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Abstract

We present a Bio-PEPA (Biochemical-Performance Evaluation Process Algebra) computational model for
the Pacific oyster, derived from a DEB (Dynamic Energy Budget) mathematical model. Experience with
this specific model allows us to propose a generic scheme for translation between the widely-used DEB
theory and Bio-PEPA. The benefits of translation are that a range of novel analysis tools become available,
therefore improving the potential to understand complex biological phenomena at a systems level. This work
also provides a link between biology, mathematics and computer science: such interlinking of disciplines is
the core of the systems approach to biology.

Keywords: Dynamic Energy Budget Model, Bio-PEPA, Process Algebra, Pacific oyster (Crassostrea
gigas) case study, Physiological models, Computational tools

1 Introduction

The mathematical ecophysiological DEB (Dynamic Energy Budget) theory has been

widely used to describe a variety of organisms’ physiology and their response to envi-

ronmental conditions [14]. DEB theory has been broadly used in the field of biolog-

ical science, in particular, marine invertebrate physiology [18,20]. DEB theory uses

ordinary differential equations (ODE) to describe the uptake and use of substrates

by organisms and their use for maintenance, growth, maturation and propagation.

It applies to all organisms from micro-organisms to animals and plants. As an ODE-

based model, a range of mathematical analyses are available to investigate system

behaviour. While widely used, the mathematical nature of the model restricts the
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potential audience sharing and analysing these models. A growing trend in systems

biology is to utilise computational models to gain another perspective on biological

systems, with different sorts of insight, e.g. [8,9].

Process algebra offers a unique opportunity in systems biology [19]. Process

algebra gives a high-level description of interactions, communications, and synchro-

nizations between a collection of independent agents or processes. Its application

provides many analysis techniques for systems’ behaviour and properties. Bio-

PEPA [6] (Biochemical-Performance Evaluation Process Algebra) is a language for

the modelling and the analysis of biochemical networks. The Bio-PEPA language

is supported by a suite of software tools which automatically process models and

perform a range of analyses. The Bio-PEPA plug-in utilises some of these tech-

niques [1], but further, allows Bio-PEPA to be used as a gateway to additional

translations and therefore analyses in yet more applications. The user is therefore

not confined to one specific modelling language and the analysis techniques of the

tools associated with that language.

To illustrate the potential of process algebra to illuminate physiology in a

component-based high-level way, an existing mathematical DEB model of the Pa-

cific oyster [18] is translated to a computational Bio-PEPA model. Moreover, as

DEB theory presents models for different organisms in a similar way we can ex-

tract generic principles for translating DEB models to Bio-PEPA. The generated

model has been validated through testing in a number of experiments with different

environmental conditions and initial physical values for the oyster, some of which

are illustrated here. The results are equivalent to those of the original DEB model,

showing the translation to be faithful in this sense. The translated Bio-PEPA DEB

model can thereafter be utilised and analysed in a variety of different modelling

language tools. Some novel analysis is carried out using the Bio-PEPA plugin [1].

This new approach, therefore, broadens the audience for the implementation and

analysis of DEB models. In addition, this demonstrates the utility of Bio-PEPA

outside the realm of biochemical networks for which it was developed.

The paper is structured as follows. In the next section a description of the

Bio-PEPA language and DEB theory is reported. Section 3 presents Pouvreau et

al DEB model of the Pacific oyster [18] and describes its translation to Bio-PEPA.

This allows Section 4 to extract the general features of the translation process and

present a generic approach of translation of DEB Theory to Bio-PEPA. Analysis

of the Pacific oyster case study is presented in Section 5. Section 6 reports the

conclusion.

2 Background

2.1 Bio-PEPA

Bio-PEPA [6] is a language for the modelling and the analysis of biochemical net-

works. It belongs to the group of languages known as Process Algebras : a com-

positional approach to formally model concurrent systems. Process Algebra gives

a high-level description of interactions, communications, and synchronizations be-
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tween a collection of independent agents or processes in a network or system. Its

application provides many analysis techniques for the network’s behaviour and prop-

erties. See Baeten [5] for an overview.

