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- We debate molecular (qPCR) versus culture-based tools for monitoring of 51 

bathing waters 52 
 53 
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- We identify concerns surrounding the use of qPCR for bathing water 55 

regulation  56 
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- Modelling may offer a more useful ‘rapid method’ for informing on bathing 59 
water quality 60 
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Abstract 74 

The debate over the suitability of molecular biological methods for the enumeration of 75 

regulatory microbial parameters (e.g. Faecal Indicator Organisms [FIOs]) in bathing waters 76 

versus the use of traditional culture-based methods is of current interest to regulators and 77 

the science community. Culture-based methods require a 24-48 hour turn-around time from 78 

receipt at the laboratory to reporting, whilst quantitative molecular tools provide a more rapid 79 

assay (approximately 2-3 hours). Traditional culturing methods are therefore often viewed as 80 

slow and ‘out-dated’, although still deliver an internationally ‘accepted’ evidence-base. In 81 

contrast, molecular tools have the potential for rapid analysis and their operational utility and 82 

associated limitations and uncertainties should be assessed in light of their use for 83 

regulatory monitoring. Here we report on the recommendations from a series of international 84 

workshops, chaired by a UK Working Group (WG) comprised of scientists, regulators, policy 85 

makers and other stakeholders, which explored and interrogated both molecular (principally 86 

quantitative polymerase chain reaction [qPCR]) and culture-based tools for FIO monitoring 87 

under the European Bathing Water Directive. Through detailed analysis of policy 88 

implications, regulatory barriers, stakeholder engagement, and the needs of the end-user, 89 

the WG identified a series of key concerns that require critical appraisal before a potential 90 

shift from culture-based approaches to the employment of molecular biological methods for 91 

bathing water regulation could be justified. 92 

 93 
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1. The debate 96 

The EU Bathing Water Directive (BWD) 76/160/EEC (CEC, 1976) engages stakeholder 97 

interest because of its impact on tourism, local economies and public health, and is well 98 

publicised through beach award schemes (Guimares et al., 2012). However, it also 99 

generates controversy across the scientific, regulatory and policy communities with regular 100 

debates being driven by scepticism of whether: (i) E. coli is a suitable faecal indicator 101 

organism (FIO) to assess recent faecal pollution (Wu et al., 2011), (ii) the directive is suitably 102 

protective of human health (Langford et al., 2000; Kay et al., 2004), and, more recently, (iii) 103 

the methods currently used to determine microbial water quality at bathing beaches are fit for 104 

purpose (Oliver et al., 2010). 105 

 106 

These debates are healthy and, as is often the case, more questions are raised than 107 

definitive answers provided. However, what we do know is that from 2015 the number of EU 108 

designated bathing waters falling below the legally enforceable ‘sufficient’ standard 109 

(equivalent to a 90 percentile of >185 CFU/100mL and >500 CFU/100mL of intestinal 110 

enterococci and E. coli, respectively) could limit the use of EU bathing waters if the non-111 

compliance continues beyond 2020 when the 2006 revised Bathing Waters Directive (rBWD) 112 

2006/7/EC (CEC, 2006) in Europe takes full effect.  113 

 114 

The enforcement of the revised BWD in Europe is likely to encourage member states to 115 

further improve wastewater infrastructure, and promote better integrated catchment 116 

management, as well as providing a significant impetus for the environmental regulators 117 

responsible for protecting our bathing waters as ‘protected areas’ as defined in Annex 4 of 118 

the Water Framework Directive (CEC, 2000) in Europe. This immediate focus, however, 119 

detracts attention from a more subtle, yet equally complex debate centred on the use of 120 

molecular biological testing and the transition of molecular methods from predominantly 121 



research tools to standardised protocols for evaluating water quality at bathing waters 122 

(Gooch-Moore et al 2011; Griffith and Weisberg, 2011; Nevers et al., 2013). Current culture-123 

based methods used to enumerate FIOs require a 24-48 hour turn-around time from receipt 124 

at the laboratory to reporting, whilst quantitative molecular tools provide a more rapid assay 125 

