey+pPey = uvi+Pei+uPey—vy+(u+1)Pey

= vy + Pe; + pPey — vy + (u+ 1) (uPey — vo — Pey)
= pvy + Pe; + pPey — vy + (u+ 1)(uPey — vo — ppPes + v3).
If 4 =2 then

3Pei + v4 + 3vy + 6Pe3 = 2vy 4+ 2Pey + 6Peg + 3vs.
If p = —2 then
3Peqi + 2vy 4+ 2Pey + v4 + 2Pe3 + v3 = 2Peg + vo.

For both values of 1, Lemma 2.4 is contradicted.



In subcase (2,2,1,3), we have uPe; = vy + Pey + Pey and so
p?Pey = vy + Pej + Pesy + Pey + pPey

= uv1+ Pey + pPes — vy + pPey — vy + pPey
= uvi + Pey + pPes — vy + uPey — vy + p(uPey — vo — pPes + vs).

Again a parity check gives a contradiction.

Now we consider subcase (2,2,2), where 1 ~ 4" and H is a path with end-
vertices 3’ and 4. By Lemma 2.5 the subgraph of G induced by V (H) U {3,4}
has 1 as a double eigenvalue; hence this subgraph is a (t42)-cycle, and p = 1.
Let Ag(3') = {i'}, and let H; be the subgraph induced by V(H) U {i}.
Then i € {1,2} for otherwise H; is a tree without a 1-eigenvector x such
that (i) = 1. Similarly, Ay (4") = {j'}, where j € {1,2}. Since t > 3 we
have i # j, and so either (2,2,2,1) Ax(3") = {2/}, Ax(4) = {1’} or (2,2,2,2)
Ax(3) = {1}, Ax(4) = {2},

In subcase (2,2,2,1), we have uPey = Pey + v4, whence

M2Pe4 = Pey + Pe; + Pey + puvy = Pey + Pe; + uPe; — Pey — vi + vy

= Pey, + Pe; + uPe; — uPey+ vy — vy + puvy.

Since p = 1, we have
Peys + vi = 2Pe + 2vy,

contradicting Lemma 2.4.
In subcase (2,2,2,2), we have uPey = Pey + v4 and

M2Pe4 = Pey + Pe; + Pey + uvy = Pey + Pe; + uPeg — Peg — va + vy

= Pey + Pe; + uPes — pPes 4+ vy — vo + uvy.

Since p = 1, we have
Pe3 4 vy = Pe; + Pey + v3 + vy,

contradicting Lemma 2.4.
We have now proved:

Proposition 3.2. Let G be a connected cubic graph of order n with an
eigenvalue p of multiplicity %n If u ¢ {—1,0} then p =1, n =10 and G is
the Petersen graph.

4 The case p € {—1,0}

In this section we assume that G is a connected cubic graph, with p €
{-1,0} and k = $n +1 (that is, k = ¢ + 2). By Lemma 2.6, we know that
G has a connected star complement for u, say H = G — X. By Proposition
2.7, H is a tree; moreover |[Ag(u)| =1 for all w € X, and so Gx is a union
of disjoint cycles. Note that there exist (at least) two vertices in X with a
common neighbour in H.



Lemma 4.1. Let G be graph with X as a star set for the eigenvalue p,
and let H = G — X. Suppose that u,v are distinct vertices in X such that
Ap(u) = Ag(v).

(i) If u = —1 then Ax(u) U {u} = Ax(v) U{v} (and sou,v are co-duplicate
vertices).

(i) If p =0 then Ax(u) = Ax(v) (and so u,v are duplicate vertices).

Proof. Both (i) and (ii) follow from Lemma 2.4 and the relation
,uPeu - EiEAX(u)Pei = uPev - EjEAX(v)Pej'

d

Let X = {1,2,...,t+2}, X = {1',2,...,t'}, with Ag(1) = Ag(2) =
{1’}. Suppose first that 4 = —1. By Lemma 4.1(i), we have 1 ~ 2, and we
may take Ax (1) = {2,3}, Ax(2) = {1,3}. This argument shows that no
vertex of H is adjacent to two vertices in different components of Gx

If 3 ~ 1’ then G = Ky, and so we suppose that 3 ~ 2. By Theo-
rem 2.1(ii), G has a (—1)-eigenvector x with (1) = 1 and z(i) = 0 (i =
2,3,...,t+2). We have 2(1') = 2(2') = —1. Consider an r-cycle C other
than 1231 in Gx. If C has two vertices with a common neighbour in H then
r = 3, and by Lemma 2.3, z(i') = 0 for each neighbour ¢’ in H of a vertex
of C. The same conclusion holds when C' does not have two vertices with
a common neighbour in H. It follows that z(i') = 0 (i = 3,...,t). Thus
the non-zero entries of x are 1, —1, —1, and x is not orthogonal to the all-1
vector j € IR™. This is a contradiction because j is a 3-eigenvector of G.

Next suppose that g = 0. By Lemma 4.1(ii), we may take Ax (1) =
Ax(2) = {3,4}, where 3 ¢ 1’ ¢ 4; moreover, 3 % 4 because Ay (4) #
(). Note that again no vertex of H is adjacent to two vertices in different
components of Gx. Now let x be a 0-eigenvector with z(1) =1 and z(i) =
0(i=2,...,t+2). Note that (1) = 0, and consider an r-cycle C' other
than 13241 in Gx. If C has two vertices with a common neighbour in H
then 7 = 4, and by Lemma 2.3, z(i') = 0 for each neighbour ¢’ in H of a
vertex in C. The same conclusion holds when C' does not have two vertices
with a common neighbour in H.

If vertices 3 and 4 have a common neighbour in H, say 2/, then z(2') =
—1; moreover if Ag(1") = {j'} then z(j') = —1, while z(i) = 0 (i =
3,...,t). In this case, j = 2 and G = 2K3. If vertices 3 and 4 have different
neighbours in H, say Ag(3) = {2’} and Ay (4) = {3} then 2(2") = 2(3') =
—1, while (i) =0 (i = 4,...,t). Now jix # 0, a contradiction as before.
We have therefore proved:

Proposition 4.2. Let G be a connected cubic graph of order n with an

eigenvalue p of multiplicity %n + 1. If u=—1then G = Ky, and if u =0
then G = 2K3.

In view of Lemma 2.6, we can combine Propositions 2.7, 3.2 and 4.2 to
obtain Theorem 1.1.
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