Inferring, splicing, and the Stoic analysis of argument*

Peter Milne

N RECENT YEARS, A NUMBER OF AUTHORS, including the dedicatee of this volume, have
I advocated the employment of general elimination rules in the presentation of harmo-
nious natural deduction rules for logical ConstantsEI Motivated by different concerns, in
(Milne 2008, Milne 2010) I have given natural deduction formulations of classical proposi-
tional and first-order logics employing what in (Milne 2012b) I call general introduction rules;
there I show how general introduction and general elimination rules are in harmony and sat-
isfy a certain inversion principle. Here I want to show how general introduction and general
elimination rules narrow, perhaps even close, the gap between Gentzen’s two ways of present-
ing logic: natural deduction and sequent calculus. I shall also describe a surprisingly close
connection with the earliest account of propositional logic that we know of, that of the Stoic
logicians. We are also led to ask after the significance of Gentzen’s Hauptsatz. Until the final
section, I shall consider only propositional logic.

1 General rules

The distinctive feature of general introduction rules is that they tell us when logically complex
assumptions may be discharged; more bluntly, when they are not needed. The introduced
connective occurs as main operator in a formula occurring hypothetically as a logically complex
assumption discharged in the application of the rule; additionally some or all of the com-
ponent propositions may occur either hypothetically (as assumptions also discharged in the
application of the rule) or categorically. In general elimination rules, by contrast, the elimi-
nated connective occurs as main operator in a formula occurring categorically, for we are being
told what we can draw from a logically complex proposition; some or all of the component
propositions may occur either hypothetically (as assumptions discharged in the application of
the rule) or categorically. The conclusion of either kind of rule is “general”, not determined by
the proposition containing the introduced or eliminated connective. The introduction rules for
conjunction and disjunction are unexciting rewrites of standard rules; not so for negation and

the conditional, whose introduction rules are essentially classical.

*From Catarina Dutilh Novaes and Ole Thomassen Hjortland (eds.), Insolubles and Consequences: Essays in Hon-
our of Stephen Read, London: College Publications, 2012, pp. 135-54.

15ee, e.g., Peter Schroeder-Heister (1984b, 19844), Neil Tennant (1992), Stephen Read (2000, 2004, 2010), Sara
Negri and Jan von Plato (2001), von Plato (2001), and Nissim Francez and Roy Dyckhoff (2011).
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These rules give us a formulation of classical propositional logic with the subformula prop-
erty (cf. Milne 2010, §2.7).
The general form of an introduction rule is
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Given the complete set of general introduction rules for a truth-functional connective (of
any arity), we can read off a complete set of harmonious elimination rules; we can also read off
the connective’s truth-table. Likewise, given the complete set of general elimination rules for
a connective, we can read off a complete set of harmonious introduction rules; we can again
read off the connective’s truth-table. And given the connective’s truth-table, we can read off
harmonious general introduction rules and general elimination rules. For more on why this is
and ought to be the case, see (Milne 2012b).

Derivable argument-forms yield derived inference rules. If ¥ ¢ is derivable, we can
introduce the rule



Z X
m.
X
The converse holds trivially, for, by an application of the rule, we obtain the derivation
g
¢

Corresponding to what is sometimes called the Rule of Assumptions—e.g., in (Lemmon
1965)—we have the “null rule”

[#]™
9 X,
X
which has no proper application in natural deduction proofs laid out in tree form for there
¢

counts as a proof with conclusion ¢ dependent on ¢ as assumption.

2 Splicing

We form natural deduction proof-trees by treating the conclusion of an application of one rule
as the occurrence of a categorical formula in the application of another rule. Formulae standing
as assumptions in the application of the first rule continue to stand as assumptions in the
application of the second rule if not discharged (as hypothetically occurring side-premisses) in
the application of the first. A proof of the argument-form X - ¢ is a proof tree in which only
members of X remain as undischarged assumptions and ¢ stands as the conclusion, at the root
of the proof-tree.

I want to consider a different way of manipulating rules. I call it splicing. Splicing is carried
out by cross-cancelling a hypothetical occurrence of a formula in one rule and a categorical
occurrence of the same formula in another rule to obtain a new rule. Splicing is to be thought
of as a new primitive operation acting directly on rules in schematic form. Employing splicing,
we can find (general) introduction and elimination rules for logically complex formulae. For
example, exclusive disjunction can be represented as (¢ V ¢) A (¢ A ¢). Splicing gives us in
a succession of steps:
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In similar fashion, we obtain the introduction rule
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which, being a weakening of the null rule, is quite acceptable but utterly uninformative regard-
ing (¢ V) A=(pA9). (Quite generally, if we accept a rule, we can accept any weakening
obtained by adding formulae whether that be in categorical occurrences or hypothetical.)

