Formal Aspects of Computing (1998) 3: 1-000
© 1998 BCS

The Tree Identify Protocol of IEEE 1394
in 4tCRL

Carron Shankland! and Mark van der Zwaag?

IDepartment of Computing Science and Mathematics, University of Stirling, Stirling
FK9 4LA, UK; 2CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Keywords: process algebra; verification of distributed systems; leader election
protocols

Abstract. We specify the tree identify protocol of a high performance serial
multimedia bus (IEEE Standard 1394 [IEE96]) at three different levels of de-
tail using pCRL [GP95]. We use the cones and foci verification technique of
Groote and Springintveld [GS95] to show that the descriptions are equivalent
under branching bisimulation, thereby demonstrating that the protocol behaves
as expected.

1. Introduction

Much time and effort is expended in the development of new techniques for de-
scription and analysis of (computer) systems; however, many of these techniques
remain the preserve only of their inventors, and are never widely used. This is
often due to the sharp learning curve required to adopt them; many verification
techniques have complex theoretical underpinnings, and require sophisticated
mathematical skills to apply them. Case studies therefore have a valuable role
to play both in promoting and demonstrating particular verification techniques,
and providing practical examples of their application. This paper presents one
such case study. We apply the cones and foci technique of Groote and Spring-
intveld [GS95] to a fragment of the software for a high performance serial mul-
timedia bus, the IEEE standard 1394 [IEE96], also known as “Firewire”.
Briefly, IEEE 1394 connects together a collection of systems and devices
in order to carry all forms of digitized video and audio quickly, reliably, and

Correspondence and offprint requests to: Carron Shankland, Department of Computing Science
and Mathematics, University of Stirling, Stirling FK9 4LA, UK, carron@cs.stir.ac.uk

2 C. Shankland and M.B. van der Zwaag

inexpensively. Its architecture is scalable, and it is “hot-pluggable”, so a designer
or user can add or remove systems and peripherals easily at any time. The only
requirement is that the form of the network should be a tree (other configurations
lead to errors). Much effort has been expended on the description and verification
of various parts of the standard, using several different formalisms and proof
techniques.

The main operation of the standard, concerned with sending packets of in-
formation across the network, is described using pCRL in [Lut97] and using
E-LOTOS in [SM97]. The former is essentially a description only, with five cor-
rectness properties stated informally, but not formalised or proved. The exercise
of [SM97] is based on the pCRL description, adding another layer of the protocol
and carrying out the verification suggested, using the tool CADP [FGK™T96].

In this paper we concentrate on the tree identify protocol which occurs after
a bus reset in the system, e.g. when a node is added to or removed from the
network. The purpose of the tree identify protocol is to assign a (new) root, or
leader, to the network. Essentially, the protocol consists of a set of negotiations
between nodes to establish the direction of the parent-child relationship. Poten-
tially, a node can be a parent to many nodes, but a child of at most one node.
A node with no parent (after the negotiations are complete) is the leader. The
tree identify protocol must ensure that a leader is chosen, and that it is the only
leader chosen.

This part of the 1394 is described using I/O automata in [DGRV97]. Verifica-
tion is by (manual) manipulation of a number of invariants, phrased in predicate
calculus. Also discussed is the mechanisation of this verification in the theorem
prover PVS.

There are three descriptions of the protocol, written using pCRL [GP95], in
this paper:

e a specification of the external behaviour of the protocol,
e Implementation A, and

e Implementation B.

The specification merely announces a single leader has been chosen. In Imple-
mentation A nodes are specified individually and negotiate with their neighbours
to determine the parent-child relationship. Communication is by hand shaking.
Implementation B has negotiation as above, but communication between nodes
occurs via two unidirectional channels (therefore messages may pass each other,
causing conflicts in assigning the leader).

These descriptions may be found in Sections 2.1, 2.2 and 2.2 respectively.
They were derived with reference to the transition diagram in Section 4.4.2.2 of
the standard [IEE96]. Section 3 gives an informal overview of the cones and foci
technique of [GS95], together with some common definitions. The formal details
of this technique are repeated in the appendix for convenience.

We prove, using the cones and foci technique, that Implementation A and
Implementation B have the same behaviour with respect to branching bisimula-
tion as the simple specification, therefore showing that these descriptions behave
as required, i.e. a single leader is chosen. The proofs may be found in Section 4
and Section 5, respectively.

We conclude with some remarks about the success of this case study and
about verification using the technique of [GS95] in general.

The Tree Identify Protocol of IEEE 1394 in yCRL 3

2. Description of the Tree Identify Protocol

The descriptions are given in pCRL, which is roughly ACP [BW90] extended
with a formal treatment of data. Familiarity is assumed with this formalism; an
introduction may be found in [GP95].

Briefly, the main features of the formalism are as follows. § represents dead-
lock, p - q indicates sequential composition and p + ¢ indicates alternative com-
position. The process Y ,, p(z) behaves as the possibly infinite choice between
processes p(d) where d is any data term of sort D. The parallel composition of
processes p and ¢ is written p || ¢. We have a sort B of booleans with two ele-
ments t and f and the usual boolean operators. Conditionals are written p<tbr>gq,
meaning if b holds behave as p, otherwise behave as q. The operator 77 hides all
those actions in the set I, by converting them to silent 7 actions, and Jy re-
stricts enabled actions, by renaming actions in H to §. We choose H such that
the 0y operator forces the enclosed processes to communicate with each other.
For booleans we assume the following binding conventions: - binds stronger than
A,V, which bind stronger than —.

The pCRL data definitions used (e.g. N, NSet, NSetList) are assumed and
not presented here; these are straightforward and examples of the appropriate
types or similar may be found in [GP95, Lut97].

2.1. Specification

The most abstract specification of the tree identify protocol is the one which
merely reports that a leader has been found. The network is viewed as a whole,
and no communications between nodes are specified. We define

Spec = leader - 6.

2.2. Implementation A

A more fine grained model is given by representing each node in the network
by a separate process. Individual nodes are specified below as processes NodeA.
Each node has three parameters:

e i:N is the identification number of the node. This is used to parameterise
communications between nodes, and is not changed during the protocol.

e p:NSet is the set of node identifiers of potential parents of the node. The initial
value is the set of all neighbours, decreasing to either a singleton (containing
the parent node) or the empty set (indicating that the node is the elected
leader).

e s5:N is the current state of the node. We use two state values: 0 corresponds
to “still working” and 1 to “finished”. The initial value is 0.

A node can send and receive messages: an action s(i, 7, par) is the sending
of the parent request par by node i to node j, and an action r(i, j, par) is the
receiving of a parent request from node ¢ by node j. When the nodes of the
network are composed in parallel, these two actions synchronise with each other
to produce c actions. An action ¢(i, j, par) is the establishment of a child-parent

4 C. Shankland and M.B. van der Zwaag

relation between node i and node j. In this case, the type M of messages has
only one element, i.e. the parent request message par.
We define the set of actions

Act = {s,r,c: N x N x M, leader}

and the communication s|r = c. There are no other communications defined.