(approximately 2-3 hours). Traditional culturing methods are therefore often viewed as slow 126 

and ‘out-dated’, although still deliver an internationally ‘accepted’ evidence-base. In contrast, 127 

molecular tools have the potential for rapid analysis although are not yet established enough 128 

in the EU for regulatory monitoring. 129 

 130 

However, it is important to note that microbial water quality testing at designated bathing 131 

waters in the EU can serve two separate purposes. The first is the provision of a monitoring 132 

framework for reporting and regulation of microbial water quality and the second is in helping 133 

control the public health risk from microbiological contamination of bathing waters. The first 134 

purpose is effectively 'state of the environment' monitoring to collect sufficient data to 135 

produce information on general status of bathing water quality and infer how well our 136 

management practices and policies are working, and whether environmental outcomes are 137 

being achieved. This data is collected over the longer term and can be summarised into a 138 

bathing water classification and may contribute to a beach award. The second purpose is 139 

about assessing the risk of an individual bathing event. Thus, the time delay of culture-based 140 

approaches leads some scientists to question whether rapid molecular methods could play a 141 

more effective role in assessing the risk of individual bathing events. This is a debate that is 142 

international in scope, but which was driven principally by the need for new recreational 143 

water quality criteria in the US. The US movement was prompted by a lawsuit against the 144 

US Environmental Protection Agency (USEPA) filed by the Natural Resources Defence 145 

Council (NRDC) which argued that the USEPA had not delivered on its intention to explore 146 

new or revised water quality criteria linked to ‘rapid test methods’ (Gooch-Moore et al., 147 

2011). This led to the publication of revised standards based on the voluntary use of 148 

molecular biological methods, principally quantitative polymerase chain reaction (qPCR) 149 



analyses. Thus, the crux of the debate centres on the relevance and effectiveness of existing 150 

(culture-based) methods compared with promising (qPCR-based) quantification methods for 151 

enumerating microbial compliance parameters at designated bathing waters and whether 152 

either relates to human health risk.  153 

 154 

If, in time, qPCR is adopted widely in the US as a method of choice for quantifying levels of 155 

faecal pollution then pressure may begin to build on the UK and the rest of Europe to follow 156 

suit for enumerating these regulatory microbial parameters within the EU Directives (Oliver 157 

et al., 2010). In response, a Working Group (WG) was established in the UK, under the 158 

auspices of the ‘Delivering Healthy Water’ project. The WG drew on international expertise 159 

via a series of workshops to debate the utility of qPCR methods versus culture-based 160 

approaches for microbial water quality analysis linked to regulatory monitoring. The 161 

overarching aims of the WG were to: (i) interrogate the existing evidence-base and (ii) 162 

provide a balanced evaluation of the associated uncertainties, benefits and limitations 163 

surrounding such a shift in methodological approach for bathing water monitoring and 164 

regulation. 165 

 166 

2. From research tool to standardised protocol: five hurdles to overcome  167 

The WG identified a series of key recommendations needed to underpin adoption of the new 168 

molecular biological methods by regulatory bodies. These reflect generic scientific 169 

considerations but focus the lens of debate on a European policy perspective. Each 170 

recommendation is dealt with in the sections below. 171 

 172 

2.1 Recommendation 1: Building the epidemiological evidence-base 173 

Demonstrating a robust relationship between (a) molecular marker(s) and human health 174 

outcomes (i.e. infection or illness in bathers) via an epidemiological evidence base is of 175 



fundamental importance before any shift from a culture-based to a qPCR-based approach 176 

can be considered across the EU. This priority recommendation was also identified by a 177 

group of international experts convened to debate the transitioning of new methods from 178 

research and development to an operational phase as part of the US recreational water 179 

quality criteria (Boehm et al., 2009). Recent epidemiological studies in the US have explored 180 

the relationship between FIO concentrations and gastrointestinal infections using qPCR 181 

methods (Wade et al., 2006; 2010), however, these studies focus only on beaches impacted 182 

by human sewage and consequently their generic relevance to bathing waters in Europe 183 

(which are more likely to be impacted from diffuse sources) is unclear.  184 

 185 

It is critical that we understand how transferable the dose-response relationships from 186 

epidemiological studies at locations dominated by point sources are, particularly when 187 

differences between the risks associated with human and ruminant wastes are so poorly 188 

characterised (Till et al., 2008; Boehm et al., 2009; Gooch-Moore et al., 2011; Dufour et al., 189 