The expressive adequacy of, say, {—, A, V} (or, indeed any other expressively adequate
set) in classical propositional logic translates into the capacity of splicing to be a technique
for generating (sets of) general introduction and general elimination rules for arbitrary n-ary
truth-functional connectives. By way of example, the computer programmer’s favourite,
‘if ¢ then ¢, else x’, which we shall abbreviate as ‘+ (¢, ¢, x)’, is classically equivalent to
(@A) V (=¢ A x). This is equivalent to the negation of (¢ V —x) A (¢ V —1p). Inspection of
the results of splicing in the case of exclusive disjunction shows that splicing will yield these

rules:

[& (¢, 9, X)]™ ()™ [& (¢, 9, x)]™
introduction rules : : .
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% (¢, ¢, x) is also equivalent to (¢ — ) A (—¢p — x). Splicing, starting with this formula,
gets us the very same rules.

2.1 Algebra...or maybe not

With splicing and other operations that we may perform on rules, we have a certain amount
of structure.

Splicing is not a function: while in any application of splicing there is only one formula
cancelled, a hypothetical occurrence in one rule being crossed off against a categorical occur-
rence in the other, there may be more than one formula available for cancellation. So, strictly
speaking, questions of associativity and commutativity do not arise. Instances of the null rule
do act as identity elements in that, when we can splice, splicing with an instance of the null rule
yields the original rule (and there can’t be any question about which formula is up for can-
cellation unless the other rule involved is already an instance of the null rule or a weakening
thereof). (Recall that in order to splice two rules, the same formula must occur hypothetically
in one rule and categorically in the other, hence the qualification ‘when we can splice’.)

Counting every rule as a weakening of itself, there is an uninteresting partial ordering
given by the relation rule X is a weakening of rule Y.

The negation rules play a special role: splicing an introduction rule with the instance of the
negation elimination rule containing the introduced formula yields an elimination rule for the
introduced formula’s negation. Conversely, splicing an elimination rule with the instance of



the negation introduction rule containing the eliminated formula yields an introduction rule
for the eliminated formula’s negation.

Duality Conjunction and disjunction are duals. There’s an obvious duality between their
respective introduction and elimination rules. We can spell it out in a simple instruction for
dualising a complete set of (harmonious) general introduction and elimination rules for a con-
nective:

To obtain the (dual) rules for the dual connective, in each rule turn all hypothetical
occurrences into categorical occurrences and all categorical occurrences into hypo-
thetical.

Accordingly, negation is self-dual, as we would expect. The dual of & (¢, ¢, x) is then readily
seen to be & (¢, x, ), a fact that can be checked rather more laboriously by writing out a truth
table for & (¢, ¢, x), turning it upside down and swapping ‘0’s (‘T’s) for ‘1’s (‘F’s) and vice
versa.

“The levelling of local peaks”E] By inspection, we see that in the examples at hand, splic-
ing an introduction rule and an elimination rule for the same connective and cancelling the
formula containing the introduced/eliminated connective produces either an instance of the
null rule (in the case of negation) or a weakening of the null rule. In fact, for general introduc-
tion and elimination rules harmonious in the sense of (Milne 2012b) this holds not only for the
examples at hand but is always the case.

2.2 bullet

Steve Read has introduced a one-place connective which, symbolised by ‘e’, is often nowa-
days called ‘bullet’: bullet is interderivable with its negation. In his (2000), Steve gave it these
(impure) introduction and elimination rules:

[—e]™

1’ e-introduction and % e-elimination (Read 2000, p. 141)

The introduction rule doesn’t have a general conclusion but we can easily rectify that:

[o]™

% e-introduction

—and now we see that, according to the recipe for dualising given above, bullet is self—dualE]
Splicing with the negation rules, we obtain these (pure) general introduction and elimina-
tion rules—

2The term is, of course, Dummett’s.
3In the context of certain three-valued logics, such as Graham Priest’s Logic of Paradox (Priest 1979) or my Logic of
Conditional Assertions (Milne 2004), bullet would act as a harmless, propositional constant/0-ary connective having