If a node is still active and its set of potential parents is empty, it declares
itself leader by the execution of the leader action. By definition, nodes in state
1 are equivalent to deadlock. Individual nodes are defined as follows:

NodeA(i:N, p:NSet, s:N) =
leader - NodeA(i,p,1) < s = 0 A empty(p) > 0+
Zj:N (4,4, par) - NodeA(i,p\ {j},s) <s=0Aj €p> i+
> 8(i, 4, par) - NodeA(i,p,1) <s =0Ap= {j} > 0.

The process ImpA(n, Py) is the parallel composition of n + 1 nodes, with Py
describing the configuration of the network:

ImpA(n:N, Py:NSetList) = Oy (NodesA(n, Py)),
where H = {s,r} and
NodesA(n, Py) =
NodeA(0, Py[0],0) <n = 0>
(NodeA(n, Py[n],0) || NodesA(n — 1, Fy)).

Py is a list of sets of connections for all nodes, indexed by node number, and
initially all nodes are in state 0. Note that since node identifiers start at 0, the
process ImpA(n, Py) is the composition of n + 1 nodes.

2.3. Implementation B

Implementation A assumed hand-shaking communication between nodes; in re-
ality messages are sent by variations in voltage along wires of various lengths
and are therefore not received instantaneously, i.e. they are asynchronous com-
munications. This means a node may ask to be a child of its neighbour, while
that neighbour has already sent out a message asking to be its child (but the
messages have crossed in transmission). That contention has to be resolved, and
one node assigned to be the parent and the other the child.

In Implementation B unidirectional one-element buffers are introduced to
model communication between nodes; there are two buffers for each pair of nodes.
The communication events also become more complex: in addition to the parent
requests, nodes must also send acknowledgements (since a node cannot assume
its parent request is successful until an acknowledgement is received). Therefore
we introduce the acknowledgement message ack. Let M be the sort of messages
with two elements par and ack.

The parallel composition of all buffers is defined in Figure 1 as process
Buffers. The names of actions in this definition may be confusing; for a buffer an
s action is a read action and a 7 action is a send action. This is a consequence
of the names used in the specification of nodes defined below.

Again individual nodes of the network are specified by separate processes.

The Tree Identify Protocol of IEEE 1394 in yCRL 5

Buffer(i:N, j:N) = > 1 s(i,j,m) - 7(i, j,m) - Buffer(i, j)
Buffers(index:N,n:N) =

BList(0,n) < index = 0> (BList(index,n) || Buffers(index — 1,n))
BList(row:N, col:N) =

Buffer(row,0) < col = 0 > (Buffer(row, col)) || BList(row, col — 1))

Fig. 1. The process Buffers

The parameters are similar to those for Implementation A, except there are now
three more states, and there is an extra parameter c:NSet that is used to keep
track of children that have to be acknowledged.

In state 0, a node receives parent requests setting up the parent-child rela-
tionship. When it has received requests from all or all but one of its neighbours,
it moves into state 1. In state 1 a node acknowledges its children. A node can
leave state 1 by sending a parent request to its only remaining potential parent
(if any). Leaf nodes can skip state 1, and go to state 2 immediately. In state 2, if
a node has an empty potential parent set it is the leader and it can do a leader
action. If not, a node waits for an acknowledgement from its parent. In state
2, a node may receive a parent request instead of an acknowledgement from its
requested parent; it then moves into state 3, attempting to resolve contention.

In the standard, contention is resolved by waiting a randomly chosen time
before checking for a offer to be a child from the other node, and, if there is
none, resending its own parent request. There is no time in uCRL so here there
is a choice between sending the parent request again and waiting to receive a
child request. Note that there is the possibility of an internal loop if the nodes
in contention keep sending each other parent requests. Contention is resolved if
in the state where both nodes are in state 3, one of the nodes sends a parent
request and the other node does not retransmit its own request, but waits to
receive the request from the other node. After the contention has been resolved
one of the nodes returns to state 1; this node has received a parent request from
the other node and it has to acknowledge this new child. The other node moves
into state 2 and waits to be acknowledged. State 4 corresponds to finished.

As for Implementation A, there is the special case where n = 0, i.e. there is
only one node in the network. In this case this one node can do the leader action
immediately.

An action §(i, j, par) is the sending of a parent request from i to j . Through
the buffer, the 5 action is transformed into a ¥ action, synchronising with r actions
in other nodes. An action 7(j, 7, par) is therefore the receiving of a parent request
from j by i. Acknowledgements §(i, j, ack) from i to j acknowledge that 7 will
be j’s parent.

We define the set of actions

Act = {r,7,r",s,5,8":N x N x M, leader }

and the communications 7|7 = r* and s|§ = s*. There are no other communica-
tions defined.
Individual nodes NodeB are specified in Figure 2. The complete process ImpB

6 C. Shankland and M.B. van der Zwaag

is the parallel composition of all nodes and buffers. Note that buffers not required
for communication will simply not be used because of the requirement for syn-
chronisation between NodesB and Buffers. We define

ImpB(n:N, Py:NSetList) = O (NodesB(n, Py) || Buffers(n,n)),
where H = {r,7, s,5} and
NodesB(n, Py) =

NodeB(0, Py[0],0,0) < n = 0>
(NodeB(n, Py[n],0,0) || NodesB(n — 1, Fp)).

NodeB(i:N, p:NSet, ¢:NSet , s:N) =

leader - NodeB(i,p,c,4) < (s =0V s = 2) A empty(p) > 6+

E]-:N r(j,i, par) - NodeB(i,p\ {j},c U {j}, if (singleton(p), 1,0))
As=0AjEp> i+

E].:N 5(i,j, ack) - NodeB (i,p,c\ {j},1)
< s =0A singleton(p) N j € c> 5+

> 80, 4, par) - NodeB(i,p, ¢, 2)
s =0Ap={j} A empty(c) > o+

E].:N 5(i,j, ack) - NodeB (i,p,c\ {j}, if (empty(p) A singleton(c),2,1))
ds=1Aj€Ec> i+

> 8(i, 4, par) - NodeB(i,p,¢,2) <s =1Ap={j} A empty(c) > o+
Ej:N r(j,1, ack) - NodeB(i,p,c,4) Qs =2Ap={j} > o+

Ej:N r(j,i, par) - NodeB(i,p,c,3) As =2Ap={j} > o+

> jnT(i, par) - NodeB(i,p\ {j},cU{j},1)<s=3Ap={j} > o+
> 80, par) - NodeB(i,p,c,2) <s =3 Ap={j} >4

Fig. 2. The process NodeB

3. Correctness

In process algebra it is common to verify the correctness of a description (the
implementation) by proving it equivalent in some sense, e.g. with respect to
strong bisimulation, to a more abstract specification. When data is introduced to
the descriptions proving equivalence is more complex since data can considerably
alter the flow of control in the process. The cones and foci technique of [GS95]
addresses this problem. The main idea of this technique is that there are usually
many internal events in the implementation, but they are only significant in that
they must progress somehow towards producing a visible event which can be
matched with a visible event in the specification. A state of the implementation
where no internal actions are enabled is called a focus point, and there may be

The Tree Identify Protocol of IEEE 1394 in yCRL 7

several such points in the implementation. In Implementation A the focus comes
when the implementation can perform the leader action, because the leader
action is always the last action to be performed. In Implementation B there may
be internal actions enabled in states where the leader action is enabled, and the
focus comes when the leader action is the only enabled action. Focus points are
characterised by a boolean condition on the data of the process called the focus
condition. The focus condition is the negation of the condition which allows T
actions to occur. The cone belonging to a focus point is the part of the state space
from which the focus can be reached by internal actions; imagine the transition
system forming a cone or funnel pointing towards the focus. There may also be
unreachable states in the implementation; these can be excluded by use of a data
invariant.