2012) and the relationship between levels of exposure and incidence of illness in the wider 190 

population fraught with unknowns (Bridge et al., 2010; Soller et al., 2010). Others have 191 

begun to investigate the role of qPCR versus culture in sub/tropical diffuse source 192 

recreational marine waters and proposed further epidemiological studies in order to explore 193 

possible dose-response relationships between human illness with indicator organisms 194 

(Sinigalliano et al., 2010). We advocate the need for a series of robust international 195 

epidemiological studies that span a number of European bathing water types that are 196 

impacted by point sources (e.g. sewage contributions), diffuse source inputs, and sites that 197 

experience a mix of both sewage-derived and diffuse source contributions to the overall 198 

microbial load. We also argue that it would be essential to undertake such epidemiological 199 

studies by measuring culture and qPCR-based targets in parallel and in the same sample to 200 

provide a definitive back-to-back comparison of the methods across a suite of international 201 

waters. The provision of a cross-comparison dataset derived using both culture based and 202 



molecular methods to quantify microbial parameters would allow for some exploration of 203 

parity to historical data sets. In time, these studies would need to complement the 204 

development of threshold doses for regulators to use in compliance monitoring of bathing 205 

waters.  206 

 207 

2.2 Recommendation 2: Establishing accuracy and precision 208 

An advantage of molecular tools over culture-based approaches is undoubtedly their 209 

specificity and sensitivity. The specificity of qPCR is often promoted as a reason for using it 210 

as a tool to quantify specific pathogens, which would avoid the paradox of using FIOs as 211 

surrogates for the presence of a wide range of viral, bacterial and protozoan pathogens 212 

(Quilliam et al., 2011). However, this needs to be set against a backdrop of uncertainty 213 

surrounding the general consensus among the research and regulatory communities over 214 

what constitutes the best pathogen(s) to target. Pathogen enumeration is, of course, a very 215 

different issue to address given that their presence/absence can be highly episodic; although 216 

absence indicates no risk of that infection at that point in time, or at that specific location, it 217 

does not confer or imply protection outside of this defined spatial-temporal relationship. 218 

 219 

Any analytical approach must be underpinned with certainty that the data exhibits clearly 220 

defined (accurate) and reproducible (precise) results based on international inter-laboratory 221 

ring trials, i.e. they give a true representation of the parameter being measured within a 222 

defined and acceptable level of confidence. Therefore, the use of qPCR for bathing water 223 

analysis has some significant hurdles to overcome before any potential widespread 224 

transition from research tool to standardised protocol. Site specific feasibility studies are 225 

warranted to determine whether qPCR approaches are suitable for particular locations given 226 

the occurrence of analytical inhibition resulting from the complex nature of environmental 227 

matrices (Nevers et al., 2013). This is perhaps especially true given the observation that the 228 



qPCR signal from commonly used microbial source tracking (MST) markers seems 229 

unaffected by sewage treatment processes such as UV disinfection (Stapleton et al., 2009). 230 

However, results from the US are contradictory with studies reporting comparable reductions 231 

in viable cells and qPCR calibrated cell equivalents following UV treatment (Kinzelman et al., 232 

2011; Lavender & Kinzelman, 2009). Until such conflicting evidence can be sufficiently 233 

explained, and controlled for, it will pose a significant barrier to wider implementation of 234 

qPCR as a regulatory tool for bathing water quality assessment in the EU.  235 

 236 

Reproducible results determined across multiple laboratories are also critical: the same 237 

sample processed at different laboratories should in theory result in consistent reporting. 238 

Unfortunately, the reality falls short of this theoretical ideal, and there is evidence of 239 

significant variability (~one order of magnitude) being reported in qPCR data obtained from 240 

different investigators using the same approaches (Shanks et al., 2012). Inter-laboratory 241 

studies tend to use professional research laboratories in their ring-trials and will typically use 242 

experienced staff (Shanks et al., 2012). However, the wider roll-out of qPCR protocols to 243 

less proficient laboratories and the challenge of ensuring technology transfer to personnel 244 

who may have little molecular biology experience, are likely to result in significant data 245 

variability, and could deliver less reliable results (Noble et al, 2010). High quality and 246 

continuous training would therefore be a prerequisite to ensure that staff understood fully the 247 

breadth of potential sources of variability in qPCR methods and results.  248 

 249 

Furthermore, there is evidence that replicated qPCR estimates from a single sample can 250 

have a relative error that exceeds that observed in replicated culture counts even at 251 

relatively high target levels (Whitman et al., 2010). Moreover, a smaller volume of bathing 252 

water sample can be analysed questioning representativeness. And in that respect reduction 253 

of inhibition versus testing sufficient sample volume is under debate (Rutjes et al., 2006). 254 



