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Abstract

In this study we use the theory of adaptive dynamics firstly to explore the dif-

ferences in evolutionary behaviour of a generalist predator (or more specifically

an omnivorous or intraguild predator) in a predator-prey model, with a Holling

Type II functional response, when two distinct forms for the carrying capacity are

used. The first of these involves the carrying capacity as an emergent property,

whilst in the second it appears explicitly in the dynamics. The resultant effect this

has on the intraspecific competition in each case is compared. Taking an identi-

cal trade-off in each case, we find that only with an emergent carrying capacity

is evolutionary branching possible. Our study then concentrates solely on the case

where the carrying capacity appears explicitly. Using the same model as above, but

choosing alternate trade-offs, we find branching can occur with an explicit carrying

capacity. Our investigation finishes by taking a more general functional response

in an attempt to derive a condition for when branching can or cannot occur. For
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a predator-prey model, branching cannot occur if the functional response can be

separated into two components, one a function of the population densities, X and

Z, and the other a function of the evolving parameter z (traded off against the in-

trinsic growth rate), ie. if F (z,X,Z) = F1(z)F2(X,Z). This search for evolutionary

branching is motivated by its possible role in speciation.

Key words: Adaptive dynamics, carrying capacity, functional response,

predator-prey, trade-off.
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1 Introduction

An important concept in population ecology is that of the carrying capac-

ity. However, on a population dynamical level, the way this is modelled can

influence the evolutionary behaviour markedly [1]. One method is to model

intraspecific competition using a carrying capacity explicitly; another is to

model such competition in a manner which involves the carrying capacity as

an emergent property - the ratio of an intrinsic growth rate and a suscepti-

bility to crowding [2]. It has been argued for some time that using an explicit

carrying capacity can produce biologically unintuitive results [2,3,4,5,6]. This

is because, with such an approach, the carrying capacity does not depend

upon the intrinsic growth rate (ie. births and/or deaths), and furthermore

the intrinsic growth rate parameter is shown explicitly (in linear form) in the

intraspecific competition, a factor that proves very important in this study.

Difficulties resulting from this include the facts that, in standard models, the

intrinsic growth rate has no effect on competitive outcomes, and more worry-

ingly, that an increase in population number can occur even when the intrinsic

growth rate is negative (if the population exceeds the carrying capacity) [2,3].

A useful account of difficulties inherent in using the logistic equation is given

in [6], which distinguishes ‘free’ and ‘constrained’ forms of this (which corre-

spond to our explicit and emergent carrying capacity respectively). We retain

the usage of explicit/emergent here since it corresponds to that of our primary

reference [1]. Despite this, the use of the carrying capacity explicitly remains

common in modelling, even though it is recognised that this quantity emerges

from the characteristics of individuals (births, deaths and susceptibility to

crowding) in a majority of ecological systems. Moreover, an explicit carrying
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capacity can sometimes be more appropriate; for example where a limiting

resource, such as space, is rigidly fixed, and hence limits population size (this

is discussed in [1,7]). It is against this background that we find motivation for

this work reported here.

For this study we take a generalist predator, or more specifically an omnivo-

rous, or intraguild, predator, i.e. one that can utilise other food sources, for

example, vegetation and hence could survive (perhaps only at low levels) if

the prey were absent or scarce. We use the well established theory of adaptive

dynamics [8,9] to calculate the evolutionary behaviour of this predator-prey

system, adopting a specific form of Holling’s Type II functional response [10].

We use first an emergent form for the carrying capacity (constrained logistic

equation) and, second, an explicit form for this quantity (free logistic equa-

tion). For a particular trade-off between parameters of the evolving species

(here the predator) we find, in agreement with the authors of [1] who studied

prey evolution in the simpler Lotka-Volterra model, markedly different evolu-

tionary behaviour for these two approaches. For the case when the carrying

capacity arises as an emergent property, branching points occur for weakly

deceleratingly costly trade-offs, whereas when it appears explicitly, branch-

ing can never occur. So are branching points linked with emergent carrying

capacities or can they occur in the explicit case? We present results on this

using a Holling functional response and - and this needs stressing - associated

trade-offs, not accessible in the Lotka-Volterra case. Finally, we provide a con-

text for our results by extending our analysis to a broad class of functional

responses and associated trade-offs.
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2 Predator-prey system with a Holling functional response and an

emergent carrying capacity

For the first part of our investigation we consider a predator-prey system, with

an omnivorous or intraguild predator, adopting a Holling’s Type II functional

response. We take the predator to be evolving in the presence of a fixed (non-

evolving) prey. The two models we take to study this system differ only in

the way the intraspecific competition is handled. In the first case, we take

the carrying capacity to be an emergent property incorporated through the

intraspecific competition parameters, c for the predator and q for the prey.