[o]™

% 1 e-introduction  and % e-climination (cf. Read 2010, p. 571)[]
—which gives bullet the introduction rule of the verum constant and the elimination rule of
the falsum constant! And upon splicing these rules for bullet we get neither an instance nor a
weakening of an instance of the null rule, rather we get the explicitly contradictory rule

X

which makes me think there’s something more than a little fishy about bullet in the (classical)
context of general introduction and elimination rulesﬂ

3 Soundness, completeness, and sequent calculus

Since rules are general in the sense that the conclusion is in effect the same (arbitrary) formula,
and the indexing of discharges has no significance for splicing, we simplify our notation. Given
a rule, we write ‘> = A’, where X is the set of formulae occurring categorically and A is the
set of formulae occurring hypothetically (and discharged in the application of the rule); either
set may be empty. The null rule gives us all instances of ¢ = qbﬁ

We say that the rule > = A is classically sound if there is no assignment of truth-values to
atoms under which all the formulae in X are frue and all the formulae in A are false. We confine
attention to formulae built up employing A, V, — and —.

Theorem 1 (Soundness Theorem). If the rule ¥ = A is obtained by splicing from instances of
the null rule and the rules for negation, conjunction, disjunction, and the conditional or is a
weakening of any such rule then it is classically sound.

Proof. The rules for negation, conjunction, disjunction, and the conditional are all classically
sound. Weakening preserves classical soundness, as does splicing which in this setting is just
Gentzen’s Schnitt. O

Theorem 2 (Completeness Theorem). If the rule ¥ = A is classically sound then it is obtain-
able by splicing and /or weakening from instances of the null rule and the rules for negation,
conjunction, disjunction, and the conditional.

the intermediate truth-value. With application to the first, Steve says of bullet that ‘it constitutes a kind of proof-
conditional Liar sentence’ (2000, p. 142); with application to the second, bullet just is the constant N used, following
(Hailperin 1996), in defining de Finetti’s binary conditioning connective(Milne 2004, §§1.4-1.5,9.1). In these contexts
the negation is, of course, not governed by both ex falso quodlibet and the Rule of Dilemma, i.e., not governed both
by general introduction and by general elimination rules.

4Strictly, because he is being very careful regarding structural rules, Steve has two occurrences of e “above the
line” in the elimination rule and would no doubt want the analogue in the introduction rule (which is mine, not
his). But splicing, being based on the standard use of natural deduction rules, does not care about such niceties.

5For more on bullet in the context of general introduction and elimination rules, see (Milne 20125, §4.5).

6Note that *(p1, P2, ..., ¢n) and *(¢1, P2, . . ., ¢n) are dual only where = = x(¢1, ¢, ..., ¢u), A is an introduction
rule for * if, and only if, A, *(¢1, ¢2, ..., ¢n) = X is an elimination rule for * and likewise, mutatis mutandis, for
*-elimination and *-introduction rules.



Proof sketch. The idea of the proof is that we can replicate the operational rules of Gentzen’s
calculus LK for -, A, V, and —. We can also replicate the effects of Gentzen’s structural rules.
Proof is then by recursion on the structure of proofs of classically sound sequents in LK.

negation Suppose we have derived ¥, ¢ = A. By splicing with the negation introduction rule,
we obtain 2 = —¢, A.
Suppose, next, that we have derived X = ¢, A. By splicing with the negation elimination
rule, we obtain X, =¢ = A. Thus we replicate the left and right introduction rules for
negation in Gentzen’s LK.

conditional Suppose we have derived X, ¢ = ¢, A. By splicing with one of the conditional
introduction rules we obtain ¥ = ¢ — 1,1, A; by splicing with the other conditional
introduction rule and recalling that 3 and A stand for sets, we obtain ¥ = ¢ — ¢, A.
Suppose, next, that we have derived £; = ¢,A; and Xy, ¢ = A,. By splicing the first
with the elimination rule for the conditional, we get X1,¢ — @ = ¢, Aq; by splicing this
with X, = A; we obtain, just as we should, 21,25, ¢ — ¢ = Ay, As.

conjunction and disjunction These are treated similarly.

Structural rules: contraction and permutation are hidden from view in the use of sets, rather
than sequences; in the present context Gentzen’s Weakening (Thinning, Augmentation) just is
the weakening of a rule by adding side-formulae either categorically or hypothetically (left or
right); splicing is Cut.