Considerable investment would also be needed to ensure standardisation of the preferred 255 

approach and protocol interpretation, although we acknowledge that this would be a 256 

problematic barrier to overcome given difficulties in securing funding for technology 257 

development. Concerns over the lack of method standardisation (often related to method 258 

complexity and lack of researcher consensus over protocols) have been reported elsewhere 259 

(Girones et al., 2010), leading regulators to express concern that any shortcomings in 260 

accuracy and precision, whether real or perceived, could render data obtained by such 261 

methods inappropriate for use in legal proceedings.  262 

 263 

2.3 Recommendation 3: Consider rapidity & logistics – how fast is fast enough? 264 

Molecular methods such as qPCR offer a much faster analysis time than culture-based 265 

methods, e.g. 2-3 hrs compared to 24-48 hrs (Griffith et al., 2009), but it is necessary to 266 

consider the amount of practical benefit achievable from the increased speed in sample turn-267 

around time. For example, any bathing water sample collected from a designated site in 268 

England is transferred to a centralised regulatory testing laboratory in the southwest of the 269 

country. Therefore, a sample from the northwest or northeast of England will incur an 270 

overnight transfer from the beach to the laboratory before the analysis can be undertaken. 271 

This issue is transferable to other EU member states that process samples at a centralised 272 

laboratory rather than using regional or local facilities. Thus, the adoption of qPCR because 273 

of its capability to deliver rapid results can be affected by governance structure and 274 

centralised laboratory infrastructure.  275 

 276 

Establishing regional laboratories to facilitate more rapid analysis and sample turn-around 277 

times would require considerable shifts in existing infrastructure, and would reinforce rather 278 

than abate earlier concerns regarding potential for inconsistencies in qPCR reporting (see 279 

Recommendation 2). While this may limit the application of qPCR as a regulatory tool it is 280 



still important to consider its potential, not least because a number of stakeholder 281 

communities are interested in how they may be able to receive a more immediate, ‘real-282 

time’, statement of the risk posed by bathing water quality in order to make better informed 283 

decisions. The argument for speed is only valid if such an approach is used regularly (i.e. 284 

daily) as there is little value in knowing quickly about bathing water quality if sampling is only 285 

undertaken once a week. This argument leads to two further concerns: (i) samples taken in 286 

the morning and analysed using qPCR may not characterise the variability of microbial 287 

pollution that may occur throughout the bathing day (Boehm et al., 2002; Boehm et al., 2007; 288 

Mudd et al., 2012) and therefore the need for speed is, in such cases, redundant; and (ii) 289 

issues of cost and available resources make daily sampling prohibitive, although arguably 290 

even daily sampling is not frequent enough. 291 

 292 

It is generally well accepted that rapid methods such as qPCR do offer exciting opportunities 293 

in the broader context of catchment ‘forensics’ and MST for exploring upstream pollution 294 

sources, particularly when used as one component of a wider ‘toolbox of methods’ 295 

(Stapleton et al., 2009; Santo Domingo et al., 2007; Staley et al., 2012; Abdelzaher et al., 296 

2013). It is important therefore, to recognise that part of this methodological debate linked to 297 

regulatory monitoring is hampered by the fact that the Directives do not seek to understand 298 

sources, pathways and time-scales of FIO transfers. Instead they form an end-point 299 

procedure, and this equates to a fundamental difference in requirements between regulator 300 

and end-user. 301 

 302 

2.4 Recommendation 4: Identifying value for money 303 

The economic considerations associated with method transition are complex and extend far 304 

beyond the costs of the capital outlay and the consumables associated with culture versus 305 

qPCR-based approaches (Griffith & Weisberg, 2011). Even at this rather simplistic level of 306 



accounting for costs, the transfer from culture to a molecular approach could not proceed 307 

seamlessly without an initial phase of concurrent monitoring and analysis via both culture 308 

and qPCR, which would involve significant resource implications at a time when finances 309 

available for environmental protection are limited.  310 

 311 

However, there are a multitude of wider economic debates linked to indirect costs of method 312 

transition that have received little, if any, attention in previous assessments of the culture to 313 

molecular transition (Rabinovici et al., 2004). Economic assessments of moving from the 314 