Bio-PEPA is based on PEPA [12] (Performance Evaluation Process Algebra)

and extends it in order to handle some features of biochemical networks, such as

stoichiometry (quantity of agents 4 involved in a reaction), the role of the agent in a

given reaction, and to handle different kinetic laws (different rates of reactions). The

syntax for terms in Bio-PEPA is already presented in Ciocchetta and Hillston [6]

and reproduced here for convenience:

S :: = (α, κ) op S | S + S | C
P :: =P ��

L
P | S(x)

where op= ↓ | ↑ | ⊕ | � |�
The two main components of a Bio-PEPA model are agent components S which

describe the behaviour of individual entities, and the model component P , which

describes the interactions between the various agents. The prefix is (α, κ) op S,

containing information about the role of the agent in the reaction associated with

α, where α is the action type and κ is the stoichiometry coefficient of the agent(s)

in that reaction. The stoichiometric coefficient captures how many molecules of an

agent are required for a reaction. The rate of the reaction α is given by a kinetic

law : an arithmetic expression which may include numeric rate parameters, some

simple geometric functions (e.g. sin, exp), and which may depend functionally on

the numbers of agents in the model.

The prefix combinator op represents the role of S in the action or the impact

the action has on that agent. The prefix combinators are: ↓ indicating a reactant, ↑
a product, ⊕ an activator, � an inhibitor and � a generic modifier. A reactant will

be consumed and a product will be produced. Activators, inhibitors and generic

modifiers play a role in an action without being produced or consumed and have

a meaning defined in the biochemical context. A choice between two possible be-

haviours is represented as the sum of the possibilities. Thus the choice combinator +

represents competition between agents or actions depending on their rate. Actions

in the cooperation set ��
L

require the simultaneous involvement of agents. This

rate of the shared action is specified by the relevant kinetic law. For action types

not in L, the agents proceed independently and concurrently with their enabled ac-

tions. In the model component S(x) the parameter x represents the initial amount

of the agent. Bio-PEPA also allows the introduction of timed events to the model.

For example, in epidemic networks the introduction of a virus at a particular time

can be described as an event [7].

The underlying semantics of Bio-PEPA is as a Continuous Time Markov Chain.

The Bio-PEPA language is supported by a suite of software tools which auto-

matically process Bio-PEPA models and generate internal representation suitable

for different types of analysis. These analysis techniques include: Static, Marko-

4 The Bio-PEPA term for these is species, in-line with the biochemical interpretation as molecules, com-
pounds etc. We use the term agents here to avoid the obvious confusion with biological species classification.
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Fig. 1. Generic DEB model schematic for a multicellular organism. Circles represent sources and sinks,
squares represent state variables and arrows indicate metabolic processes. In this example the forcing
variables are food and heat.

vian, Invariant, Simulation traces, Simulation Distributions, Parameter Estimation

and Discrete and Continuous Simulation. The Bio-PEPA plug-in utilises some of

these techniques and allows the user to export appropriate file types to analyse

the model in other applications [1], most notably SBML (Systems Biology Markup

Language) [2].

2.2 DEB Theory

DEB theory [14] is a mechanistic, mathematical, ecophysiological modelling theory.

It describes in a generic way an organism’s physiology and how it adapts to its

environment. DEB theory is popularly utilised in a large number of published case

studies (over 425) of biological systems in a variety of journals [15]. It is used to

describe the uptake and use of substrates (food) in organisms. It assumes common

physiological processes across species and life stages via a set of common DEB pa-

rameters; the only differences in species lying in the differences in these parameters.

A diagram of a general multicellular DEB model adapted from Kooijman [14] is

given in Figure 1.

A basic DEB model consists of two differential equations to describe the be-

haviour of the two state variables: the Reserve (E) and the Structural Volume (V).

A DEB model assumes that assimilated energy is first stored in a reserve to fuel

other metabolic processes. The allocation of the energy is controlled by the pa-

rameter κ: its value represents which process has priority over the energy. These

metabolic processes include maintenance, growth, development and reproduction.

The complexity and sophistication of the model arises from interrelationships be-

tween the processes. These processes have many interrelationships, for example,

the assimilation process has an impact on the utilisation process. More realism can

be included in the model by adding further state variables, for example, to describe

reproduction and development.
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3 Translating the Pacific oyster DEB model to Bio-
PEPA

DEB theory has been utilised to describe a variety of marine invertebrates includ-

ing the bivalve Pacific oyster (Crassostrea gigas) [18,20] studied here. The Pacific

oyster is potentially the largest harvested and collected shell fish in European wa-

ters. In 2006, global C. gigas aquaculture production reached 4.6 million tonnes (t).