The final element in the technique is a mapping between the data states of
the implementation and the data states of the specification. This mapping is
surjective, but almost certainly not injective, since the data of the specification
is likely to be simpler than that of the implementation.

Equivalence between the two systems can then be shown by proving six
“matching criteria” to hold. Informally, these say

1. The implementation must be convergent.

2. Internal actions in the implementation preserve the mapping.

3. If the implementation can do a visible action then so can the specification.

4. If the specification can do a visible action and the focus condition holds, then
so can the implementation.

5. The implementation and the specification have the same data on visible ac-
tions.

6. If the implementation does a visible action then the mapping is preserved
afterwards.

If these six criteria are satisfied then the specification and the implementation can
be said to be branching bisimilar under the General Equality Theorem of [GS95]
(repeated in the appendix here as Theorem A.1). The general forms of the match-
ing criteria are given in Definition A.3. Given the particular actions, conditions
and mapping for a system, the matching criteria can be mechanically derived.
Of course, the choice of mapping requires some thought, as does the subsequent
proof of the criteria.

In Section 5 we will see that for Implementation B, the procedure is more
complicated. In this case contention results in internal loops within the cone
(therefore the implementation is not convergent). Fortunately, [GS95] has, in
addition to the General Equality Theorem, a version which is extended by no-
tions of progression and fairness to counteract the problem of implementations
with internal loops (this is Theorem A.2). Fairness allows that we abstract from
progressing internal actions only. This abstraction is obtained by the application
of a pre-abstraction function. We will use a focus condition and matching criteria
relative to this pre-abstraction (Definitions A.4 and A.6).

A requirement of the cones and foci proof method is that the process be de-
fined by a linear equation (Definition A.1). The linearisation of process terms is a
common transformation in process algeba. The linearisation technique of [Gro96]
provides rules for the transformation in the special case that the system is com-
posed of similar processes (as in ImpA and ImpB).

As mentioned earlier, the protocol operates correctly only on tree networks,

8 C. Shankland and M.B. van der Zwaag

i.e. assuming the network has a good topology. Networks with loops will cause
a timeout in the real protocol, and unconnected nodes will simply be regarded
as another network. The property of GoodTopology is formalised below.

Definition 3.1 Given n:N, the maximal node identifier in the network, and a
list Pp:NSetList giving a set of neighbours for all nodes in the network, the
conjunction of the following properties is called GoodTopology (n, Py):

o Py is symmetric: Vi, j.(i € Py[j] & j € Poli]).
e P, is a tree, i.e. it is a connected graph with no loops.

— connected: there exists a path! s between every pair of nodes.
Vk,j <nds=ig...im.(lo =kANipm=7)
— no loops : Vi.—3 direct path s = igi1 .. .0m.(0 =ig Ai = ip).
As a preliminary step to applying this proof method for either Implemen-
tation A or Implementation B, the process Spec defined in Section2.1 must be

translated into linear form. Additionally, a data parameter must be added on
which to base a mapping from the data of the ImpA or ImpB.

Definition 3.2 (Linear Specification)
L-Spec(b:B) = leader - L-Spec(f) < b >
Clearly L-Spec(t) = Spec.

4. Correctness of Implementation A
4.1. Linearisation

The linearisation of ImpA is given here as L-ImpA. For recursive calls of L-ImpA
only those arguments which are updated are given, e.g. L-ImpA(1/S[k]) means
replace the kth element of S by 1, leaving all other elements as they are.

Definition 4.1 (Linearearisation of ImpA)
L-ImpA(n:N, P:NSetList, S:NList) =
Y opn leader - L-ImpA(1/S[k])
< S[k] = 0 A empty(P[k]) Nk < nD>d+
2o g €Uy ks par) - L-Imp A((P[k]\ {j})/ P[k], 1/5[4])
A4Sl =0AP[j]={k}ASk]=0Aj € P[k]IA
E#jNE,j<n>d
This linearisation can be derived straightforwardly from the definition of indi-
vidual nodes using the linearisation technique of [Gro96]. We assert
ImpA(n) PO) = L'ImpA(n) P0> SO):

where Sy is the list of initial state values for the nodes, so Vi.Sp[i] = 0.

I Define paths, s:NList = igi1 ...im such that Vk < m.ig41 € Polig]. Direct paths are paths
which do not backtrack down an edge already followed (remember Py is symmetric). A path s
is direct if Vk < m.(ikik+1 €s)=> (ik+1ik & s).

The Tree Identify Protocol of IEEE 1394 in yCRL 9
4.2. Invariants

The proof of correctness also requires a number of invariants. The invariants
listed below hold in every state (n, P,S) that can be reached from the initial
state (n, Py, Sp). The variables k and [are universally quantified over {0,... ,n}.

Li: S[kl=0VvS[k]=1

I, : 1€ Rylk] < 1€ Plk]VEke P[]

I;: le Rlk]Al ¢ Plk]— S[l]=1

Iy - S[k] =1 — singleton(P[k]) V empty(P[k])
I;: le PIE]AS[k]=0—=S[l]=0Ake P[]

The proofs of these are straightforward, and omitted here.

4.3. Some intermediate steps

The linearisation L-ImpA is not sufficient to allow us to apply Theorem A.1.
The indices of the sums preceding any visible actions must be the same in both
the specification and the implementation; clearly this is not the case. The sum
over k preceding the leader action in L-ImpA correctly reflects that any node
can be the root, i.e. there are multiple foci. However, it is not important which
node is the root, only that one is chosen, and the boolean condition guarding the
leader action in L-ImpA ensures that this is the case, summed up in Lemma 4.1.
This lemma says that if a node can do the leader action, then all other nodes
are in state 1. So if a node declares itself leader then it is the first one to do so,
and because after this action all states will be in state 1, there will be no leader
action, or any other action, after it.

