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Abstract

Let G be a finite graph of order n with an eigenvalue μ of multiplicity k. (Thus the μ-eigenspace of a
(0, 1)-adjacency matrix of G has dimension k.) A star complement for μ in G is an induced subgraph G − X

of G such that |X| = k and G − X does not have μ as an eigenvalue. An exceptional graph is a connected
graph, other than a generalized line graph, whose eigenvalues lie in [−2, ∞). We establish some properties
of star complements, and of eigenvectors, of exceptional graphs with least eigenvalue −2.
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1. Introduction

LetGbe a finite graph of ordernwith an eigenvalueμof multiplicity k. (Thus the corresponding
eigenspace of a (0, 1)-adjacency matrix of G has dimension k.) A star set for μ in G is a set X

of k vertices in G such that the induced subgraph G − X does not have μ as an eigenvalue. In
this situation, G − X is called a star complement for μ in G (or in [15] a μ-basic subgraph of
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G). Star sets and star complements exist for any eigenvalue of any graph, and serve to explain
the relation between graph structure and a single eigenvalue μ. When μ is not −1 or 0, they
can be used to determine sharp upper bounds for k in arbitrary graphs and in regular graphs [2];
to characterize certain graphs (see for example [12]); and to find all the exceptional graphs (i.e.
connected graphs with all eigenvalues at least −2 that are not generalized line graphs) [9]. There
are also connections with dominating properties [10, Section 7.6] and independent sets [19]. For a
recent survey, see [18] and for basic properties, see [13, Chapter 5]. Here we investigate properties
of star sets and star complements related to graphs with least eigenvalue −2, and explain some
phenomena observed from earlier computer results. Explicitly, we give a simple computer-free
proof that each exceptional graph with least eigenvalue greater than −2 is an induced subgraph of
an exceptional graph with least eigenvalue equal to −2; we show how extendability graphs [13,
Section 5.1] can be used to investigate the regular exceptional graphs; and we establish a property
of eigenvectors of exceptional graphs with −2 as a simple eigenvalue.

The following result [13, Theorem 5.1.7] establishes the fundamental property of star comple-
ments: if X is a star set for μ in G, and if H is the star complement G − X, then G is determined
by μ, H and the H -neighbourhoods of vertices in X.

Theorem 1.1. Let X be a set of k vertices in the graph G and suppose that G has adjacency

matrix
(

AX BT

B C

)
, where AX is the adjacency matrix of the subgraph induced by X. Then X is a

star set for μ in G if and only if μ is not an eigenvalue of C and

μI − AX = BT(μI − C)−1B. (1)

In this situation, the eigenspace of μ consists of the vectors
(

x
(μI − C)−1Bx

)
, where x ∈ Rk.

Recall that μ is a main eigenvalue of G if the eigenspace E(μ) is not orthogonal to the all-1
vector jn. In Section 2, we discuss the addition of a vertex to an exceptional star complement for
−2 to obtain −2 as a main eigenvalue, and the addition of a star set to obtain −2 as a non-main
eigenvalue. In Section 3 we discuss integral eigenvectors of exceptional graphs having −2 as a
simple eigenvalue.

2. Eigenvalues of exceptional graphs

We denote the least eigenvalue of a graph G by λ(G). Let H denote the family of 443
exceptional graphs of order 8 with λ(G) > −2. These graphs were found by Doob and Cvetković
[14] in 1979, and are listed as H001, . . . , H443 in [13, Table A2]. The 473 maximal exceptional
graphs were found by computer in 1999, as described in [9], and from these calculations we know
that each graph in H arises as a star complement for −2. We begin by verifying this observation
theoretically; the desirability of a computer-free proof was noted in [1, p. 17]. Since any exceptional
graph G with λ(G) > −2 is an induced subgraph of a graph in H, one consequence of the result
is that no exceptional graph G with λ(G) > −2 is a maximal exceptional graph.

Proposition 2.1. If H ∈ H then H has a one-vertex extension H ′ with λ(H ′) = −2.