1976 BWD to 2006 rBWD (e.g. Georgiou & Bateman, 2005; Hanley et al., 2003) provide a 315 

useful template for the exploration of wider economic implications that may arise from any 316 

future protocol changes within the rBWD. Amongst these are considerations of how changes 317 

to beach and bathing water use would take shape (e.g. frequency of visits and activities) 318 

should water quality information be improved in terms of speed of provision to the beach-319 

user community. Other key questions relate to how qPCR-related classifications might affect 320 

tourism at coastal resorts and the associated willingness of the public to pay for receiving 321 

rapid water quality information.  322 

 323 

Perhaps the most important of all the ‘value’ related questions are those surrounding the 324 

types of information beach users actually require; how quickly they need it; and how it is best 325 

disseminated. In response we argue that prediction of bathing water quality could have far 326 

more value to beach users than ‘real’ water quality data that is, by its very nature, always out 327 

of date by the time it is communicated to the public i.e. people want to know what the risks 328 

are before they enter the water. Others have also stressed the potential value of modelling 329 

(Nevers et al., 2013; Shibata et al., 2010; Kay et al., 2008; Oliver et al., 2009). While the 330 

development of models to predict health risks will be inherently ‘data hungry’ for culture-331 

based counts and therefore not necessarily cheap, such models developed using culture-332 



based methods could actually provide a far more cost-effective ‘rapid method’ for delivering 333 

information on water quality. Consequently, predictive models could offer a significantly 334 

reduced investment relative to wastewater infrastructure upgrades in terms of managing risk. 335 

 336 

2.5 Recommendation 5: Establishing time frames for implementation 337 

Embedding a new method into legislation can take considerable time, and there needs to be 338 

sufficient underpinning evidence to support its inclusion in revisions to any Directive. An 339 

awareness of policy reviews, associated timescales, and the opportunities to feed into 340 

government consultation are therefore essential if new approaches are to eventually garner 341 

favour among both the science and regulatory communities and the transition from research 342 

tool to standardised protocol is to be realised. Coupled with this is the need for programmes 343 

that raise awareness with beach and bathing water users to ensure efficient and clear 344 

communication about the nature of any changes and their interpretation. Within the EU the 345 

next review of the rBWD is scheduled for 2020 but given the challenges outlined above this 346 

could prove to be a testing timeframe for settling all of the debates over the opportunities 347 

and costs of molecular biological tools for bathing water compliance monitoring. 348 

 349 

3. Tides of change 350 

Molecular biological testing offers new opportunities over culture-based methods not least 351 

with respect to near real-time reporting on bathing water quality. However, the current 352 

requirements of the rBWD are for compliance records to be maintained and for this the 353 

speed of response is not a priority for regulators. Beach users are likely to disagree and of 354 

course qPCR may offer value in providing a more rapid response for bathing water ‘advisory’ 355 

notices following known pollution events. Ultimately the most useful ‘rapid method’ may 356 

perhaps be found just outside of the laboratory in the form of modelling and forecasting tools 357 

that allow regulators to understand what the predictable risks to bathing water quality are so 358 



that in turn they can then begin to manage those risks. Laboratory assessments and 359 

analytical techniques are implicitly linked to the development of those models but the future 360 

of rapid methods may not necessarily be of a molecular biological nature. Instead ‘value’ in 361 

its widest sense might be best found in trying to predict risks to human health. Crucially, we 362 

need intensive datasets to underpin model development and testing; therefore predictive 363 

capability is certainly not a ‘quick fix’. However, by managing expectations of different beach 364 

user groups, reinterpreting what we mean by rapid methods, shifting focus to prediction 365 

underpinned by quality data and by communicating the limitations as well as perceived 366 

benefits of molecular capability to the policy community we should be confident that the tides 367 

of bathing water regulation will continue to change for the better.  368 

 369 
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