Lemma 4.1 (Uniqueness of Root)
VE <n. empty(P[k]) = VI<n.l#k— S[I]=1

Proof. We assume nodes k,l < n such that k # I A empty(P[k]) A S[l] = 0,
and derive a contradiction. By GoodTopology there is a path of distinct nodes
k =ko...ky, =1, such that Vi < m. ki;1 € Polks]. By I, and empty(P[ko])
we see that ko € P[k;]. Then by I3 S[k1] = 1, and by 1 singleton(P[k1]). In a
similar way we derive for all 0 < i < m that P[k;] = {k;—1} and S[k;] = 1. So in
particular S[I] = 1. O

The information that the root node chosen is unique (once a certain point in the
cone is reached) can be exploited to give a new definition of the linearisation of
ImpA. Introduce the function pr on data states of the implementation, which is
the minimal node identifier of nodes in state 0, and if there is no node in state
0 it is defined to be 0. The variables k are quantified over {0, ... ,n}.

pr(n, P,S) = if (3k. S[k] = 0,min({k | S[k] = 0}),0)

By Lemma 4.1, only one node will perform the leader action. We see that if a
node k can perform the leader action, i.e. if it satisfies S[k] = 0 A empty(P[k]),
then it will be the value of pr. So it is safe to eliminate the summation over
k in the first summand of L-ImpA, by instantiating it with pr(n, P,S). This
elimination yields the redefinition of process L-ImpA defined below. We often
write pr to denote the value of pr in the current state.

10 C. Shankland and M.B. van der Zwaag

Definition 4.2 (Linearisation of ImpA (redefined))
L-ImpA(n:N, P:NSetList, S:NList) =
leader - L-ImpA(1/S[pr]) < S[pr = 0 A empty(P[pr]) > 0+
Ykjn €Uy by par) - L-Imp A((P[K]\ {5})/ P[k], 1/5[j])
< S[fl =0AP[j] ={k} AS[k] =0Aj € Pk]A
k#jNk,j<n>d

4.4. Verification

The theorem to be demonstrated can now be stated as:

Theorem 4.1 Under the assumption of GoodTopology and the invariants it
holds that

7 - L-Spec(t) = 7 - Ty L-ImpA(n, Py, So).
In the special case where n = 0 (there is only one node in the network) we have
L-Spec(t) = 1y L-ImpA(n, Py, So).

This is a direct instantiation of Theorem A.1 with the initial state, because in
the initial state the focus condition (defined below) is true if and only if n = 0.
In order to prove Theorem 4.1 the matching criteria must be satisfied. To show
that the matching criteria hold we first define the focus condition and the state
mapping for 7.y L-ImpA. The focus condition FC' is the condition under which
no more 7 steps can be made, i.e. it is the negation of the condition for making
a 7 step:

FC =Vk,1<n.S[kl=1VPk £{}VvS[ll=1VkgPlV k=1

The state mapping h is a function mapping data states of the implementation
into data states of the simple specification. In this case h is defined so that it is
t before the visible leader action occurs and f afterwards:

h(n, P,S) = (S[pr] < 1).

Intuitively h says that as long as the possible root, pr, introduced in the last
section, has not moved to state 1 then the leader action has not yet occurred.

The matching criteria Given the particulars of L-ImpA, L-Spec, FC and h,
the matching criteria are mechanically derived from the general forms of Defini-
tion A.3. The instantiated matching criteria are stated below, together with the
proof that they hold.

1. The implementation is convergent.
Using the number of nodes k for which S[k] = 0 as a measure, then each 7
step decreases that measure by one.

2. In any state d = (n, P, S) of the implementation, the execution of an internal
step leads to a state with the same h-image.
Suppose an internal action is possible, i.e. there are nodes k,I < n such that

S[k] =0AP[k] = {I}AS[]=0Ak €PN k#1

The Tree Identify Protocol of IEEE 1394 in yCRL 11

We see that S[pr] = 0. We have to show that if we reach a state d' = (n, P, S")
by the communication between nodes k and [, then S'[pr'] = 0, where pr' is
the value of pr in state d’. It holds that S = S’ except that S’[k] = 1. By
definition of pr, pr' # k because there is at least one node, i.e. [, with a state
value equal to 0.

3. S[pr] < 1 A empty(P[pr]) = S[pr] < 1. Trivial.

4. S[pr] < 1A FC — S[pr] < 1 A empty(Plpr])
Assume S[pr] < 1A FC. Then trivially S[pr] < 1. We prove empty(P[pr]) by
assuming —empty(P[pr]) and deriving a contradiction. Let k; € P[pr]. By I5
we have S[k1] = 0 and pr € P[k;]. By FC we see that —singleton(P[k1]), so
there is a ko # pr in P[ki] such that S[k:] = 0 and k1 € Plks]. We see that
proceeding in this way we can construct an infinite path kokiks ..., where
pr = ko, such that for all 7 it holds that S[k;] = 0, k; € Plk;+1] and k; # kiyo.
By I, we see that this contradicts GoodTopology.

5. Trivial. The action leader involves no data.

6. If the implementation can reach state d’ by the execution of the leader action,
then h(d') =f.
Assume S[pr] = 0 A empty(P[pr]) (the leader action can be executed).
Then by Lemma 4.1 we see that all nodes other than pr are in state 1. We
also see that the execution of the leader action brings also the node that is

the value of pr in state 1. So after the action all nodes are in state 1, so then
the value of h will be f.

By Theorem A.1 it follows that Theorem 4.1 holds.

5. Correctness of Implementation B

In Figure 3 we give a new definition for individual nodes NodeB. The definition
in Figure 2 is easier to read, but we will use this definition because it is more
compact. Using s > 0 — empty(p) V singleton(p) and s = 3 — empty(c), that
hold in every state reachable from the initial state, it is easy to check that these
definitions are equivalent (cf. Iy and Ig of Section 5.2).

5.1. Linearisation

The linearisations of the processes NodesB and Buffers are defined in Figures 4
and 5 as N and L-Buffers respectively. We left out the linearisation of the process
Buffer. Individual buffers are modelled by the identifiers of their source and
target nodes, a natural 0 or 1 giving the state of the buffer — where 0 means the
buffer is empty and 1 means the buffer is full, and a message value of type ML
The parameters BS and BM in the definition of L-Buffers are tables containing
entries for pairs of naturals: for all naturals i and j, BS[i,j] of type N is the
state value of the buffer from i to j and BM|i, j] of type M is the message value
of the buffer from i to j. Let the initial values of the parameters be such that
GoodTopology (n, Py) and

Vi, j. Coli] = 0 A Soli] = 0 A BSoli, j] = 0 A BMli, j] = ack.

We took the initial message values to be acknowledgements for convenience; this
is not essential.

12 C. Shankland and M.B. van der Zwaag

NodeB(i:N, p:NSet, ¢:NSet , s:N) =
leader - NodeB(i,p,c,4) < (s =0V s = 2) A empty(p) > 6+
Ej:N T(j,i,par) ' NOdeB(ia Zf(S = Q,p,p\ {J})a Zf(S = 2,C,CU {]}),
if (s = 2,3, if (singleton(p), 1,0)))
A(s=0Vs=2Vs=3)AjEpD> i+
>_jnT(j i, ack) - NodeB(i,p,c,4) Is =2Ap={j} >+
> 80, 4, par) - NodeB(i,p, ¢, 2)
d(s=0Vs=1Vs=3)Ap={j}Aempty(c) > o+
> i 5(i,, ack) - NodeB(i,p,c\ {j}, if (empty(p) A singleton(c),2,1))
< ((s = 0A singleton(p)) Vs=1)Aj€c>d

Fig. 3. New definition of process NodeB

The implementation ImpB is given by
ImpB(n:N, Py:NSetList) = O (N (n, Py, Co, So) || L-Buffers(n, BSy, BMy)).
Linearisation of ImpB is the process L-ImpB defined in Figure 6.