We now appeal to the known completeness of LK. O

What starts out as, seemingly, only a notational convenience turns out to be not just a
genuine sequent calculus but, in effect, Gentzen’s LK.

Of course, the system is not exactly Gentzen’s LK. But now, notice that the uses made of
splicing /cut to show derivability of Gentzen’s rules satisfy this constraint: in every application

21,(P:>A1 22:>(P,A7_
2,20 = A, A

of splicing/cut, ¢ is a subformula of at least one formula in 2 UX, U Aq U A;.

This is the rule of Analytic Cut of Raymond Smullyan’s (1968a), where a system is devel-
oped in order to show that “The real importance of cut-free proofs is not the elimination of cuts
per se, but rather that such proofs obey the subformula principle” (Smullyan 19684, p. 560)[]

4 The Stoic analysis of argument

The Stoic account of propositional logic proceeds by presenting a handful of basic argument-
forms and by reducing more complex arguments to these by a using a fixed number of tech-
niques. Viewed coarsely, the approach is similar to Gentzen’s sequent calculus account: there

’In serendipitous conformity with Smullyan’s dictum, I showed that the {A, vV, —, =, 3}-fragment of the system
for classical logic in (Milne 2010) has the subformula property using model-theoretic means.



are basic argument forms taken as valid and a set of rules for generating valid argument-forms
from valid argument forms. In detail there are philosophically significant differences and a dif-
ference of direction: reduction of the more complex to less rather than the other way around.
Perhaps a better approximation to Stoic intentions would be achieved by inverting the proof-
trees of a sequent calculus so that one works downwards from the complex forms towards the
basic argument—formsﬁ although the difference of direction may not be of great moment when
giving a formal account of Stoic logic.

The basic argument forms, the indemonstrables, are, in effect, direct elimination rules. (By
‘direct’ I mean that all formulae save one occur categorically.) Stoic logicians provide elimina-
tion rules for conditionals and (exclusive) disjunctions and for negations of conjunctions.

According to Benson Mates,

The Stoics maintained that their system of propositional logic was complete in the
sense that every valid argument could be reduced to a series of arguments of five
basic types. Even the method of reduction was not left vague, but was exactly
characterized by four meta-rules, of which we possess two, and possibly three.
Whether or not the Stoic system was actually complete could be decided only with
the help of the missing rules. (Mates 1961, p. 4)

The claim to completeness is, if meant in the modern sense, well wide of the markﬂ But we can
give a formulation of classical propositional logic Stoic in spirit—at least in some respects.

Splicing a rule with instances of the negation elimination rule, hypothetical occurrences
of formulae are replaced by categorical occurrences of their negations. Likewise, splicing a
rule with instances of the negation introduction rule, categorical occurrences of formulae are
replaced by hypothetical occurrences of their negations. We obtain these rules for the condi-
tional, conjunction and exclusive disjunction:

= o=9, ¢ =9, ¢ =9, (=)= Y

PAY=¢, oAP=9, 2(@AY),9= P, D(PAY) Y=

P+ 9="9% ¢+Y,v="-¢ ¢tP,p=9, ¢+ YP=¢

PP PP = b PHY) Py, P+, P = .

Here the rules for the conditional, the negated conjunction, and the (exclusive) disjunction
are exactly the Stoic indemonstrables (at least if we accept informal ancient accounts—see,
e.g., (Mueller 1978, pp. 10-11)). The rest are present in order to spell out the truth-functional
accounts of these connectives (accounts by-and-large accepted by Stoic logicians only in the
cases of negation and conjunction, necessitarian readings being favoured for the conditional
and exclusive disjunction).

Splicing - —¢, ~¢ = and = —¢, ¢, we get the double negation elimination argument-
form/rule -—¢ = ¢; similarly, we may obtain ¢ = ——¢. We need some rule to get complex
consequences, not just atomic formulae and their negations, double negations, triple negations,
etc. For this we need some indirect rule, such as the Stoic’s first thema:

8Cf. (Corcoran 1974). See also (Frede 1974, pp. 186-190).
9See (Hitchcock 2005) on what might have been intended. See (Mueller 1979) and (Milne 1995, Milne 20124) for
more on the completeness of Stoic logic.



it Y, ¢ = ¢ then X, =¢p = —¢.