This method of taking the carrying capacity to be an emergent property can

be referred to as a constrained logistic equation [6]. The dynamics take the

form

dZ

dt
= gZ − cZ2 +

βpkXZ

phX + 1
,

dX

dt
= rX − qX2 −

pkXZ

phX + 1
, (1)

where Z and X denote the population densities of the predator and prey re-

spectively. The remaining parameters we define as follows: g and r are the

intrinsic growth rates of the predator and prey respectively, k the propor-

tion of time the predator spends on predation, h is the handling time of the

predator per prey encountered, p the searching efficiency of the predator and

β the rate of conversion of predation into the births of new predators. All

the parameters are taken to be positive, including the intrinsic growth rate of

the predator, although similar results are gained if this is negative (i.e. as in

classic predator-prey systems). Our model here, and again later, are adapted

from those in other studies concerning omnivorous predators, (e.g. [11]), to
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include intraspecific competition and Holling’s Type II functional response.

We assume that as the predator evolves, any mutations occurring only af-

fect the predator’s intrinsic growth rate and the proportion of time spent on

predation, ie. g and k. We take these parameters to be linked by a trade-off

[1,12,13,14,15,16,17], such that g = f(k) (with f ′(k) < 0) implying that an

increase in time spent on predation comes at a cost of a lower intrinsic growth

rate. We distinguish the mutant parameters from the corresponding resident

parameters by means of a bar above the mutant parameters, eg. k̄.

Using adaptive dynamics, the fitness function of a mutant predator strain, ie.

the per capita growth rate of a mutant individual in an environment deter-

mined by the resident population, is given by

s̄ =
(

f(k̄)− f(k)
)

+
(

k̄ − k
) βpX

phX + 1
, (2)

(see equations (A.3)-(A.4) for details). Here, X and Z denote the equilibrium

densities of the resident strains only, in the absence of any mutant strains;

hence they depend only on the resident parameters. Our analysis is subject

to the conditions that these densities are both feasible and point stable (one

stability condition is shown in equation (A.2)).

The location of an evolutionary singularity, k∗, can be found from the condition

that the fitness gradient is zero, ie. ∂s̄/∂k̄
∣

∣

∣

k̄=k
= 0 (assuming small mutations

only). Thus

f ′(k∗) =
f(k∗)− cZ∗

k∗
, (3)

(see equations (A.5)-(A.6)) where f(k∗) < cZ∗ in the presence of prey. Here

Z∗ (and later X∗) denotes the equilibrium density evaluated at the singularity
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k∗.

The evolutionary behaviour at the singularity is determined by the (non-

mixed) second derivatives of the fitness function evaluated at k̄ = k = k∗.

The two primary evolutionary properties are that of ESS (evolutionarily sta-

ble strategy), essentially ∂2s̄/∂k̄2
∣

∣

∣

k∗
< 0, and that of CS (convergence stable),

essentially ∂2s̄/∂k2|k∗ − ∂2s̄/∂k̄2
∣

∣

∣

k∗
> 0, where |k∗ ⇔|k̄=k=k∗. A singularity

that is both ESS and CS is defined as an evolutionary attractor (also called a

CSS or continuously stable strategy), a singularity that is neither ESS nor CS

is an evolutionary repellor, a singularity that is ESS but not CS is a ‘Garden

of Eden’ point (or an ESS-repellor) and one that is CS but not ESS is an

evolutionary branching point.

From equation (2), we find the second derivatives of s̄ to be

∂2s̄

∂k̄2

∣

∣

∣

∣

∣

k∗

= f ′′(k∗),

∂2s̄

∂k2

∣

∣

∣

∣

∣

k∗

=−f ′′(k∗) + 2Ã1, (4)

where Ã1 =
βcp2Z∗

qc(phX∗ + 1)3 + βp2k∗2 − cp2k∗hZ∗(phX∗ + 1)
,

(see equations (A.5) and (A.7)-(A.11)) where Ã1 is positive (see equation

(A.2)). Therefore we find that a singularity is an evolutionary attractor if

f ′′(k∗) > 0 (figure 1(i)), an evolutionary repellor if f ′′(k∗) < −Ã1 (figure 1(iii))