N (n:N, P:NSetList, C:NSetList, S:NList) =
> oy leader - N(4/S[k])

Q(S[k] =0V S[k] = 2) A empty(P[k]) Ak < n >+
2ok, T ks par) - N(if (S[k] = 2, P[k], P[K]\ {j})/ P[K],
if (S[k] = 2,C[k], C[k]U{j})/CIK],

if (S[k] = 2,3, if (singleton(P[k]), 1,0))/S[k])

<1(S[k]:0VS[]—2VS[] 3)
ANjeEPIkINKk j<nAk#j> o+
Zk,j:N r(j,k, ack) - N(4/S[k])
ASk]=2APlkl={j}Nk,j<nAk#j>i+
Zk,j:N E(k,j,par) ' N(Q/S[k])
< (S[k] =0V S[k] =1V S[k] = 3) A P[k] = {j}A
empty(Clk]) Nk, j <nAk#j>o+
e g 8k 4, ack) - N((CIR]\ {71)/CIH,
if (empty(P[k]) A singleton(C[k]),2,1)/S[k])
< ((S[k] = 0 A singleton(P[k])) V S[k] = 1) A j € C[k]A
E,j<nAk#j>d

Fig. 4. The linearisation of NodesB

The Tree Identify Protocol of IEEE 1394 in yCRL 13

L-Buffers(n:N, BS:NTable, BM:MTable) =
Zi,j;NEm:M S(ivja m)) L—Buﬁers(m/BM[i,j], 1/35[27]])
<A BS[,jl=0Ai,5 <n>di+
>i g Ty, BM[i, j]) - L-Buffers(0/BS[i, j]) < BS[i, j] = 1Ai,j <n>§

Fig. 5. The linearisation of Buffers

L-ImpB(n:N, P:NSetList, C:NSetList, S:NList, BS:NTable, BM :MTable) =

> leader - L-ImpB(4/S[k])
< (S[k] =0V S[k] = 2) A empty(Plk]) ANk < nD>d+
2kgin (G5 Ky par) - L-ImpB(if (S[k] = 2, P[k], P[k] \ {j})/ Pk,
if (S[k] = 2, C[k], C[k] U{j})/Clk],
if (S[k] = 2,3, if (singleton(P[k]), 1,0))/S[k],
0/BSlj, k])
Q(S[K =0V S[k]=2VS[k]=3)AjePkAkj<nAk%jA
BS[j, k] =1 A BM[j, k] = par > d+
Yk (o b, ack) - L-ImpB(4/S[k],0/ BS[j, k])
AS[k] =2APlk] ={j} Nk, j <nAkF#jA
BS[j, k] = 1A BM[j, k] = ack > 6+
Zk,j:N S*(ka.ja par) : L—ImpB(Q/S[k], 1/BS[k,]],paT‘/BM[k‘,]])
< (S[k] =0V Skl =1V S[k] =3) AP[k] = {j} A empty(Ck])A
k,j <nAk#jABS[kjl=0>0+
Yk 8" (K, j, ack) - L-ImpB((CTk] \ {j})/C[K],
if (empty(P[k]) A singleton(C[k]),2,1)/S[k],
1/BS[k,], ack/ BM [k,]
< ((S[k] = 0 A singleton(P[k])) vV S[k] =1) A j € CIk]A
k,j<nAk#jABSkjl=0>0

Fig. 6. The linearisation of ImpB

5.2. Invariants

The invariants given below hold in every state (n, P,C, S, BS, BM) that is reach-
able from the initial state. The variables k and [are universally quantified over

{0,...,n}.
L : S[k]<4
I, : 1€ PRlk]«1lePlklVke P[]
I; : S[k] =0A empty(Plk]) — empty(Polk])
Iy - S[k] >0 — empty(P[k]) V singleton(P[k])
I; : S[k]=0Al€ P[k] — (BS[l,k] = 0 < BM[l, k] = ack)

14 C. Shankland and M.B. van der Zwaag

Contention

Contention resolved

Fig. 7. Contention illustrated

I : S[k]<1A(l€Pk]VieC[k]) - BS[k,1 =0ABMIk,I] = ack
I; : S[k]=1— —(empty(P[k]) A empty(C[k]))
1 S[k] =3 — empty(C[k]) A singleton(P[k])
Iy : S[k]=3AP[k] ={l} - BM[l, k] = par
Tiop : S[k]=3APk]={l} > Pll]={k}A(S[l]=2V S[l]] =3)
[
[
[

&
n

I;1 : S[k]>0AI1l € PRylk] — Plk] = {I} v (S[l]] > 0A P[] = {k})

Iio : S[k]=4AP[k]={l} >k ¢& P[]

Iiz : S[k]=0Ale Pkl = ke PllIA
(Sl]=0vS[]=1Vv(S[l]=2ABS[l,k] =1))

Iy : S[k|=3APk]={I}AS[]]=3— BS[k,l]]=0

Iis : S[k]=2AS[l]=2AP[k]={l} AP[l] = {k} — BS[k,l]=1

[
Lis : S[k]=2AS[l]=3APk ={I}AP[l] = {k} -
(BS[l,k] = 0 — BS[k,1] = 1)

Most of these invariants are easy to check. The last three invariants relate to
contention in the system, i.e. two nodes have each sent a parent request to
each other. There are four distinct states associated with contention; these are
illustrated in Figure 7. We hope the picture is self-explanatory. It shows nodes ¢
and j, and the buffers between them. A thick box indicates a buffer is in state
1, i.e. it holds a message that is to be transmitted.

The Tree Identify Protocol of IEEE 1394 in yCRL 15
5.3. Some intermediate steps

Linearisation of ImpB yields an expression where the summand starting with the
external leader action is preceded by a summation. We eliminate this summation
in the same way as in Section 4. Here the function pr on data states of the
implementation is defined as taking the minimum of the set

if (Fk.empty(P[k]), {k | empty(P[k])},{k | ~3L.S[l] < S[k]}),

where variables k and [are quantified over {0, ... ,n}. We again need a 'unique-
ness of root’ lemma. Lemma 5.1 says that if a node k can declare itself leader
or has declared itself leader, then there cannot be another node that can do the
leader action. We also see that this &£ will then be the value of the function pr.
Given the function pr, the new linearisation of ImpB is as presented in Figure 8.

Lemma 5.1 (Uniqueness of Root)
Vk <n. empty(P[k]) — =3 < n. 1 # kA empty(P[l])

Proof. By 1) S[k] < 4. If S[k] = 0 A empty(P[k]), then empty(Pylk]) by I3, and
by GoodTopology there is only one node in the network, so the lemma trivially
holds.

Now assume S[k] > 0 A empty(P[k]). Take an [< n such that [# k. By
GoodTopology, there is a path of distinct nodes kok; ... ky, with & = ko, | =k,
and Vi < m. k;11 € Pylk;]. By L1 we see that since P[ko] # {k1}, it holds that
Slk1] > 0 and P[k1] = {ko}. Also by I;; it now holds that P[k;] = {k;—1} for all
0 < i < m. So —empty(P[l]). O

Lemma 5.2 S[pr] > 1 A ~empty(P[pr]) — contention
where contention abbreviates

Jk,l < n.(S[k] = 2V S[k] = 3) A (S[I] = 2V S[1] = 3)A
Plk] = {1} A P[l] = {k}.