European production was around 126 000 t [17]. The Pacific oyster is an isomorph,

an organism that does not change shape during growth, which means its surface

area is proportional to its volume. These bivalves are ectotherms and osmoconform-

ers: their body temperature and internal salinity is the same as the surrounding

environmental conditions. The Pacific oyster model is used here as an exemplar of

translating a DEB model into a Bio-PEPA model. The information gained through

this example is then used to formulate a generic scheme for translation in Section 4.

In this specific DEB model there are three state variables: Reserve (E) describes

the dynamics of the energy reserve, Structural Volume (V) specifies the growth of

the structural body volume and Reproduction Buffer (ER) describes the storage and

use of the energy allocated to development and reproduction. Each state variable

is described by a differential equation, reproduced here for convenience [18]. The

parameters are shown in Table 1.

dE

dt
= ṖA − ṖC (1)

dV

dt
=

ṖG

[EG]
=

κ.ṖC − ṖM

[EG]
(2)

dER

dt
= (1− κ).ṖC − ṖJ (3)

Equation (1) describes the increase of E by the assimilation process which produces

energy and the decrease by utilisation of this energy by many processes. Equation

(2) specifies V is increased by utilised energy which is specifically allocated by the

parameter κ. V is decreased by somatic maintenance which stands for a collection of

processes necessary to maintain life and also by the volume-specific cost for growth

which includes all types of overheads, for example, biosynthesis. ER (3) is increased

by an allocated amount of utilised energy and is decreased by maturity maintenance

processes.

The DEB model parameters are reproduced in Table 1 for convenience with

the Bio-PEPA model parameters. Further information on this DEB model can be

found in Pouvreau et al [18]. In translating the model to Bio-PEPA the relationship

between state variables and ODE, and agents and actions, must be considered. Also

of importance are units of measurement, and how the outputs of the model should

be formulated. These topics are discussed in subsections 3.3 and 3.4 respectively.
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DEB Bio-PEPA

Symbol Definition Value Dimension Value Dimension

[EG] Volume-Specific costs for structure 1900 Jcm−3 1.9 Jmm−3

[EM ] Maximum energy storage density 2295 Jcm−3 2.295 Jmm−3

κ Fraction of utilised energy spent on growth

and maintenance

0.45 - 0.45 -

κR Fraction of reproduction energy fixed in eggs 0.7 - 0.7 -

VP Structural body volume at puberty 0.4 cm3 400 mm3

{ṖXm} Maximum surface area-specific ingestion

rate

560 Jcm−2d−1 5.6 Jmm−2d−1

{ṖAm} Maximum surface area-specific assimilation

rate

420 Jcm−2d−1 4.2 Jmm−2d−1

ae Assimilation efficiency 0.75 - 0.75 -

[ṖM ] Volume-specific maintenance rate 24 Jcm−3d−1 0.024 Jmm−3d−1

μE Energy content of reserves 17.5 Jmg−1 17500 Jg−1

ρ Volume-specific dry flesh weight 0.2 gcm−3 0.2 gcm−3

GSI Gonadosomatic index triggering spawning 35 % 35 %

TS Temperature threshold triggering spawning 20 ◦C 20 ◦C

T1 Reference temperature 293 K 293 K

TA Arrhenius temperature 5800 K 5800 K

TAH Rate of decrease at upper boundary 30000 K 30000 K

TAL Rate of decrease at lower boundary 75000 K 75000 K

TH Upper boundary of tolerance range 305 K 305 K

TL Lower boundary of tolerance range 281 K 281 K

Table 1
Model parameters used in this study. The DEB parameters are as given by Pouvreau et al [18].

3.1 Conversion of the state variables to agents

The Bio-PEPA model is given in Figure 2 and can be downloaded from our website

http://www.cs.stir.ac.uk/SystemDynamics. The first step of the translation is to

represent the state variables by agents in the Bio-PEPA model. See Agent defi-

nitions of Figure 2. The equations of the state variables become actions of these

agents. Some actions indicate increase or decrease of an agent corresponding to

the positive and negative terms of the ODE. Other actions indicate that the agent

influences the kinetic rate although the agent does not increase or decrease when

this action occurs. Reserve (E) agent is assigned four actions: a3, a4, a1 and a5.