and an evolutionary branching point if −Ã1 < f ′′(k∗) < 0 (figure 1(ii)). Hence

a weakly deceleratingly costly trade-off function is necessary, and sufficient,

to produce branching/speciation.
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3 Predator-prey system with a Holling functional response and an

explicit carrying capacity

So far we have only looked at the case when the carrying capacity is an emer-

gent property; in evolutionary terms, this meant the rate of intraspecific com-

petition, between predators, remained constant as g and k changed. We now

consider the case where the carrying capacities appear explicitly. This method

of taking an explicit carrying capacity can be referred to as a free logistic

equation [6]. Here the dynamics take the form

dZ

dt
= gZ

(

1−
Z

C

)

+
βpkXZ

phX + 1
,

dX

dt
= rX

(

1−
X

K

)

−
pkXZ

phX + 1
. (5)

The parameters and densities are all defined as above, with the exception that

C and K are the carrying capacities (appearing explicitly) of the predator and

prey respectively. Here we note a significant change in the rate of intraspecifc

competition in that it is now dependent upon the intrinsic growth rate g and

hence as g changes as will the rate of intraspecific competition.

In addition we note that in the absense of prey, the predator would exist

at its carrying capacity. However with the presence of prey, the number of

predators would be at a level above its carrying capacity, i.e. Z > C. This has

an added effect in that the intraspecific competition between predators results

in a decrease in predator numbers that is greater than the increase due to the

intrinsic growth rate alone, i.e. g < gZ/C, and hence increasing g would now

be a cost to the predator. This effect is similar to that proposed by the authors

of [6] in response to Ginzburg’s paradox [5].
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3.1 Trade-off involving the proportion of time spent on predation, k

In order to firstly keep a direct comparison with the model above, we again

make the assumption that any mutations only affect the intrinsic growth rate,

g, and the proportion of time spent on predation, k, where g = f(k) (with

f ′ > 0). Hence the fitness function (of the predator) takes the form

s̄ =
(

f(k̄)− f(k)
)

(

1−
Z

C

)

+
(

k̄ − k
) βpX

phX + 1
, (6)

(see equation (A.15), in the special case F̃ = pk/(phX + 1) and z = k).

Again X and Z now represent the equilibrium densities (which are taken to

be both feasible and point stable). The evolutionary singularities are given by

the solutions to

f ′(k∗) =
f(k∗)

k∗
, (7)

(see equation (A.18), with F̃ = pk/(phX + 1) and z = k). We note here a

change in the sign of f ′ from the example earlier. This is due to the rate of

intraspecific competition being dependent upon the intrinsic growth rate g

and that, in the presence of prey, any increase in g will have a negative effect

on the predator. The second derivatives of the fitness function, in equation

(6), evaluated at a singularity, are

∂2s̄

∂k̄2

∣

∣

∣

∣

∣

k∗

= f ′′(k∗)
(

1−
Z∗

C

)

∂2s̄

∂k2

∣

∣

∣

∣

∣

k∗

=−f ′′(k∗)
(

1−
Z∗

C

)

, (8)

(see equations (A.22)-(A.25), with F̃ = pk/(phX + 1) and z = k). It follows

that with an explicit carrying capacity, the singularity is an evolutionary at-

tractor for f ′′(k∗) > 0 (as Z > C) (figure 2(i)) and an evolutionary repellor
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for f ′′(k∗) < 0 (figure 2(ii)), ie. there is optimisation. Branching/speciation

is not possible in this case. Thus in contrast to the earlier model (with an

emergent carrying capacity) where weakly deceleratingly costly trade-offs led

to the singularity being an evolutionary branching point, here such trade-offs

always produce repellors.

3.2 Trade-off involving the searching efficiency of the predator, p

The question arises as to whether branching points are ever possible with

explicit carrying capacities. To investigate this we continue our analysis of

the model shown in equation (5) but consider a new trade-off. We take this

to involve the searching efficiency of the predator p. The main implication of

this is that the parameter involved in the trade-off, p, no longer enters into

the dynamics linearly. The other trade-off parameter we again take to be the

intrinsic growth rate, g, such that g = f(p) (where f ′(p) > 0). The fitness now

takes the form

s̄ = (f(p̄)− f(p))
(

1−
Z

C

)

+

(

βp̄kX

p̄hX + 1
−

βpkX

phX + 1

)