Proof. Suppose S[pr] > 1 and —empty(P[pr]). Since —empty(P[pr]), there are at
least two nodes. By definition of pr all nodes k have S[k] > 1 and —~empty(P[k]).
Then by 14 singleton(P[k]) for all nodes k. Now supposing there is no pair of
nodes that have each other as potential parent leads to a contradiction: Take any
node kg. Construct a path kok; ... such that Vi. P[k;] = {k;+1}. By assumption
—3i. Plk;y1] = {ki}. Now GoodTopology and I tell us Vi.k; &€ {ko,... ,ki—1}. So
this path must visit infinitely many nodes. This contradicts GoodTopology.

So there is a pair of nodes k, I such that S[k] > 1AS[l] > 1AP[k] = {I}AP]l] =
{k}. By Li> we know that S[k] # 4 and S[l] # 4. The lemma follows by I,. [

Corollary 5.3 S[pr] =4 — empty(P[pr])

Proof. Suppose S[pr] = 4 and —~empty(P[pr]). By the definition of pr it holds
that S[k] = 4 for all nodes k. So —contention, contradicting Lemma 5.2. O

5.4. Verification

The correctness of Implementation B is stated by the following theorem.

16 C. Shankland and M.B. van der Zwaag

L-ImpB(n:N, P:NSetList, C:NSetList, S:NList, LS:NTable, LM :MTable) =
leader - L-ImpB(4/S[pr]) < (S[pr] = 0V S[pr] = 2) A empty(P[pr]) > d+
2k g 775 ks par) - L-ImpB(if (S[k] = 2, P[k], P[k]\ {j})/ P[k],

if (S[k] = 2,C[k], C[k] U {j})/C[k],
if (S[k] = 2,3, if (singleton (P[k]), 1,0))/S[k],
0/LSlj, k])
A (S[k] =0V Skl =2V S[k] =3)Aj € Pk]A
k,j<nAk#jANLS[jkl=1ANLM[j,k] = par > 5+
> kin (s K, ack) - L-ImpB(4/S[k], 0/ LS, k])
ISkl =2AP[kl={j} ANk, <nAk#jA
LS[j, k] = 1 A LM[j, k] = ack > 6+
Zk,j:N 5*(k7j)par)) L'ImpB(2/S[k]7 l/LS[k,]],par/LM[k,]])
<A (S[k] =0V Skl =1V S[k] = 3) A Plk] = {j} A empty(Ck])
ANk,j <nAk#jALS[kj]=000+
Dkjn 87 (K, 4, ack) - L-ImpB((C[k] \ {5})/C[K],
if (empty(P[k]) A singleton(C[k]),2,1)/S[k],
1/LS[k, j], ack/LM[E, j])
< ((S[k] = 0 A singleton(P[k])) vV S[k] = 1) A j € C[k]A
k,j<nAk#jALS[kjl=00>0

Fig. 8. The process L-ImpB (redefined)

Theorem 5.1 Under the assumption of GoodTopology and the invariants, it
holds that

7 - L-Spec(t) = 7 - Tfp+ gy L-ImpB(n, Py, Co, So, BSo, BM).

We will prove this theorem by application of Theorem A.2 (taking Int = {r*, s*}
and Ezxt = {leader}).

Pre-abstraction, State Mapping and Focus Condition As explained in
Section 2.3, the process ImpB is not convergent. Theorem A.2 requires that
we distinguish between progressing and non-progressing internal actions. We
define a pre-abstraction function on actions and their data, that yields f on
non-progressing internal actions only. In this case, non-progressing actions occur
when two nodes that are in contention send each other a parent request. More
precisely: if one of the nodes has sent a parent request, and has moved into state
2, then the sending of a parent request by the other node is non-progressing. The
pre-abstraction function £ is defined by

We define a state mapping h from data states of the implementation to data
states of the specification. As before, this mapping is only concerned with values

The Tree Identify Protocol of IEEE 1394 in yCRL 17

of states:
h(n, P,C, S, BS, BM) = (S[pr] < 4).

In Implementation A the leader action was the last action to occur. In Imple-
mentation B it is possible that some nodes are still waiting for acknowledgements
after the leader action has occurred.
The focus condition of L-ImpB relative to £ is the conjunction of the negations
of the conditions for performing a progressing internal action (cf. Definition A.4):
FCe=VEI<n k#l—
—((S[k]=0V S[k] =2V S[k] =3)Al € P[kIA
BS[l,k] = 1A BM]l, k] = par)
A
—(S[k] =2 A P[k] = {I} A BS[l,k] = 1 A BM|[l, k] = ack)
A
~((S[k] =0V S[k] = 1V S[k] = 3) A P[k] = {l} A empty(C[k])A
BS[k,l] =0A—(S[k]=3A 5[] =2))
A
=(((S[k] = 0 A singleton(P[k]) v S[k] = 1) Al € C[k] A BS[k,1] = 0).
Using Invariants 4-9 we can simplify this formula to
FCe=VE,l<n. k#1l—
(S[k:] =0 — (I € P[k] = BS|[l, k] = 0) A —singleton(P[k]))

Sk} #1
A (S[k] =2 A P[k] = {1} - BS[l,k] = 0)
A (S[K] = 3 A PlE] = {I} — BS[l,k] = 0A (BS[k, 1] = 1V S[I] = 2)).

Before we prove the matching criteria, we add the following lemma.

Lemma 5.4 contention — —~FC¢

Proof. Suppose contention. So there are nodes k,l < n such that
(S[k] =2V S[k] =3)A(S[l] =2V S[l] =3) AP[k] = {l} A P[l] = {k}.

If one of these nodes, say k' — call the other node ', is in state 2, then we
distinguish cases

e BS[l',k'] = 1. This contradicts the third conjunct of FC.
e BS[l',k'] = 0. Now by I;5 it must be the case that S[l'] = 3. By I;5 we see
that BS[k',l'] = 1. This contradicts the last conjunct of FCl.

So both nodes are in state 3. Then by I 4 it holds that BS[k',1'] = BS[l', k'] = 0.
This contradicts the last conjunct of FC¢. O

The Matching Criteria We instantiate Definition A.6 with the processes
L-ImpB and L-Spec, the state mapping h and the pre-abstraction &.

1. The process L-ImpB is convergent w.r.t. £.
Let rg be 3, ,, |P[K][; ac be 37y ., |C[K]|; si be the number of nodes in state

18

C. Shankland and M.B. van der Zwaag

i; and l5 be the number of requests sent to nodes in state 2, but not received
yet. In other words: the number of lines such that its state equals 1 and the
receiving node is in state 2.

We define the following measure on data states:

Measure = (rq, ac, sg, 1, l2, 83, $2).

Let < be the lexicographical ordering on N’. Now < is a well-founded order-
ing on the data states of L-ImpB such that the measure decreases at every
execution of a progressing internal step.

