@ Miskolc Mathematical Notes HU ISSN 1586-8850
)4 Vol. 5 (2004), No. 2, pp. 187-192

BIFURCATIONS OF EQUILIBRIA OF A NON-LINEAR AGE
STRUCTURED MODEL
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AsstrACT. In [6], M. E. Gurtin and R. C. MacCamy investigated a non-linear age-
structured population dynamical model, which served as one of the basic non-linear
population dynamical models in the last three decades. They described a character-
istic equation but they did not use it to discuss stability of equilibria of the system

in certain special cases. In a recent papgém. Farkas deduced a characteristic
equation in another form. This characteristic equation enabled us to prove results
about the stability of stationary age distributions of the syst@&in,If the present

paper we are going to investigate how equilibria arise and change their stability as
a basic parameter of the system varies.
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1. INTRODUCTION
We consider the following model equation:

Pa(at) + pi(a.t) = —u(a P(t))p(at), (1.1

wherep(a, t) denotes the density of population of age(0 < a < m < ) at time
t, u(a, P(t)) denotes the mortality of individuals of ageat the population quantity
P(t), which quantity at time: is given by the relation

m
PO = [ planda (1.2)
0
The number of newborns at tinhés given by the equation
m
P00~ [ e POP(EDda (L.3)

with the fertility functiong(a, P(t)). Finally, we assume a given age distribution at
timet =0,

p(a, 0) := po(a). (1.4)
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The functionss(-, ), u(-, -) € C and, naturally, they are non-negative. We assume
a finite maximal age denoted lmy. This assumption does not make any restriction
in a biological sense settingp as a “very large number”, but lets us avoid some
mathematical problems.

The dynamics of the system (1.1)—(1.4) is determined by the vital géseB(t))
and u(a, P(t)) depending on the aga and on the total population quanti)t).
Many papers deal with models wheRgt) is replaced by a weighted size func-
tion S(t) = fy(a)p(a, t)da, or more generally a finite number of such functions

Si(t) = [vip(@tdai=1.n[2,7.

Theorem 1 (M. E. Gurtin & R. C. MacCamy#]). Any stationary solutiorp;(a)
of the system is determined uniquely by the PBpbf the following equation

R(P) = fo B(a Pr(a, P)da= 1.

Herex(a, P) = e b #(SP)¥s s the probability for any individual to reach the age
andR(P) is the net reproduction number. Then

P1ir(a, P1)
5" n(a, Pr)da

Definition 1. The stationary solutiop,(a) of the system is said to be asymptoti-
cally stable if there exists@&> 0 such that whenevép(a, 0) — p1(a)l,1 < d, one has

Iimt—mo |p(ae t) - pl(a)lLl =0.

The stability of the trivial equilibrium is mainly characterised by the following
theorem.

p1(a) =

Theorem 2(M. lannelli [7]). If R(0) < 1, then the trivial equilibriumpy(a) = 0is
asymptotically stable, and R(0) > 1, then it is unstable.

As we mentioned earlier ir8] we proved some results about the stability of sta-
tionary solutions. One of them characterises the stability in a case when the vital
rates assume a special form, namely,

u@ P(t) =m@),  B(a P(t)) = ba)f(P(1)), (1.5)
a factorisation property fga(, ).

Theorem 3(J. Z. Farkas3)]). If R(P1) < O, then the stationary solution corre-
sponding to the population quantiBs = fom p1(a)dais asymptotically stable, and if
R(P1) > 0O, then it is unstable.

In [1], J. M. Cushing investigated a general non-linear McKendrick model. He
proved that at the critical value of the bifurcating parameterR(0) = 1 two positive
equilibria arise from the trivial equilibrium and he studied stability both for the trivial
and the positive equilibria in a small neighbourhood of the critical parameter value
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by means of the principle of linearised stability. He used implicit function techniques
under smoothness conditions on the vital rates as functionals of age and population
density.

In the recent paper we are going to investigate a family of systems for which a
“global” theorem proves the linear stability or instability of equilibria. Saddle-node
bifurcation “far” from the trivial equilibrium and transcritical bifurcation near the
trivial equilibrium are shown.

2. BIFURCATIONS OF EQUILIBRIA

Now consider a family of systems with the following vital rates
1
n@P)=m@). B(aP)=b@fP). f(P)=5—z+cP (21

with the bifurcation parameter> 0, m, B € Cl. SettingK = fom b(a)r(a)da, we get
the equation

KE(P) - 1 CKP? + cKPy + 1 1-0 05
c(P)-1= P+ 1 -1= (2.2)
for the population quantitf?;. Observe that noWR(0) = K holds.