This gives us a complete set of rules for a pseudo-Stoic, natural deduction account of classical
propositional logic (with exclusive disjunction as primitive), confined to argument-forms with
at least one premiss. (And by splicing with the negation rules we can get back from these rules
to general introduction and elimination rules.m

I have just said that the rules for the conditional, the negated conjunction, and the (ex-
clusive) disjunction are exactly the Stoic indemonstrables but a while back I said that the in-
demonstrables are argument-forms. What we see is that there is really no difference between
taking (single conclusion) general introduction and elimination rules for natural deduction
and combining rules by splicing and taking argument-forms and generating new ones by Cut.
We have two ways of presenting the same underlying structure, albeit that the starting point
may seem quite different.

4,1 Tableaux

The “Stoic” argument-forms/rules all have a complex formula occurring in the an-
tecedent/occurring categorically and a single formula in the succeedent/occurring hypotheti-
cally. Using the negation rules we can move all bar the complex formula across to the succee-
dent, adding or deleting negations as we go. When we do so, what we have are, in effect, the
rules for Smullyan’s (1968b) analytic tableaux. We can mimic the elaboration of tableaux (trees)
by splicing/cutting—we have to take a little care in setting this up, for we have to mimic both
what Smullyan calls [non-branching] a rules and what he calls  [branching] rules

The negation rules let us turn categorical occurrences of negated formulae into hypothetical
occurrences of the unnegated original and vice versa. Consequently, we can mimic tableaux
directly with putative rules, splicing on the main formula, not side formulae. The argument-
form X = ¢ is valid if, and only if, every permitted sequence of splices on (complex) main

formulae, starting from

101 the interests of historical accuracy, I should say that (1) the Stoics had no analogue of the null rule, consider-
ing arguments with fewer than two premisses not to be syllogisms; (b) they had no analogue of Weakening, declar-
ing arguments invalid in virtue of redundancy of premisses (although exactly what that amounts to is unclear),
and (c) they had a rule, the third thema, whose effect is very much like Gentzen’s Cut rule. Stoic logicians seem
to have recognised the equivalence in meaning of a proposition and its double negation although how this was
accommodated formally is unclear—one possibility is along the lines of the account of the contrary in (Read 1988,
pp. 178-182) (see (Mueller 1979, p. 204)). But what is important here is the style of their analysis: basic argument-
forms and a set of procedures for the transformation of argument-forms. Regarding their treatment of negation we
should note, too, a couple of remarks of Gentzen'’s:

o For negation (—) the situation is not quite as simple; here there are several distinct forms of inference and
these cannot be divided clearly into —-introductions and —-eliminations. (Gentzen 1936, 94.56)

o The following must be said about the rules of inference for negation; as already mentioned at 4.56, the choice of
elementary forms of inference is here more arbitrary than in the case of the other logical constants. (Gentzen
1936, 45.26)

Tt is no co-incidence that our rules/argument-forms for the pseudo-Stoic formulation of classical logic are close
to the rules of the unsigned version of the tableaux system KE in (D’Agostino & Mondadori 1994).

10



terminates in an instance of the null rule or a weakening thereofF_ZI

4.2 Negation and two kinds of disjunctions

The Stoics have disjunctive syllogism as one of their five indemonstrables, albeit their dis-
junction is exclusive. The late Michael Dummett called disjunctive syllogism (with inclusive
disjunction) ‘a fundamental form of argument’ (1991, p. 293) . Treating it as basic goes hand in
hand with a suggestion Dummett made on another occasion:

We must first recall that a non-classical negation can be readily introduced in terms
of justifiability alone. The utterance “¢ or 1»” may now be thought of as expressing
a conditional claim to be able to justify the claim “¢”, given a justification of “Not
y”, or, conversely, to justify the claim “i”, given a justification of “Not ¢”: this is,
in effect, to take the logical law modus tollendo ponens as giving the basic meaning

of disjunction.
He went on to say:

The interpretation of “or” proposed above in effect equates “¢ or " with “If not ¢,
then v, and, if not ¢, then ¢”, understood intuitionistically, a rendering of course
weaker than the ordinary intuitionistic interpretation of “¢ or ¢”. (Dummett 1990,
pp. 7-8, with a change of notation

Rather than settle for one or other disjunction, Steve has urged that there are two dis-
junctions in common usage, one governed by Gentzen’s V-introduction, another governed by
disjunctive syllogism—see (Read 1988, pp. 31-34) and (Read 1994, pp. 60, 160, 163). By dis-
tinguishing the two, the “Lewis proof’ﬁ that anything follows from a contradiction, which
infers “¢ or ¢” from “¢” and then “¢” from “¢ or p” and “—¢”, is seen to trade on an ambi-
guity. Given the strongly classical nature of general introduction and elimination rules, it is
unsurprising that this route to blocking the proof is unavailable in the present setting. It is
interesting to see why not, though.