Action a3 increases E and is decreased by a4. The associated rate of action a3 is

defined as the assimilation rate and the rate of action a4 is defined as the utilisation

rate. See Actions and their associated kinetic rates of Figure 2. Both these

rates are as defined in the DEB equations. E is a generic modifier in the actions a1
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Parameters of model

Actual temperature = value dependent on experiment ;

Temperature correction = exp((TA/T1)− (TA/(273 +Actual temperature)))

∗ ((1 + exp((TAL/(273 +Actual temperature))− (TAL/TL))

+ exp((TAH/TH)− (TAH/(273 +Actual temperature))))−1);

{ṖXm} = 5.6 ∗ Temperature correction;

{ṖAm} = ae ∗ {ṖXm};[
ṖM

]
= 0.024 ∗ Temperature correction;

ṖM =
[
ṖM

]
∗ V ;

[E] = E/V ;

ṖC = ([E] /([EG] + (κ ∗ [E]))) ∗ ((
[EG]∗{ṖAm}∗V 2/3

[EM ]
) + (

[
ṖM

]
∗ V ));

Food density chloa = value dependent on experiment ;

Xκ = value dependent on experiment ;

Functional response = Food density chloa
(Food density chloa+Xκ)

;

ṖA = Functional response ∗ {ṖAm} ∗ V 2/3;

Maturity = H(V − Vp);

ṖJ = (((
(1−κ)

κ
) ∗ V ∗

[
ṖM

]
) ∗ (1−Maturity))

+ (((
(1−κ)

κ
) ∗ V p ∗

[
ṖM

]
) ∗ (Maturity));

Percentage ER = ( ER DFW
Total DFW

) ∗ 100;
ER start spawn = H(Percentage ER −GSI);

Stop spawn = H(1− Percentage ER);

T start spawn = H(Actual temperature− Ts);

Actions and their associated kinetic rates

kineticLawOf a1 :
(κ∗ṖC)
[EG]

;

kineticLawOf a2 : ṖM
[EG]

;

kineticLawOf a3 : ṖA;

kineticLawOf a4 : ṖC ;

kineticLawOf a5 : ((1− κ) ∗ ṖC) ∗Maturity;

kineticLawOf a6 : ṖJ ∗Maturity ∗ (1− stop spawn);

kineticLawOf empty : fMA(100 ∗Maturity);

kineticLawOf switch on : fMA(10 ∗ ER start spawn ∗ T start spawn);

kineticLawOf switch off : fMA(10 ∗ stop spawn);

Agent definitions

V = a1 ↑ +a2 ↓ +a3 �+a4 �+a5 �+a6 �+empty�;
E = a3 ↑ +a4 ↓ +a1 �+a5�;

ER = a5 ↑ +a6 ↓ +empty ↓;
Tracker off = (switch on, 1) ↓ +(switch off , 1) ↑;
Tracker on = (switch on, 1) ↑ +(switch off , 1) ↓ +(empty, 1)⊕;

Model Component

V [0] ��∗ E[0] ��∗ ER[0] ��∗ Tracker off [1] ��∗ Tracker on[0]

(fMA = formula of mass action)

Fig. 2. Pacific oyster Bio-PEPA model. See Table 1 for other parameters.

and a5 as E influences the kinetic rates of the increasing actions of the Structural

Volume (V) and Reproduction Buffer (ER) although E does not increase or decrease

when these actions occur.

Structural Volume (V) is assigned seven actions: a1 which increases V, and a2

which decreases it, and actions a3, a4, a5, a6 and empty which leave V unchanged.

The associated rate of action a1 is defined as utilisation rate multiplied by κ divided

by the volume-specific cost for growth. Rate of action a2 is specified as the somatic
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maintenance rate divided by the volume-specific cost for growth. These rates again

use the specific rates as defined in the DEB model. As V is a generic modifier in the

other five actions it influences the kinetic rates and does not increase or decrease

when these actions occur.

The Reproduction Buffer agent (ER) has three actions: a5, a6 and empty. Ac-

tions a5 and a6 are as before where a5 increases ER and a6 decreases it. This

agent has the extra action of empty to describe the spawning event of the oyster.

The associated rate of action a5 is defined as the utilisation rate multiplied by 1

minus κ multiplied by the parameter Maturity. The rate of the action a6 is specified

by maturity maintenance rate multiplied by the maturity parameter. This matu-

rity parameter is created in Bio-PEPA to acknowledge the additional rule of the

DEB model that specifies that ER becomes active when the individual has reached

a specific structural volume. The maturity maintenance rate varies with V when

the oyster is below the specific structural volume of maturity and becomes con-

stant when V reaches or is above this specific value. The DEB model uses the min

function to achieve this whereas in Bio-PEPA the Heaviside step function (H) [4] is

utilised. Apart from the maturity parameter the rates used for the actions a5 and

a6 are as defined in the DEB model.