Proof. By [13, Theorem 2.3.19], H has an exceptional induced subgraph of order 6, and so there
exists a vertex u of H such that H − u is exceptional. In the terminology of [13, Section 3.7], H

generates the root systemE8, whileH − ugeneratesE7. If the graphGgeneratesEk(k ∈ {6, 7, 8})
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then its adjacency matrix has the form QTQ − 2I , where QTQ is the Gram matrix of an integral
basis for the integral lattice L(Ek) generated by Ek . Now the determinant of such a Gram matrix
is a lattice invariant called the discriminant of L(Ek), shown in [3, Section 3.10] to be 1 when
k = 8, 2 when k = 7, and 3 when k = 6. Thus PG(−2) = det(−QTQ) = (−1)k(9 − k) (cf. [7,
Theorem 3], [13, Lemma 7.5.2]).

Now let H ′ be the graph obtained from H by attaching a pendant vertex at u. From [6, Theorem
2.11], the characteristic polynomial of H ′ is given by

PH ′(x) = xPH (x) − PH−u(x). (2)

In view of the preceding remarks, we have PH (−2) = 1 and PH−u(−2) = −2, and so from (2)
we obtain PH ′(−2) = 0. By the Interlacing Theorem [13, Theorem 1.2.21], λ(H ′) = −2. �

In the foregoing proof, the appeal to the theory of lattices can be avoided by arguing as follows.
If A is the adjacency matrix of H then A + 2I = QTQ, where each column of the invertible
8 × 8 matrix Q lies in E8. The seven columns of Q corresponding to H − u lie in a subsystem
E7 which consists of the vectors in E8 orthogonal to a fixed vector b of E8. Since E⊥

8 = {0}, b
is not orthogonal to the remaining column q of Q. Replacing b with −b if necessary, we may
assume that b · q = 1. Now let R = [Q|b]. Then RTR = A′ + 2I , where A′ is the adjacency
matrix of H ′. Since RTR has rank 8, −2 is an eigenvalue of H ′, and by the Interlacing Theorem,
λ(H ′) = −2 as required.

Given a representation of H ′ in E8, it can be shown by the methods of [11, Section 2] that H ′
has a one-vertex extension for which −2 is an eigenvalue of multiplicity 2.

The graph H ′ has H as a star complement for −2, but the eigenvalue −2 of H ′ may or may
not be a main eigenvalue. If v is an eigenvector of H ′ corresponding to −2 then Rv = 0, while
−2 is a main eigenvalue if and only if v · j9 /= 0. Let R′ be the matrix obtained from R by adding
jT
9 as a ninth row. Then −2 is a non-main eigenvalue if and only if R′v = 0, equivalently j9 lies

in the column space of RT.
For an investigation of main and non-main eigenvalues, we use the notation of Section 1 with

t = n − k and j = jt . Let {e1, . . . , ek} be the standard orthonormal basis of Rk , and define a
bilinear form on Rt by

〈x, y〉 = xT(μI − C)−1y (x, y ∈ Rt ).

By Theorem 1.1, μ is a non-main eigenvalue of G if and only if jn is orthogonal to the vectors(
ei

(μI − C)−1Bei

)
(i = 1, . . . , k). Since Bei is the ith column of B, μ is a non-main eigenvalue

of G if and only if 〈b, j〉 = −1 for each column b of B. The computer calculations described
in [9] show that each graph H in H arises as a star complement for −2 in a graph for which
−2 is a main eigenvalue [5, Theorem 11]. It follows from the foregoing remarks that each such
graph H has a one-vertex extension for which −2 is a main eigenvalue; in other words, there
exists a column b such that 〈b, b〉 = −2 and 〈b, j〉 /= −1. This fact has not yet been established
theoretically.