12Given the links between natural deduction with general introduction and elimination rules and Smullyan’s
analytic cut sequent calculus, on the one hand, and between the latter and Carlo Cellucci’s (2000) analytic cut trees,
on the other, the way of mimicking trees by splicing rules just suggested should be in some sense equivalent to
Cellucci’s tableaux system; spelling out the equivalence is work for another occasion.

13That “¢ V ¢” says nothing more nor less than “if not ¢, ¢, and if not ¢, ¢ is by no means a new idea. We find
this statement in Mill’s System of Logic:

As has been well remarked by Archbishop Whately and others, the disjunctive form is resolvable
into the conditional; every disjunctive proposition being equivalent to two or more conditional ones.
“Either A is B or C is D,” means, “if A is not B, C is D; and if C is not D, A is B.” (Mill 1843, Book 1,
Ch. IV "Of propositions’, sec. 3, p. 110); (1846, p. 56)

14William of Soissons’s proof, as Steve doubtless prefers me to say—see (Martin 1986).
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Our sequent calculus started out as a convenient means for the representation of general
introduction and general elimination rules. We can read it again as a system of rules for multi-
ple conclusion natural deduction somewhat along the lines of (Bori¢i¢ 1985) in that proofs are
in tree form. But splicing with the negation rules allows us to turn any multiple conclusion
rule into a plurality of impure, single conclusion rules—and to recover pure multiple conclu-
sion rules from a family of impure, single conclusion rules. Thus, in the present setting, there
is essentially no difference between Gentzen’s V-elimination rule and the left and right forms of
disjunctive syllogism,

vy b gV
y ?

Splicing (—¢ — ) A (—p — ¢) to obtain general introduction rules, one arrives naturally at

these three rules—

(¢ = P)A (- — ) (¢ = P)A (Y — ¢)
X . ¢ X . Yood
(= = P)A (9 — ¢)
X A 4
X

—but the third, being a weakening of each of the previous two, is redundant.

In the present setting one cannot coherently tell Steve’s story of there being two disjunctions,
for when spelt out in terms of general introduction and elimination rules, the supposedly
distinct connectives have the same introduction and elimination rules. In itself, this in no
way serves to impugn Steve’s account of how to by-pass the Lewis proof; it merely serves to
underline the classical nature of the setting provided by (my account of) general introduction
and general elimination rules.

5 Gentzen’s Hauptsatz

According to Dummett, it was Gerhard Gentzen ‘who, by inventing both natural deduction
and the sequent calculus, first taught us how logic should be formalised” (Dummett 1991, p.
251). In view of what we have—all too briefly—seen of the Stoic approach to argument, such
a claim may seem to slight the achievement of Stoic logicians. However, on an earlier occasion
Dummett had been more specific in the credit he gives Gentzen. There he said,

It can be said of Gentzen that it was he who first showed how proof theory should
be done. By replacing the old axiomatic formalizations of logic by sequent calculi,
and, in particular, by the cut-free systems, he not only corrected our conceptual per-
spective on logic, but also restored the balance of power as between proof-theoretic
methods and algebraic methods. (Dummett 1981, p. 434)

12



In the light of this clarification, perhaps Dummett is not unfair to the Stoics. Their system was
nothing like a cut-free sequent-calculus. But what is the significance of cut-free systems?
Gentzen sums up the Hauptsatz like this:

HAUPTSATZ Every LJ- or LK-derivation can be transformed into an LJ- or LK-
derivation with the same endsequent and in which the inference figure called a
‘cut” does not occur.

and notes this consequence

COROLLARY OF THE HAUPTSATZ (SUBFORMULA PROPERTY) In an LJ- or LK-
derivation without cuts, all occurring formulae are subformulae of the formulae
that occur in the endsequent. (Gentzen 1934-35, 992.5 & 2.513).