Fig. 3. State diagram for the behaviour of the tracker component.

The spawning event of the oyster is described partly in the ODE of the DEB

model, but mainly through the accompanying textual description. The translat-

ing process therefore, does not only require the translations of the ODEs but also

requires the novel interpretation and implementation of timed events with specific

conditions. There are two conditions that have to be fulfilled before spawning

can take place. The first condition refers to the build up of gonad material and

the second condition is dependant on the temperature during the seasons. The first

condition is that a certain gonadosomatic index (GSI) has to be reached: this means

the ratio between the gonad and total tissue mass is above the GSI. Secondly, the

external temperature must be above a specific threshold (TS). It is not sufficient

to use the Heaviside step function to implement the conditions described above,

because the empty action would only be active as long as the condition is true and
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hence spawning would be partial. Instead, these conditions and event are imple-

mented by a tracker component in the Bio-PEPA model. The tracker component

only switches on when both conditions are met and acts as an activator to the empty

action of the reproduction buffer. As defined in the DEB model when a spawning

event occurs ER is completely emptied, therefore the empty action decreases ER at

a fast rate. The tracker component switches off when ER becomes zero, therefore

the empty action cannot take place. Thus it is never possible for ER to become

negative. A state diagram of the tracker component’s behaviour is given in Figure 3.

The kinetic rate of the tracker is given by the built-in mass action function (fMA).

3.2 Adding the forcing variables into the model

Temperature and food density are forcing variables. Temperature affects two phys-

iological rates, maximum surface area-specific ingestion rate and volume-specific

maintenance rate. In the DEB model this dependency on the temperature is de-

scribed by an Arrhenius-type equation [10] and this is utilised in the Bio-PEPA

model. The second forcing variable, food density, affects the assimilation rate and

is implemented in the same way as the DEB model. Both forcing variables vary over

time in the DEB model: experimental data was imputed for both values at each

data point in time. Since both temperature and food density are measured vari-

ables from experiments, there exists a time series for each (as shown in figure 4 left).

It is desirable to be able to directly input these time series to the Bio-PEPA tool

as background data to use in calculations. This is not currently possible. Instead

simple functions must be coded to approximate the time series for experimental

data. These make use of the inbuilt time variable and the Heaviside step function.

There is a tradeoff between the complexity of these functions and the closeness of

the approximation. See Figure 4.

3.3 Changing the units of specific parameters

In Bio-PEPA initial values for each agent require to be an integer. The initial value

of V in the DEB model is a decimal number therefore changing of some units in the

model must be made. The unit of V is cm3 and is changed to mm3 to gain integer

values with acceptable precision. Other model parameters that are affected by V

had their units appropriately changed. See Table 1.

3.4 Addition of dry flesh weight equation for comparison

The DEB model results are compared with wet laboratory results using a calcu-

lated total dry flesh weight value (DFW). The Bio-PEPA simulation results must

be calculated into DFW values and also their units to be scaled and changed appro-

priately for the comparison. Equation (4) gives the total DFW. The other values

(such as the assimilation and respiration rates) from the Bio-PEPA model can be
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Fig. 4. Temporal variations of the forcing variables: temperature and phytoplankton in Experiment A and
B. DEB model values on left and Bio-PEPA values on right. The scales are phytoplankton concentration
on the left, and temperature on the right of each graph.

compared to the DEB model and the wet laboratory results.

DFW =
E

μE
+ (

V

1000
) ∗ ρ +

κR ∗ ER

μE
(4)

Analysis of this model is considered in Section 5. First, the generic approach to

translating DEB models to Bio-PEPA models is summarised.

4 Generic Translation of DEB models to Bio-PEPA

Having learned from the Pacific oyster model, it is possible to describe a generic

approach that can be used to transform an organism’s DEB model that includes

the state variables of Structural Volume (V), Reserve (E) and Reproduction Buffer

(ER). A more complex DEB model may require further investigation.

Conversion of the state variables to agents DEB model state variables usu-

ally are V, E and ER. There may be more than one V and E. These will become

agents in the Bio-PEPA model. As noted by Gurriero and Heath [11], the

translation from simple ODE to Bio-PEPA is straightforward. This is partly true

for the DEB model here. It is worth noting that DEB models include timed events

such as spawning which are not described in the ODEs of the models, therefore

interpretation and implementation of the textual model assumptions must be made.