From the equation

cKP? + (cK-1)P; +K-1=0, (2.3)
we get
pL2 (1-cK) = \/c2K2—4cK2+2(:K+1, (2.2)
2cK
and we seek for a positive equilibrium.
2.1. THECASEK > 1
In (2.4), the relation
c?K? - 4cK? + 2cK + 1> 0, (2.5)
holds if
1 1
0 2-Z_2,\1-=
<C< K K
or

1 [ 1
2— —+24/1-—. 2.6
c> K+ K (2.6)

We first consider the interval & ¢ < 2- % - 2,/1- 1, and, in view of the

inequality > 2— % - 2,/1- %, we now have t cK > 0. The inequality + cK >

Vc2K2 — 4cK2 + 2cK + 1 shows that, in this interval of values of the parameter
there exist exactly two non-trivial equilibria.
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Atthe parameter value= 2 % - 2,/1 - & we havec?K? - 4cK? + 2cK + 1 =0

and 1- cK > 0, so, at this value df, there exists only one positive equilibrium with

. . 1-K+K y1-2

total population quantityp; = ————=-.
pop q P1 2K-1-2K 1-#

For2- & -2,1-% <c<2-2%+2,/1-% there are not any positive

equilibria, and this holds foc > 2 - % + 2,/1- % because + cK < 0 and

K
cK —1> Vc2K2 - 4¢K? + 2cK + 1.
Now we are going to examine the stability of the equilibria. We first consider the

positive equilibrium at the parameter value 2—%—2 1- % with total population

quantityPy = ek — KK VIg

= . We have
2K aK-142K 41—

1

f{P)=c- 0——,
(P) P2+2P+1

(2.7)
and an elementary calculation gives
fe(P1) = 0. (2.8)

Itis easy to show that fd? > P; we havef’(P) > 0 and forP < P; we getf{(P) <
0. Applying Theorem 3 we get that one of the positive equilibria is asymptotically
stable and the other one is unstable at the parameter intervalcO< 2 — % -

2,/1- % The trivial equilibrium is unstable by Theorem 2 becaBf®) = K > 1.
Summarising, we have the following

Theorem 4 (Saddle-node bifurcation)For ¢ > 2 — % —-2,/1- % there is no

positive equilibrium, forcg = 2 — % - 241~ % we have one positive equilibrium.
For ¢ < ¢y, there are two curves of positive equilibria in a neighbourhood of
1-K+K1-2

(P.o) = , Col-
2K -1-2K J1- 2

The upper equilibria are unstable and the lower equilibria are asymptotically stable.
22. THEcasE K < 1

Now c?K? — 4cK? + 2cK + 1 > 0 for everyc > 0. If 0 < ¢ < &, then 1- cK > 0
and in view of the relation  cK < Vc2K2 — 4cK2 + 2cK + 1, we get one positive
non-trivial equilibrium with total population quantity
_ 1-cK+ Vc2K2 - 4cK2 + 2cK + 1
B 2cK '

Py
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Forc > % we have 1- cK < 0 and 1- cK + Vc2K2 — 4cK? + 2cK + 1 < 0, so there
are no positive equilibria.

The positive equilibrium above tends to zera tends to% and tends to infinity if
ctends to 0. For this positive equilibrium,
; >0
P2+2P1 +1

and thus, it is unstable. The trivial equilibrium is asymptotically stable because
R(0) = K < 1.

fe(P1) =c- (2.9)

Theorem 5(Transcritical bifurcation) There are no positive equilibria far > %

and, forc < % there is a curve of equilibria which is unstable, and the trivial
equilibrium is stable.

2.3. THECcAsE K = 1

Now we have

_(l-0+Ve2-2c+1
- 2c ’
whenceP?! = 0 andP? = % — 1 soforc < 1 there exists a non-trivial equilibrium. We
have

pl2 (2.10)

1
(1;‘3)2 +21¢ 41
Cc Cc
the positive equilibrium is unstable.
For the trivial equilibriumR(0) = K = 1; but f{(0) = ¢ — 1 means that for small
P we haveR(P) > 1if c > 1 andR(P) < 1 for c < 1. This means that the trivial
equilibrium is stable foc < 1 and it is unstable for > 1.

f/(P) =c- =c-c?>0; (2.11)

Theorem 6 (Transcritical bifurcation) For ¢ > 1 we have only the trivial equilib-
rium, forc < 1 a curve of positive unstable equilibria emerges.

3. DiscussIoN

In this paper, we have considered the well-known age-structured model of Gurtin
an MacCamy in a special case where the mortality of the individuals is age-dependent
only and the fertility function is separable in the variabéesf age andP of total
population quantity. In that case, Theorem 3 establishes the stability of the positive
equilibrium, while the stability of the trivial equilibrium depends on the constant

= [ b@)e b Mg -
K fo b(a)e da = R(0)

in Theorem 2. We showed that a degenerate transcritical bifurcation occurs, that is,
for K < 1, a curve of positive unstable equilibria bifurcates from the trivial one at the
critical parameter valuey = % and as tends to 0 the total population quantity at the
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equilibrium tends to infinity. FoK > 1, we have showed that a saddle-node bifurca-

tion occurs at the critical parameter valee= 2 - & — 2,/1- %. Forc < co, two

curves of positive equilibria appear, from which one contains unstable equilibrium
points with total population quantity tending to infinity, and the other curve consists
of positive stable equilibrium points.
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