. In any state d of the implementation, the execution of an internal step leads

to a state with the same h-image.

Suppose S[pr] < 4. The only internal action that can change the state of a
node k to 4, is the receiving of an acknowledgement by k, where S[k] = 2
and singleton(P[k]).

Suppose in the state d’' reached by this action, k& becomes the value of pr,
then S’[pr'] = 4 A singleton(P'[pr']). This contradicts Corollary 5.3.

So in every state d' reachable by an internal action S'[pr'] < 4.

Suppose S[pr] £ 4. By I; and Corollary 5.3 it holds that empty(P[pr]). Now
we see by Lemma 5.1 that pr will keep the same value.

3. (S[pr] =0V S[pr] = 2) A empty(P[pr]) — S[pr] < 4. Trivial.

FC¢ A S[pr] < 4 — (S[pr] = 0V S[pr] = 2) A empty(P[pr]).

Suppose FC¢ and S[pr] < 4. S[pr] # 1 by FC¢. If S[pr] = 3, then we have by
Is and I, that contention, contradicting the assumption F'C¢ by Lemma 5.4.
So (S[pr] = 0V S[pr] = 2). We have to show empty(P[pr]). We distinguish
cases S[pr] = 0 and S[pr] = 2 and show that the assumption —empty(P[pr])
leads to a contradiction.

e S[pr] = 0. Assume —empty(P[pr]). Let pr = ko and k1 € P[ko]. By Ii3
we can make the following case distinction, where S{ki] # 1 by FCl¢:

S[k’l] =0 or S[kl] =2A BS[kl,k‘o] =1

In the second case —FC¢ because —(k1 € Plko] — BS[ki,ko] = 0)
and S[ko] = 0. Contradiction. In the first case we see by FC¢ that
—singleton(P[k1]), so there is a ky # ko in Plk1]. We can repeat the
argument above for k1 and ks. But we cannot construct an infinite path
kok1 ... where VZS[]CZ] =0A ki—i—l € P[k‘l] Ak; 7é ki+2, as this would
violate GoodTopology by I5. So for some i we get S[k;] = 0 and —(k;41 €
Plk;] = BS[ki+1, ki] = 0), contradicting FC¢ as above.

e S[pr] = 2. Suppose —empty(P[pr]). Then we find -FC¢ by Lemma 5.2
and Lemma 5.4. Contradiction.

5. Trivial, because the leader action takes no data.

. If from a state d, state d’ is reached by the execution of the leader action,

then h(d') =f.
We see by Lemma 5.1 that the value of pr will be the same for d and d'. It
holds that S = S’ except that S'[pr] = 4. So h(d') = 4 < 4, which is false.

Now Theorem 5.1 follows by Theorem A.2.

The Tree Identify Protocol of IEEE 1394 in yCRL 19
6. Conclusions

We have described the tree identify protocol of the 1394 multimedia serial bus.
This was an exercise in specification using pCRL and in verification using the
cones and foci technique. While no errors were identified in this view of the
system, the exercise has been worthwhile for a number of reasons.

One of our original goals was to “test” the verification technique. We men-
tioned at the beginning that uptake of verification techniques is often slow due
to their complexity. The cones and foci technique has a simple and appealing
principle at its heart, and provides a useful structure for the verification, but,
as has been seen here, is complex to apply. In particular it relies on expertise in
the domain, experience in applying the technique to other examples, and some
creativity! This is true of many formal methods.

To aid the verification process it is essential to have good tool support. It
should be straightforward to automate parts of the technique of [GS95] used here.
In particular, the initial linearisation can be generated automatically, and some
development in this area is underway. In fact, computer checked proofs using this
technique are described in [KS96]. Note, however, that in the study described
here the proof process fed back into the description, in that it was impossible to
prove the matching criteria held with the original linearisation of ImpA. At that
point experience and creativity stepped in and the function pr was introduced,
altering the description of the system and therefore the matching criteria and
making the proof possible.

The matching criteria can be automatically generated given the linear spec-
ification and implementation, and the state mapping h. Automation of this and
linearisation would leave the verifier free to consider the more tricky questions
of the definition of A and the proofs of the matching criteria. Several proof as-
sistants exist which could be used to computer check such proofs, eliminating
the possibility of manually introduced errors. If a more powerful tool such as
HOL [GM93] were used then it may also be possible to use higher level tactics
to aid the proof process. An interesting problem might be to examine a number
of case studies using this verification technique to try to extract some general
principles which could be coded in some specialised tactics. In order for this to
be possible, a number of studies must be carried out.

Our second achievement is that our study is one example, and adds to the
body of experience in applying formal methods; however, at present there are
too few examples of the application of [GS95] to allow us to draw any useful
conclusions. From the limited set of examples available, we note that the ver-
ification of a distributed summation algorithm presented in [GS96] does have
similar features (the use of similar processes to describe the system, state-based
descriptions, the use of the state parameter to define the mapping function, a
simple boolean in the specification and an invariant on the topology of the net-
work). With more case studies it may turn out that these are all common features
of specification and verification of distributed systems in pCRL.

This proof technique compares favourably with earlier proofs in uCRL, e.g.
[GK95, FGK97], which relied on much lower level proof rules (the usual rules
for manipulating process algebra expressions), although we note that the proof
given in [FGK97] contains some similar features to the specifications here and
in [GS96] (state based specification, n similar processes). The cones and foci
technique allows the verifier to concentrate on features of the data, and the
structure of the proof technique takes care of the process algebra part.

20 C. Shankland and M.B. van der Zwaag

This proof technique also contrasts with the approaches of [GM97] in which
automated proofs of branching bisimulation are carried out using the CADP
toolbox, and [SM97] which again uses the CADP toolbox, but this time to check
the validity of modal formulae with respect to labelled transition systems gener-
ated from the descriptions. In both cases the size of the system must be restricted
in order to allow automated checking. These may then be useful as a prototype
stage; automated verification on a small number of nodes, followed by assisted
verification on a bounded but undetermined number of nodes using techniques
such as cones and foci.

Acknowledgements

Thanks are due to Jan Friso Groote, who instigated this case study, for many
helpful discussions regarding the application of the cones and foci verification
technique. Thanks also to Judi Romijn and David Griffioen for discussions re-
garding the operation of the 1394 tree identify protocol. The first author thanks
the Programming Research Group at the University of Amsterdam, EXPRESS
project partners for providing a pleasant working environment, and the EC HCM
Fellowship scheme for funding her visit. The second author was supported by the
Netherlands Organization for Scientific Research (NWO) under contract STON-
2854/612-61-002.

References

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[DGRV97] M.C.A. Devillers, W.0.D. Griffioen, J.M.T Romijn, and F.W. Vaandrager. Ver-
ification of a leader election ppotocol — formal methods applied to IEEE 1394.
Technical report, Computing Science Institute, University of Nijmegen, December
1997.

[FGK*96] J-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP (CAESAR/ALDEBARAN Development Package): A protocol valida-
tion and verification toolbox. In R. Alur and T.A. Henzinger, editors, Proceedings
of CAV’96, number 1102 in LNCS, pages 437-440. Springer-Verlag, 1996.