The extendability graph �(H ; μ) [13, p. 121] has as vertices the (0, 1)-vectors b ∈ Rt such
that 〈b, b〉 = μ, with an edge between b and b′ if and only if 〈b, b′〉 ∈ {−1, 0}. A clique on
b1, b2, . . . , bk in �(H ; μ) determines a graph G with H as a star complement for μ: in the notation
of Theorem 1.1, H = G − X where X = {1, 2, . . . , k}, B = [b1|b2| · · · |bk], and vertices i, j of
X are adjacent if and only if 〈bi , bj 〉 = −1. We may define the non-main extendability graph
�∗(H ; μ) as the subgraph of �(H ; μ) induced by those (0, 1)-vectors b for which 〈b, j〉 = −1.
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Proposition 2.2. Let H ∈ H and suppose that the cone K1∇H has −2 as an eigenvalue. Then
�∗(H ; −2) has a perfect matching, say b1c1, . . . , bmcm, with bi + ci = j (i = 1, . . . , m). More-
over the following hold.

(i) If �∗(H ; −2) has a clique of order m then �∗(H ; −2) is a cocktail-party graph CP(2m) =
mK2. In this situation every maximal clique has order m, there are 2m maximal cliques, and
the 2m corresponding graphs with H as a star complement for −2 are switching-equivalent.

(ii) m � 20 and if G has H as a star complement for −2 as a non-main eigenvalue then G is
switching-equivalent to an induced subgraph of L(K8).

Proof. Since K1∇H has −2 as an eigenvalue, we have 〈j, j〉 = −2. Hence, for any vertex b of
�∗(H ; −2) we have 〈j − b, j − b〉 = −2, so that j − b is a vertex of �(H ; −2). In addition we
have 〈j − b, j〉 = −1, and so j − b is a vertex of �∗(H ; −2). Since 〈j − b, b〉 = 1, it follows that
b and j − b are non-adjacent vertices of �∗(H ; −2), and hence that �∗(H ; −2) has a perfect
matching with the property claimed.

For (i), note first that a clique of order m in �∗(H ; −2) has precisely one vertex from each
pair {bi , ci}; without loss of generality, b1, . . . , bm induce a clique K . Secondly, note that the
map b 
→ j − b is an isomorphism from the graph on b1, . . . , bm to the graph on c1, . . . , cm,
and so c1, . . . , cm also induce a clique. Thirdly, if 〈bi , bj 〉 = 0 then 〈bi , cj 〉 = −1, while if
〈bi , bj 〉 = −1 then 〈bi , cj 〉 = 0. Thus �∗(H ; −2) ∼= CP(2m). Hence there are 2m cliques of
order m, each obtained from K by replacing bi with ci for all i in some subset of {1, . . . , m}.
As noted in [13, Section 5.5], the corresponding graphs with H as a star complement for −2 are
switching-equivalent.

For (ii), note that we may add to G a vertex v adjacent to every vertex of G to obtain a cone
K1∇G which has H as a star complement for −2. Now we argue as in [13, Proposition 6.2.1]: by
choosing a suitable representation of K1∇G in the root system E8, we see that G is switching-
equivalent to an induced subgraph of L(K8). In particular, v can have at most 28 neighbours and
so m � 20. �

Example 2.3. Let H consist of disjoint cycles of lengths 3 and 5 together with a bridge between
them, i.e. H is the exceptional graph H010. It is straightforward to verify that K1∇H has −2 as
an eigenvalue. Moreover, H is an induced subgraph of a Chang graph G; and since G is regular
of order 28, �∗(H ; −2) has a clique of order 20 (necessarily maximal by Proposition 2.2(ii)). By
Proposition 2.2(i), �∗(H ; −2) ∼= CP(40) and any maximal graph having H as a star complement
for −2 as a non-main eigenvalue is switching-equivalent to G, hence to L(K8).

The arguments of Example 2.3 apply whenever (i) 〈j, j〉 = −2, and (ii) H is a star complement
for −2 in a graph of order 28 with −2 as a non-main eigenvalue. M. Lepović (private communi-
cation) has verified by computer that exactly 198 of the 443 graphs H ∈ H satisfy condition (i),
i.e. are such that the cone K1∇H has −2 as an eigenvalue. The computer investigations reported
in [8] show that all but one (H434) are star complements for −2 in some K1∇G, where G is
a Chang graph. Moreover 172 of the remaining 197 graphs have maximal degree less than 7,
hence are induced subgraphs of a Chang graph G. Thus for each of these 172 graphs H we have
�∗(H ; −2) ∼= CP(40). The same holds when H is the graph H440 (with maximal degree 7): in
this case, there are many non-isomorphic graphs among the corresponding 220 graphs of order 28
that have −2 as a non-main eigenvalue. (In [5, Section 6] it was asserted wrongly that only one
such graph of order 28 exists; however Theorem 11 of [5] remains valid.)