, (9)

(see equation (A.15), with F̃ = pk/(phX + 1) and z = p). Evolutionary

singularities lie at the solutions to

f ′(p∗) =
f(p∗)

p∗(p∗hX∗ + 1)
, (10)

(see equation (A.18), with F̃ = pk/(phX + 1) and z = p). The second deriva-

tives of the fitness s̄, evaluated at an evolutionary singularity, are
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∂2s̄

∂p̄2

∣

∣

∣

∣

∣

p∗

= f ′′(p∗)
(

1−
Z∗

C

)

−
2βkhX∗2

(p∗hX∗ + 1)3
,

∂2s̄

∂p2

∣

∣

∣

∣

∣

p∗

=−f ′′(p∗)
(

1−
Z∗

C

)

+
2βkhX∗2

(p∗hX∗ + 1)3
−

2βf(p∗)p∗k2hX∗Z∗

Ã2C (p∗hX∗ + 1)5
, (11)

(see equations (A.22)-(A.25), with F̃ = pk/(phX + 1), z = p and where Ã2 is

the denominator in equation (A.29) which is shown to be positive in equation

(A.13)). Unlike the previous example, the second derivative of s̄ with respect

to p (at p∗) is not simply the negative of the second derivative with respect to

p̄. From equation (11), we immediately note that the two conditions for the

evolutionary properties ESS and CS will differ in such a way that a singularity

can be ESS but not CS, and hence then a ‘Garden of Eden’ point. This occurs,

using an equilibrium condition from equation (5), when f ′′(p∗) is in the region

−
2f(p∗)hX∗

p∗(p∗hX∗ + 1)2
< f ′′(p∗) < −

2f(p∗)hX∗

p∗(p∗hX∗ + 1)2
+

f(p∗)2khZ∗

Ã2C(p∗hX∗ + 1)4
.(12)

ie. with a moderately decelerating trade-off (figure 3(ii)). For the remaining

regions of f ′′(p∗), the singularity is an evolutionary attractor for f ′′(p∗) >

− 2f(p∗)hX∗

p∗(p∗hX∗+1)2
+ f(p∗)2khZ∗

Ã2C(p∗hX∗+1)4
(figure 3(i)) and an evolutionary repellor for

f ′′(p∗) < − 2f(p∗)hX∗

p∗(p∗hX∗+1)2
(figure 3(iii)). Although there is a third evolutionary

outcome, a ‘Garden of Eden’ point is in fact an ESS-repellor, and hence poly-

morphism still remains an impossibility.

3.3 Trade-off involving the handling time per prey encountered, h

We continue with the model above, in (5), taking a third choice of trade-off

between the intrinsic growth rate, g, and the handling time per prey encoun-

tered, h, such that g = f(h) (where now f ′ < 0). Again the trade-off parameter

h enters the dynamics non-linearly. The fitness s̄ now takes the form
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s̄ =
(

f(h̄)− f(h)
)

(

1−
Z

C

)

+

(

βpkX

ph̄X + 1
−

βpkX

phX + 1

)

, (13)

(see equation (A.15), with F̃ = pk/(phX + 1) and z = h). The location of

evolutionary singularities lie at the solutions to

f ′(h∗) = −
f(h∗)pX∗

ph∗X∗ + 1
, (14)

(see equation (A.18), with F̃ = pk/(phX + 1) and z = h). The second deriva-

tives of the fitness, evaluated at a singularity h∗, are

∂2s̄

∂h̄2

∣

∣

∣

∣

∣

h∗

= f ′′(h∗)
(

1−
Z∗

C

)

+
2βp3kX∗3

(ph∗X∗ + 1)3
,

∂2s̄

∂h2

∣

∣

∣

∣

∣

h∗

=−f ′′(h∗)
(

1−
Z∗

C

)

−
2βp3kX∗3

(ph∗X∗ + 1)3
+

2βf(h∗)p4k2X∗2Z∗

Ã2C (ph∗X∗ + 1)5
, (15)