Implementation of the actions of agents from the state variable equation defi-

nitions The equations of the state variables form the kinetic rates of the agent’s

actions. The part within the equation which increases the state variable becomes

the kinetic rate of an action for which that state variable’s agent is a product. The
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part of the equation that decreases the state variable will become the kinetic rate

of the action for which that agent is a reactant.

The state variable ER is involved in a reproduction event, therefore, the use of

the Heaviside step function and a tracker component may be required to set the

specific conditions of the event, e.g. the use of a tracker component for a specific

reproduction event of Section 3.1.

Adding the forcing variables into the model Values of the forcing variables

are usually wet laboratory values that are entered at each data point in time. As it

is not possible to add each data point to each time point in a Bio-PEPA simulation,

simple functions should be implemented to create similar behaviour of the forcing

variables over time. Statistical techniques such as regression can assist here.

Changing the units of specific parameters In Bio-PEPA initial values for each agent

require to be an integer. Changing of some units and suitable scaling in the values

of the state variables must be made. An example is shown in Table 1. Other

parameters affected by the state variables that have been changed in this way must

be changed accordingly.

Addition of equation for comparison and analysis of results DEB model re-

sults are compared to wet laboratory results by an equation to convert the state

variable values to an appropriate unit value. This equation can be used on the

results of the Bio-PEPA model. An example comparison equation can be found in

Section 3.4.

5 Model Analysis

5.1 Static analysis of the Bio-PEPA model

The Bio-PEPA plug-in has static analysis, therefore informing the user of any syn-

tactic and simple semantic errors in the model before any simulations are run. The

outline view in the plug-in shows the actions and agents that are present and further

shows which of these actions are sources or sinks. This view informs the user about

the model in an abstract way. The problems view highlights any errors in the syn-

tax and also shows warnings suggesting that particular actions need to be assessed.

This static analysis provides confidence to the modeller in their understanding of

the system and syntactic correctness and consistency of their model whereas the

ODE DEB model, and typical tools for processing ODE, do not.

5.2 Comparison analysis results

The Bio-PEPA plug-in has two time-series analysis techniques: continuous ODE

and discrete stochastic simulation. The Bio-PEPA model is validated by comparing

its output with the results of the original DEB model. It is further validated by sta-

tistical comparison: the original DEB model [18] compared the simulated predicted
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results with observed wet laboratory data using R2 statistics; the Bio-PEPA model

simulation results were also compared to the observed wet laboratory data using

the same technique. The goodness-of-fit between prediction (Y) and Observation

(X) was tested according to the R2 value of the regression Y=X.

Pouvreau et al [18] carried out three experiments. Two of these are shown here:

experiment A and experiment B corresponding to B and C respectively of [18].

The results from the DEB model are from ODE simulations using the STELLA

tool. The Bio-PEPA model results are stochastic simulations of multiple replica-

tions (1000); therefore, simulating the growth and reproduction of a population of

oysters. 1000 replications are chosen consistently here across analyses to give a

representative average system behaviour. The Bio-PEPA model is also used to gen-

erate ODE simulation results, to give comparability with the original DEB model.

The two experiments from the original DEB model had different initial values for

the state variables and a different value for Xκ (half-saturation coefficient). The

half-saturation coefficient is changed due to the different diet composition between

experiments. Both experiments are carried out over a different time period and un-

der different environmental conditions. This demonstrates the Bio-PEPA model’s

generic ability to capture the dynamics of the energy budget in the Pacific oyster

in various environments. Table 2 reproduces the initial values of the state variables

and Xκ for each experiment and includes the Bio-PEPA model scaled state vari-

able V. The graphs of the DEB model [18] are reproduced here for convenience for

comparison to the outputs of the Bio-PEPA model.

Experiment DEB V (cm3) Bio-PEPA V (mm3) E (J) ER (J) Xκ (μg chl − al−1)

Experiment A

Batch 1 2.3 2300 2000 4000 8

Batch 2 2.6 2600 500 0 8

Batch 3 3.1 3100 3500 8500 8

Experiment B 1 1000 500 500 3.5

Table 2
Initial values of Xκ and the state variables: V, E and ER.

5.2.1 Experiment A

This experiment had a time period of 120 days (July to October). The model

is tested here as the experiment has a fluctuating environment because the food

concentration varies erratically and oysters from various origins are analysed. The

experiment encapsulates three sub-experiments (batch 1, 2 and 3) and each batch

has different initial state variable values indicating oysters from different origins.