150 D. Cvetković et al. / Linear Algebra and its Applications 423 (2007) 146–154

In the next example, we construct �∗(H ; −2) explicitly when H is H443, another graph in H
with maximal degree 7. In this case we do not have prior knowledge of a graph of order 28 with
−2 as a non-main eigenvalue. The calculations show that there is no regular graph with H443 as
a star complement for −2.

Example 2.4. Let H be the complement of K1,2 ∪̇ 5K1, i.e. H is the exceptional graph H443
which features as a versatile star complement for −2 in [13, Section 6.3]. A vertex u in X is said
to be of type abc if its H -neighbourhood �H (u) consists of a, b, c vertices of degree 5, 6, 7
respectively. Let C be the adjacency matrix of H , with vertices labelled so that their degrees are
in non-decreasing order. To use Theorem 1.1 with μ = −2, note that

(2I8 + C)−1 =
⎛
⎝

8 5jT
2 −3jT

5
5j2 3J2,2 + I2 −2J2,5

−3j5 −2J5,2 J5,5 + I5

⎞
⎠ ,

where Im denotes the m × m identity matrix and Jm,n denotes the all-1 matrix of size m × n. If
we now equate diagonal entries in Eq. (1), we obtain

2 = a + b + c + 7a2 + 10ab − 6ac − 4bc + 3b2 + c2. (3)

If u, v are distinct vertices of types a1b1c1, a2b2c2 then, equating off-diagonal entries in Eq. (1),
we have

auv = |�H (u) ∩ �H (v)| + 7a1a2 + 3b1b2 + c1c2 + 5(a1b2 + a2b1)

− 3(a1c2 + a2c1) − 2(b1c2 + b2c1). (4)

The 10 solutions of Eq. (3) are given in [13, Table 1, p. 148] along with information from Eq.
(4) sufficient to construct �(H ; −2). Since (a, b, c) = (1, 2, 5) is one solution of (3), j arises as
a vertex and its neighbours include the vertices of �∗(H ; −2). The neighbours b of j for which
〈b, j〉 = −1 can be identified from Eq. (4). They correspond to ten vertices in X of type 011, ten
of type 114, ten of type 023 and ten of type 102. (Note that if b is of type 011 or 023 then j − b is
of type 114 or 102, respectively.) We deduce that again �∗(H ; −2) ∼= CP(40), and so we obtain
220 maximal graphs with H as a star complement for −2 as a non-main eigenvalue. M. Lepović
(private communication) has shown by computer that 356 non-isomorphic graphs arise in this
way. We note in passing that the cones over H and any of these graphs of order 28 not only have
−2 as a main eigenvalue but also have K8 (a subgraph of K1∇H ) as a star complement for −2.

None of the graphs of order 28 here is regular; indeed we can show as follows that there is no
regular graph G with H as a star complement for −2. For suppose that H = G − X where G is
r-regular and the star set X consists of e, f, g, h vertices of type 102, 114, 023, 011 respectively.
Let e + g = p, f + h = q and note that 0 � p � 10, 0 � q � 10. Counting edges between X

and vertices in H of degree 5, 6, 7 in turn, we have:

r = 5 + e + f, 2r = 12 + f + 2g + h, 5r = 35 + 2e + 4f + 3g + h.

We can now write e = p − g, h = q − f and solve these equations for r , f , g in terms of p and
q. We find that f = 1

2 (q − 14), a contradiction.