A page or so before the statement of the Hauptsatz, Gentzen had said,

In general, we could simplify the calculi in various respects if we attached no im-
portance to the Hauptsatz. To indicate this briefly: the inference figures [right A-
introduction, left V-introduction, left A-introduction, right V-introduction, left V-
introduction, right 3-introduction, right —-introduction, left —-introduction, and
left —-introduction] in the calculus LK could be replaced by basic sequents accord-
ing to the following schemata:

PY=¢&y PVY=¢¢ PNP=¢ AP
p=¢VY YP=¢VY Vx¢x= ¢a ¢a= Ixpx

= ¢, ¢ (law of excluded middle)

—¢,¢ = (law of contradiction)

These basic sequents and our inference figures may easily be shown to be equiva-
lent. (Gentzen 1934-35, §2.2, with modernisation of nomenclature and changes of

notation).

The propositional basic argument-forms are exactly the rewrites of the general introduction
and general elimination rules for conjunction, disjunction, and the conditional of §1{when put
in the sequent format of (The sketch of a proof of the completeness theorem above goes
some way towards filling in the steps in proving one half of the easily shown equivalence.)

Let us remind ourselves

o that we obtained our sequent calculus by a straight-forward rewriting of the rules of a
natural deduction calculus for propositional logic that has the subformula property;

o that the rules for Gentzen’s cut-free sequent calculus are derived rules of our sequent
calculus;

o that there is an easy back-and-fore switch we can do between our sequent calculus and

the “Stoic” form in which all basic argument-forms have a single conclusion;
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o that we can reread the “Stoic” formulation as a set of impure, single conclusion natural
deduction elimination rules (keeping Dilemma as the sole indirect rule).

(There’s one further fact that bears mention: the most natural way to transcribe general in-
troduction and elimination rules into a sequent system yields a sequent calculus in which all
operational rules are left and right elimination rules (see Milne 2012b, §6)!)

What is common to all these systems is that, if Cut is used, its uses may be constrained—
in deriving Gentzen’s operational rules, we cut only side formulae/minor premisses in rules
governing connectives—, and, quite generally, although derivations may not contain only sub-
formulae of premisses and conclusion of the derived argument-form, what formulae may ap-
pear can be restricted, say, perhaps, to subformulae of premisses and conclusion of the de-
rived argument-form and their negations. Do we then “attach no importance to the Hauptsatz"?
Hardly—the Hauptsatz provides an elegant (and vivid) way to make the broader point about
constraints on cuts/formulae. This is made clearer when we consider the first-order case

6 The move to first order

We can readily cast the standard 3-introduction rule of natural deduction in general introduc-
tion form; the standard (Gentzen) 3-elimination rule is already in general elimination form.
When added to the natural deduction formulation of classical propositional logic from which
we started out, we have a formulation of the {—, A, vV, —, 3}-fragment of classical first-order
logic with the subformula propertyE]

When we add the (general introduction and general elimination rewrites) of the standard
rules for the universal quantifier, we no longer have the subformula property. We do have an
optimal strengthening of the subformula results obtained, as consequences of normalization
theorems, by Dag Prawitz (1965, §53.1, 3.2, 4.1, and 4.2), for the V- and J-free fragment of
classical first-order logic, and by Gunnnar Stdlmarck (1991) for full classical first-order logic.
We have:

When X | ¢ there is a proof in which, over and above subformulae of members
of 2 U {¢}, only ¢ and negations of instances of universal generalizations that
are themselves subformulae of members of ¥ U {¢} occur. But =¢ need not occur
if ¢ itself has negation dominant, and, likewise, the negation —¢(v/c) of an in-
stance of a subformula Vo¢ need not occur if § has negation dominant. Those non-
subformulae that do occur need occur only as assumptions discharged in applica-
tions of Dilemma. If a non-subformula that is the negation —¢(v/c) of an instance
of a subformula Vv¢ does so occur, it occurs in an application of Dilemma whose

15There’s a parallel that would bear closer scrutiny than I have had time to give it. Inspired, on the one hand,
by Smullyan’s remark, quoted above, regarding the subformula principle and, on the other, by Smullyan’s own
demonstration of the equivalence of standard tableaux and cut-free sequent calculi (Smullyan 1968b), a number
of authors have advocated non-standard tableaux systems which, among other things, allow for more efficient
proofs—e.g. Boolos (1984), D" Agostino & Mondadori (1994), Cellucci (2000).