The batch 1 experiment lasted the whole time period, batch 2 had a duration of

90 days commencing from August and batch 3 started ten days from the start of

September lasting 50 days. Batch 1 were allowed to continue and complete a spawn-

ing event whereas the other two batches were introduced too late for spawning to

take place. The forcing variables’ values, temperature and phytoplankton concen-
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tration, of both the original DEB model and the Bio-PEPA model are given in

Figure 4. The differences in the values occurs as the values in the Bio-PEPA model

are produced from functions which approximate the actual measurements whereas

the DEB model uses wet laboratory values. The total dry flesh weight values for all

batches in the DEB model and Bio-PEPA model is given in Figure 5.

Fig. 5. Experiment A comparison of total dry flesh weight results of DEB model left and Bio-PEPA model
(ODE and stochastic results) right. Both include comparison of observations ± SD (dots). Note that the
sharp drops that can be observed on simulation lines indicate spawning events predicted by the models.

The Bio-PEPA model produced comparable results to the original DEB model.

It confirms a very good simulation of somatic growth and the replication of a spawn-

ing event. The slight differences in batch 1 are derived from the difference in the

forcing variable values. Although it cannot be seen clearly on the graphs, the values

of reproduction weight released at the spawning event in batch 1 are similar and

the time of the spawning is the same.

The observed wet laboratory data for this experiment were grouped together for

the statistical comparison with the simulation results of the original DEB model.

This was carried out as the aim of this experiment was to test the model not only on

a more fluctuating environment but on several populations of oysters from various

origins [18]. There is also a limited amount of data available in the observation

results, for example batch 2 only has two observation data points. The original

DEB model gave R2 = 0.81 (n=8, p<0.002) between observation and simulation.

The Bio-PEPA model gave R2 = 0.813 (n=8, p=0.002) between observation and

stochastic simulation and gave R2 = 0.812 (n=8, p=0.002) between observation

and ODE simulation. n represents the number of data points and p represents the

p-value. The Bio-PEPA model in this experiment gives a better match than the

original DEB model. The functions for food and temperature in A describes the

behaviour of these forcing variables more accurately than the functions in B.

5.2.2 Experiment B

This experiment had a duration of 365 days, that is a complete annual cycle. The

experiment has typical natural environmental field conditions. These conditions are

presented in Figure 4; again differences in the forcing variables values occur as the

values in the Bio-PEPA model are produced from functions whereas the DEB model

uses wet laboratory values. The total dry flesh weight value for this experiment in

the DEB model and Bio-PEPA model is given in Figure 6.

The Bio-PEPA model simulated the growth of an oyster over a complete annual
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Fig. 6. Experiment B comparison of total dry flesh weight results of DEB model left and Bio-PEPA model
(ODE and stochastic results) right. Both include comparison of observations ± SD (dots). Bio-PEPA graph
horizontal axis tick marks indicate 15 days and month letters are at the start of each month. Note that the
sharp drops that can be observed on simulation lines indicate spawning events predicted by the models.

Fig. 7. Experiment B assimilation of energy against maintenance costs.

cycle and also the two spawning periods. The first spawning event is at the beginning

of June and the weight lost is approximately 0.15g in the stochastic simulations and

0.28g in the ODE simulation. The second spawning event takes place around the end

of August and the weight lost is approximately 0.61g in the stochastic simulations

and 0.82g in the ODE simulation. These results are comparable to the original DEB

model with 0.2g for the first event and 0.5g for the second.

The goodness-of-fit for the original DEB model was R2 = 0.92 (n=24, p<0.0001)

against observation and predicted. The Bio-PEPA model gave R2 = 0.86 (n=24,

p<0.0001) between observation and stochastic simulation. Analysis of the ODE

simulation against observation gave R2 = 0.824 (n=24, p<0.0001). The Bio-PEPA

result does not give as good a match as the original DEB model because of the

functions that describe the behaviour of the temperature and food forcing variables.

The functions are more simplistic in their behaviour than the original collected data.

For example, the temperature in the Bio-PEPA model may be decreasing below

20◦C too early in September, artificially preventing some simulations spawning for

a second time.

The Bio-PEPA model, similar to the DEB model, outputs not only the total dry

flesh weight values but also values of internal parameters of the model such as the

assimilation rate and functional response. These results can be used to analyse the

models internal functioning. Figure 7 shows the assimilation rate plotted against

E. Scott et al. / Electronic Notes in Theoretical Computer Science 296 (2013) 211–228224



Fig. 8. Simulation distributions for experiment A (left) and B (right). Temporal variations of the forcing
variable temperature for each experiment is also shown. The scales are CDF and PDF percentage values
on the left, and temperature on the right hand side of each graph.

the maintenance costs. This demonstrates the assimilation is just sufficient to meet

the maintenance costs when food is limited during the winter period [18]. It is noted

that the parameters of scaled energy density and functional response also displayed

the same internal relationship values as the original DEB model.