We know that every exceptional graph G with least eigenvalue −2 has an exceptional star
complement H for −2 [13, Theorem 5.31]. We shall see that if G is regular and H has order 8
then H satisfies the hypotheses of Proposition 2.2.
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Lemma 2.5. Let G be an r-regular graph of order n, and let μ be an eigenvalue of G other than
r. If C is an adjacency matrix of any star complement for μ, then

jT(μI − C)−1j = n

μ − r
.

Proof. In the notation of Theorem 1.1, let S = (B|C − μI). Then Eq. (1) may be written

μI − A = ST(μI − C)−1S.

Now Sjn = (r − μ)j and so jT
n(μI − A)jn = (r − μ)2jT(μI − C)−1j. The result follows since

jT
n(μI − A)jn = μn − rn. �

Now we apply Lemma 2.5 in the case that G is an exceptional regular graph, μ = −2, and C is
the adjacency matrix of an exceptional star complement H for −2. Then H has order k ∈ {6, 7, 8}
and A + 2I = MTM for some k × n matrix M of rank k: the columns of M are a representation
of G in the root system Et (cf. [13, Chapter 3]). Let u = 1

r+2Mj, so that uTu = n
r+2 . From the

proof of [13, Theorem 4.1.5] we know that uTu ∈
{

2, 4
3

}
if t = 6, uTu ∈

{
2, 3

2

}
if t = 7 and

uTu = 2 if t = 8. Thus necessarily n = 2(r + 2) when k = 8; in this case we have 〈j, j〉 = −2
by Lemma 2.5, and so H satisfies the hypotheses of Proposition 2.2. Accordingly, we have the
following result.

Theorem 2.6. Let G be an exceptional regular graph with least eigenvalue −2, having H as an
exceptional star complement for −2. If H has order 8, then

(i) H is one of 198 graphs in H,

(ii) both K1∇H and K1∇G have −2 as a main eigenvalue,
(iii) G is switching-equivalent to an induced subgraph of L(K8).

Example 2.7. Consider a cone K1∇G such that some star complement H for −2 in G is also a star
complement for −2 in K1∇G; for example, 430 of the 432 maximal exceptional graphs of order
29 have this property (see [13, Section 6.1]. By [10, Eq. (4.3.7)], −2 is a non-main eigenvalue of
G, a fact we can also establish as follows. The extendability graph �(H ; −2) has j as a vertex
such that 〈b, j〉 = −1 for all other vertices b; thus deletion of the vertex of the cone leaves G as
a graph in which −2 is a non-main eigenvalue. Moreover (cf. [13, Section 5.5]) all vertices of
G outside H are amenable to switching, and any switching yields another graph G′ with −2 as
a non-main eigenvalue. If K1∇G′ is a maximal exceptional graph, then G′ is a maximal graph
with H as a star complement for −2 as a non-main eigenvalue.

Further remarks and examples may be found in [5, Section 6].

3. Eigenvectors of exceptional graphs

In this section we discuss exceptional graphs with −2 as a simple eigenvalue. Such graphs have
a star complement for −2 of order 6, 7 or 8, and the eigenvectors corresponding to −2 are all scalar
multiples of an eigenvector v whose entries are integers. If v is chosen with minimal norm, then v
is called a minimal integral eigenvector, and its height is the maximum modulus of its coordinates.
We establish theoretically a property of heights noted from computer results given in [5].
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First we give a short proof of the following theorem, established in [17] in a chemical context,
and generalized in [16].

Theorem 3.1. Let λ be a simple eigenvalue of the graph G. Then there exists an eigenvector
x = (x1, . . . , xn)

T corresponding to λ such that

x2
j = |PG−j (λ)| (j = 1, . . . , n).

Proof. Let μ1, . . . , μm be the distinct eigenvalues of G, so that [10, Section 4.2]

PG−j (x) = PG(x)

m∑
i=1

‖Piej‖2

x − μi

(j = 1, . . . , n),

where Pi is the orthogonal projection of Rn onto E(μi) and {e1, . . . , en} is the standard ortho-
normal basis of Rn. Now suppose that λ = μh, so that

‖Phej‖2 = PG−j (λ)

P ′
G(λ)

(j = 1, . . . , n).