16 As noted above, (Milne 2010) contains a model-theoretic proof; Tor Sandqvist has an unpublished constructive
proof.
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immediate conclusion is ¢(v/c), and, likewise, if ~¢ does occur as an assumption
discharged in an application of Dilemma, it is an application whose immediate
conclusion is ¢. (cf. Milne 2010, 93.5.3, Theorem 8)

One might, as I did in (Milne 2010), grub around trying to loosen up the rules for the
universal quantifier in order to restore the subformula property. But it is more in line with
present concerns to note that, classically, V is dual to 3 and use this fact to obtain the standard
introduction and elimination rules for V. As a first step in this direction, we notice with some
alarm that the sequent rewriting in the manner of §3|of the (standard and general) elimination

rule for J gives us
dxpx = ¢a,

(where x replaces all occurrences of a in ¢a) which is far from classically sound (a fact which
no doubt accounts for the absence of a basic argument-form replacing left 3-introduction—and
likewise right V-introduction—in Gentzen’s list, quoted above).

The proof-theoretic semantics tradition has its roots in the work of Gentzen, especially his
(1934-35), and Prawitz’s (1965), which largely followed Gentzen’s style of natural deduction.
In an appendix, Prawitz (1965, Appendix C, §3) discusses “rules for existential instantiation”
which take their inspiration from Quine’s (1950a) and (1950b)E] Read as a rule, the sequent
above is exactly a rule of existential instantiation and, as such, must be subject to constraints.

In terms of splicing, I suggest that in splicing

[M’”

dx¢x X
X

the formula cancelled must be ¢a, and in any such splicing a does not occur in any other for-

m

mula featuring either hypothetically or categorically in the instance of the rule with which it is
spliced. (Since the conclusion is treated as “general”, for the purposes of splicing we do not need
to say anything specific about occurrences of a in the conclusion.) Now, suppose we have

2, pa = A,

where a2 does not occur in any formula in X, nor in any formula in A. Then we may splice with
Jx¢x = ¢a to obtain

Y, dx¢px = A.

We have replicated Gentzen’s LK rule for left J-introduction, with exactly Gentzen's
restriction—see (Gentzen 1934-35, 41.22).
Dualising—i.e., splicing -3x—¢x with negation rules—to obtain an introduction rule for V,

we end up with

pa = Vx¢x,

17See (Anellis 1991) and (Pelletier 1999) for details of the decade-and-a-half long travail to perfect this approach.
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where x replaces all occurrences of a in ¢a and when spliced ¢a must be the formula cancelled;
in any such splicing a does not occur in any other formula featuring either hypothetically or
categorically in the instance of the rule with which it is spliced.

Now, suppose we have

2= ¢a, A,

where a does not occur in any formula in ¥, nor in any formula in A. Then we may splice with
¢$a = Vx¢x to obtain

X = Vx¢x, A.

We have replicated Gentzen’s LK rule for right V-introduction with exactly Gentzen'’s
restriction—see again (Gentzen 1934-35, 91.22).

6.1 e-terms
dxpx = ¢a,

is not sound when 4 is read as a standard name. We can make it sound by giving a a special
reading in context: a stands for some one of the items satisfying ¢ux, if there are any, else it is
any item (in the domain of discourse). The interpretation of 4 is tied to the predicate ¢x and its
interpretation. To mark that dependence, let us subscript a accordingly.

Working from the (classical) equivalence of Vx¢x and —dx—¢x, we can use splicing in order
to obtain an introduction rule for Vx¢x. What we end up with is

Pa-px = VxPx.

By doing the minimum to retain classical soundness at first-order, we end up with the
e-calculus rules for the existential and universal quantifiers—see (Hazen 1987).

7 Conclusion

Smullyan (1968b) showed how proofs with analytic tableaux and cut-free derivations in
Gentzen’s sequent calculus LK match up; Prawitz (1965) showed how normalised natural de-
duction proofs employing Gentzen'’s rules are a close but not perfect match.

If we are prepared to side with Smullyan, apparently against Gentzen, on the true signifi-
cance of the Hauptsatz, there is merit in investigating other approaches. In particular, that the
formulation of classical propositional logic employing (what I have called) general introduc-
tion and elimination rules should match Smullyan’s analytic cut sequent calculus is, if only
from a purely technical/practical point of view, a mark in their favour. That, as I think they
are, general introduction and elimination rules are philosophically well motivated—a claim I
have done little to substantiate here but address at length in (Milne 2012b)—is an added bonus.

In philosophy, analogies are sometimes helpful. In more formal inquiries, what is often
more important is seeing that one is describing the very same phenomenon in different ways.
That the first step in the direction of the confluence of ideas sketched above should have been
taken by the earliest investigators of propositional logic is a remarkable coincidence.
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