[FGKI7] L. Fredlund, J.F. Groote, and H. Korver. Formal verification of a leader election
protocol in process algebra. Theoretical Computer Science, 177(2):237-440, 1997.

[GK95] J.F. Groote and H. Korver. Correctness proof of the bakery protocol in fCRL. In
A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating
Processes ’94, Workshops in Computing, pages 63-86. Springer-Verlag, 1995.

[GM93] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL: A theorem prov-
ing environment for higher order logic. Cambridge University Press, 1993.
[GM97] H. Garavel and L. Mounier. Specification and verification of various distributed

leader election algorithms for unidirectional ring networks. Science of Computer
Programming, 29(1-2):171-197, 1997.

[GP95] J.F. Groote and A. Ponse. The syntax and semantics of uCRL. In A. Ponse,
C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicating Processes
’94, Workshops in Computing. Springer-Verlag, 1995.

[Gro96] J.F. Groote. A note on n similar parallel processes. Technical Report CS-R9626,
Centrum voor Wiskunde en Informatica, Amsterdam, 1996.

[GS95] J.F. Groote and J. Springintveld. Focus points and convergent process operators.
Technical Report 142, University of Utrecht, Logic Group Preprint Series, 1995.

[GS96] J.F. Groote and J. Springintveld. Algebraic verification of a distributed summation

algorithm. Technical Report CS-R9640, Centrum voor Wiskunde en Informatica,
Amsterdam, 1996.

The Tree Identify Protocol of IEEE 1394 in yCRL 21

[IEE96] IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394-1995, August 1996.
[KS96] H.P. Korver and M.P.A. Sellink. On automating process algebra proofs. In V. Ata-

lay et al, editor, Proceedings of the 11-th International Symposium on Computer
and Information Sciences, ISCIS XI Antalya, Turkey, volume 2, pages 815-826,
1996.

[Lut97] S.P. Luttik. Description and formal specification of the link layer of P1394. Tech-
nical Report SEN-R9706, Centrum voor Wiskunde en Informatica, Amsterdam,
1997.

[SM97] M. Sighireanu and R. Mateescu. Validation of the link layer protocol of the IEEE-
1394 serial bus (FireWire): an experiment with E-LOTOS. Technical Report 3172,
INRIA, 1997.

A. Theorems and Definitions

We repeat here the most important definitions and theorems from [GS95]. For
the formulation we rely in part on the appendix of [GS96].

A.1l. General Equality Theorem

Definition A.1 Let A C Act U {7} be a finite set of actions, and let D be a
data type. A linear process equation (LPE) over Act and D is an equation of the
form

=Y alfaldse)) - X(ga(d,€)) < ba(d,e) > 6

a€AeE,

for some data types E,, D,, and functions f,:D — E, — D,, g.:D — E, — D,
by:D — E, — B. (We assume that 7 has no parameter.)

A summand a(f,(d,e)) X (ga(d, €)) <b,(d, €) >§ means that if for some e of type
E, the guard b,(d, €) is satisfied, the action a can be performed with parameter
fa(d,e), followed by a recursive call of X with new value g,(d,e). The main
feature of LPEs is that for each action a there is at most one summand in the
alternative composition. Note that therefore the definition of process L-ImpB in
Figure 8 does not directly fit into this format. We made sure that theorems were
applied correctly.

Definition A.2 An LPE X written as in Definition A.1 is called convergent if
it does not admit infinite 7-paths, i.e. there is a well-founded ordering < on D
such that for all e:E; and d:D we have that b, (d,e) implies g,(d,e) < d.

An invariant of an LPE X written as in Definition A.1 is a function I:D — B
such that for all a € A, e:E,, and d:D we have b, (d,e) A I(d) = I(g4.(d, €)).

Definition A.3 Let X and Y be LPEs given as follows:
X(d:Dx) =Y a(fal(d,e)) - X(ga(d,e€)) A ba(d,€) >0

a€Ae:E,

Y(d:Dy)= > > alf Y(gq(d,e)) Qb (d,e) >0

a€A\{r} e:E,

Let FCx be a formula over d:Dx describing exactly the states of X from which

22 C. Shankland and M.B. van der Zwaag

no 7-action is enabled (i.e. equivalent to —3e,:E;b,(d,e;)). Let h:Dx — Dy be
a state mapping. The following 6 conditions are called the matching criteria and
their conjunction is denoted by Cx,y,x(d).

1. X is convergent

.VaeA\{T}VeE(
. Vae A\ {r} Ve:E, (
. Vae A\ {r} Ve:E, (b,
. Vae A\ {r} Ve:E, (b

, €

) ; ;
ye) = h(ga(d; €)) = go(h(d), €))

o Ul W N

(d
(d

a

Theorem A.1 (General Equality Theorem) Let X,Y, FC x, and h be as above.
Suppose I is an invariant of X and, for all d:Dx, I(d) — Cx,v,5(d). Assume that
r and g are solutions of X and Y, respectively, then

Vd:Dx I(d) — r(d) < FCx (d) > 7r(d) = q(h(d)) < FCx(d) > rq(h(d)).

A.2. Abstraction and idle loops

Let X and Y be LPEs given as follows:

X(d:Dx) = Z Za(fa(dae))'X(ga(dae))Qba(dve)Dd
aeE':vtuIntu{r} el
Y(d:Dy)= Y > alf Y (g(d,e)) <ty (d,e) >0
acFBxt eba

where Ezt, Int and {7} are mutually disjoint.

Definition A.4 Let £ be a pre-abstraction function. The focus condition of X
relative to £ is defined by:

FCX,Int,g(d) =Va € Int U {r}Ve:E,~(b,(d,e) A &(a)(d,e))

Definition A.5 X is convergent w.r.t. £ iff there is a well-founded ordering <
on Dx such that for all a € Int U {r},d:Dx and all e:E, we have that b,(d,e)
and &(a)(d, e) imply g.(d,e) < d.

Definition A.6 Let XY be as above. Let h:Dx — Dy and let £ be a pre-
abstraction function. The following 6 conditions are called the matching criteria
for idle loops and their conjunction is denoted by CIx v n(d).

1. X is convergent w.r.t. £

. Ya € IntU {1} Ve:E, (b,(d,e) = h(d) = h(ga(d,€)))
. Ya € Ext Ve:E, (by(d,eq) — b, (h(d),e)
. VYa € Ext Ve:Eq (FCx e AN, (h(d),e) — by(d, e))
. Ya € Ext Ve:E, (by(d,e) = fo(d,e) = fi(h(d),e))
. Ya € Ext Ve:E, (by,(d,e) = h(gs(d,e)) = g\ (h(d),e))

S U = W N

The Tree Identify Protocol of IEEE 1394 in yCRL 23

Theorem A.2 Let X, Y, £ and h be as above. Let p and ¢ be solutions of X
and Y, respectively. If I is an invariant of X and VYd:Dx (I(d) — Clx yve,n(d)),
then

Vd:Dx I(d) — 771,;(p(d)) = 7q(h(d)).