On the other hand, ‖Phej‖2 = eT
j Phej , the (j, j)-entry of Ph; and if u = (u1, . . . , un)

T is a unit

eigenvector which spansE(λ) then Ph = uuT, with (j, j)-entry u2
j . The result follows by defining

xj =
√

|P ′
G(λ)|uj (j = 1, . . . , n). �

Following [7], we define the discriminant dG of a graph G with λ(G) � −2 as (−1)nPG(−2);
and for k = 6, 7, 8, we define Hk as the set of exceptional graphs on k vertices with λ(G) > −2.
(ThusH8 = H.) As we saw in the proof of Proposition 2.1, if G belongs toHk then dG = 9 − k.

Let H∗
k be the set of graphs which have −2 as a simple eigenvalue and a graph in Hk as a star

complement for −2. (It is noted in [5] that |H∗
6| = 51, |H∗

7| = 512 and |H∗
8| = 4206.)

Corollary 3.2. If G belongs to H∗
k, then G has an integral minimal eigenvector corresponding

to −2 with a coordinate equal to 1.

Proof. By Theorem 3.1, the simple eigenvalue −2 of G has an eigenvector x such that |xi | =√
dG−i (i = 1, . . . , n). For some i the subgraph G − i is an exceptional star complement for −2,

so that (replacing x with −x if necessary) we have xi = √
9 − k. Hence x = √

9 − kx′, where
x′ = (x′

1, . . . , x
′
k+1)

T, and each x′
j is rational. Now

√
9 − k ∈ {1,

√
2,

√
3}, while each x2

j is
an integer, and so each x′

j is an integer. Since also x′
i = 1, x′ is an eigenvector satisfying the

conclusions of the Corollary. �

Corollary 3.2 confirms an empirical observation from computer calculations of eigenvectors
reported in [4]. We saw in the proof that xj = √

9 − kx′
j where x′

j is an integer (j = 1, . . . , k + 1),

and so we can also deduce the following result from Theorem 3.1.

Corollary 3.3. If G belongs to H∗
k, then each |PG−j (−2)| (j = 1, . . . , k + 1) is of the form

(9 − k)s2 where s is an integer.

Proposition 3.4. If G belongs to H∗
k then the height of an integral minimal eigenvector is less

than or equal to 3, 4, 6 for k = 6, 7, 8 respectively.
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Proof. If G has an induced subgraph K isomorphic to K1,4 then for each vertex j outside K , G − j

has −2 as an eigenvalue (by interlacing) and so the j th entry of an integral minimal eigenvector
x = (x1, . . . , xk+1)

T is zero. Since 1 and −2, or −1 and 2, are the components of an integral
minimal eigenvector of K1,4, it follows that x has coordinates 0, 1, −2 or 0, −1, 2. Accordingly
suppose that G has no induced K1,4. Then each G − i has at most three components. When xi /= 0
we find an upper bound for dG−i as the product of the discriminants of the possible components.
The possible values of the discriminant of a component of order t here are: 9 − t (t = 6, 7, 8) for
an exceptional graph, 4 for the line graphs of odd unicyclic graphs or line graphs of trees with one
petal, and t + 1 for the line graphs of trees (cf. [7, Theorem 3]). By considering all distributions
of the vertices of G − i among at most three components we find easily that dG−i is at most
27, 36 or 48 depending on whether the order of G is 7, 8 or 9. (For example, 48 is the product
of discriminants of line graphs of orders 2, 3 and 3.) In the notation of Corollary 3.3, we have
3s2 � 27 when k = 6, 2s2 � 36 when k = 7, and s2 � 48 when k = 8. Thus the height of x is at
most 3, 4 or 6 respectively. �

The bounds in Proposition 3.4 are attained by the exceptional Smith graphs (cf. [13, Section
3.4]). See [5, Table 1] for additional data (obtained by computer) on the heights of eigenvectors.
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[13] D. Cvetković, P. Rowlinson, S. Simić, Spectral Generalizations of Line Graphs, Cambridge University Press, Cam-
bridge, 2004.
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