5.3 Simulation distributions analysis of the Bio-PEPA model

Results from this analysis are presented for both experiments and are given in

Figure 8. Simulation distributions obtain the percentage of a user-defined number

of stochastic simulations for which some property is true at or before a given time

t. The Bio-PEPA plug-in plots the Cumulative Distribution Function (CDF) and

Probability Distribution Function (PDF) of any agents in the model, with respect

to the target value.

This technique allows the analysis of the spawning events and when they are

most likely to occur. The chosen component in this analysis is an agent which

counts the number of times the Tracker on component becomes equal to 1, i.e.

when spawning occurs. The target value is set to 1 for experiment A and set to 1

and then 2 in experiment B. The number of stochastic simulation replications is set

to 1000.

5.3.1 Experiment A

For batch 1 spawning starts to occur at day 77 with 1.3% of the simulations reaching

the target value of 1 around mid September. 90.7% of the simulations reach this

target between day 78 and 80. By day 82 all simulations reach the target. This

certifies the spawning event occurring at a precise time. Batch 2 and 3 simulations

never reach the target value of 1 indicating that a spawning event will never occur

in either experiment.

5.3.2 Experiment B

Simulations start to reach the target value of 1 at day 223. All the simulations had

reached this target value by day 272. This indicates a large window of time for the

first spawning to occur (beginning of June to mid July). The distribution is skewed:
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72% of simulations spawn within the first 9 days of June.

Simulations start to reach the target value of 2, i.e. a second spawning event,

at day 308 (around the end of August). 97.6% of all simulations had reached this

value by day 326 at the start of September. 24 simulations did not produce a second

spawning event. This may be due to these simulations having late first spawning

events and therefore do not have time to build up to the GSI condition before the

temperature drops below 20◦C. Verifying this is future work. These types of results

are not available in the original DEB model ODE results.

5.4 Parameter Estimation

Pouvreau et al [18] estimate some model parameters, as is common in modelling;

for example, finding the values of volume specific cost for structure [EG] and the

maximum energy storage density [EM ] in a starvation experiment [20]. Parameter

optimisation can be used on Bio-PEPA models to find unknown values for certain

parameters by comparing the time series data from the relevant experiment, remov-

ing the need to carry out additional wet laboratory experiments for these certain

parameters. Given experimental data, this is easily available for Bio-PEPA models

via either SBSI [3] or the EPA framework [16] (recently adapted to accept Bio-

PEPA input). This analysis has not been carried out for this model due to lack of

access to experimental data.

6 Conclusion

The generic translation approach has been implemented to easily convert math-

ematical DEB models to Bio-PEPA models. A concrete example model of the

translation process has been constructed and its results have been compared to the

original DEB model and published wet laboratory results. New analysis has been

carried out on a specific DEB model in the Bio-PEPA plug-in by using simulation

distributions and new results have been generated about the system demonstrating

the utility of the translation process.

The Pacific oyster Bio-PEPA model also shows that it is generic, producing

results for different environmental conditions and for different state variables. The

model can therefore be used again for other related bivalve experiments, potentially

feeding back to further, more targetted, wet lab experiments. This exemplifies the

cycle of systems biology originally put forward by Kitano [13].

The Bio-PEPA plug-in tool [1] has a range of analysis techniques which could

further aid in examination of results. The Bio-PEPA model can be exported and

converted into other computational modelling and analysis tools. This allows a

wider audience to access the model. This range of further analysis techniques is

not available for the DEB model. A problem identified with the Bio-PEPA plug-in

is that functions approximating the environmental data were required: it would be

desirable to add these directly from the collected data. This may account for the

differences between our results and those of the DEB model as the forcing variables

have a significant effect.
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The translation to Bio-PEPA is the first stage of a research programme, with

the goal of providing more complex, multi-scale model features. For example, inter-

actions between a population of oysters, or interactions between oysters and their

environment. A further line of reasearch could be to develop a tool to implement

the generic translation from DEB models to Bio-PEPA models.

The generic translation approach can be used in future work to investigate not

only marine invertebrates DEB models but also other organism DEB models [15],

therefore, broadening the audience for modelling and analysis.
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