(see equation (A.22)-(A.25), with F̃ = pk/(phX + 1), z = h and where Ã2 is

the denominator in equation (A.29) which is shown to be positive in equation

(A.13)). In this case it is possible for an evolutionary singularity to be CS but

not ESS, giving a branching point. This occurs, using an equilibrium condition

from (A.12), when f ′′(h∗) is in the region

2f(h∗)p2X∗2

(ph∗X∗ + 1)2
−

f(h∗)2p3kX∗Z∗

Ã2C (ph∗X∗ + 1)4
< f ′′(h∗) <

2f(h∗)p2X∗2

(ph∗X∗ + 1)2
, (16)

ie. for moderately acceleratingly costly trade-offs (figure 4(ii)). For the re-

maining evolutionary outcomes, the singularity is an evolutionary attractor

for f ′′(h∗) > 2f(h∗)p2X∗2

(ph∗X∗+1)2
(figure 4(i)) and an evolutionary repellor for f ′′(h∗) <

2f(h∗)p2X∗2

(ph∗X∗+1)2
− f(h∗)2p3kX∗Z∗

Ã2C(ph∗X∗+1)4
(figure 4(iii)).
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4 Predator-prey system with a general functional response and an

explicit carrying capacity

So far branching points have proven both possible and not possible for predator-

prey models with explicit carrying capacities and a Holling Type II functional

response, depending upon our choice of trade-off. To explore this further, we

adopt a more general model, while maintaining a predator-prey framework.

The dynamics for this will take the form

dZ

dt
= gZ

(

1−
Z

C

)

+ βF̃ (z,X, Z)XZ,

dX

dt
= rX

(

1−
X

K

)

− F̃ (z,X, Z)XZ. (17)

Here the functional response takes the form F̃ (z,X, Z)X (for example, F̃ =

pk/(phX + 1) for the Holling Type II functional response we used earlier)

where F̃ is an arbitrary function of the population densities, X and Z, and a

parameter involved in the trade-off, z. Any remaining parameters are omitted

from the arguments of F̃ as they are taken to remain constant as the predator

evolves. For consistency with the previous example, we choose the intrinsic

growth rate, g, to be the second parameter involved in the trade-off such that

g = f(z). The fitness of the mutant predator individuals will be given by

s̄ = (f(z̄)− f(z))
(

1−
Z

C

)

+ βXZ
(

F̃ (z̄, X, Z)− F̃ (z,X, Z)
)

, (18)

(see equations (A.14)-(A.15)). In the appendix, using the (non-mixed) second

derivatives of the fitness function s̄, evaluated at the evolutionary singularity

z∗ (see (A.17) and (A.18)), we derive the conditions for the evolutionary

properties ESS and CS as
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ESS ⇔ f ′′(z∗) > −A,

CS ⇔ f ′′(z∗) > −(A +B), (19)

where A and B are as in equations (A.23) and (A.24) (see equations (A.16)

and (A.19)-(A.25) for details). For branching points to be possible (for certain

f ′′(z∗)), we require that B > 0, ie. so that z∗ can be CS but not ESS (eg. as is

the case with a trade-off between g and h above). Likewise, ‘Garden of Eden’

points (ESS-repellors) are only possible (for certain f ′′(z∗)) if B < 0 (eg. as

is the case with a trade-off between g and p above). Finally, neither of these

can occur (for any f ′′(z∗)) if B is zero; then only evolutionary attractors and

repellors can occur (eg. as is the case with a trade-off between g and k above).

A large proportion of the elements contributing to B (see equation (A.24)) are

dependent upon F̃ (and therefore the functional response) and hence the form

of F̃ is likely to determine whether branching points are possible. One form

for F̃ of interest is when it is separable between the parameter in the trade-off,

z, and the population densities, X and Z. We take this to be F̃ (z,X, Z) =

F̃1(z)F̃2(X,Z), where F̃1 and F̃2 are again arbitrary functions. Using this,

the quantity B (in equation (19) and its explicit form in equation (A.24),

or more specifically the part in square brackets) is zero, as shown at (A.27).

Hence, the singularity can only be an evolutionary attractor for f ′′(x∗) > −A

and an evolutionary repellor for f ′′(x∗) < −A (where A is as at (A.23)), as

the conditions for z∗ to be ESS and CS are now identical and we have an

optimisation set-up. This generalises our results on evolutionary outcomes for

the example earlier with a trade-off between the intrinsic growth rate g and

the proportion of time spent on predation k.
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5 Discussion

We began our study by applying adaptive dynamics to predator evolution,

of an omnivorous (or intraguild) predator, in a system with a Holling Type

II functional response, emergent carrying capacities (constructed from the in-

trinsic growth/death rates and susceptibility to crowding) (constrained logis-

tic equations) and a trade-off between the intrinsic death rate and the pro-

portion of time spent on predation. Under these conditions we showed that

branching/speciation is possible with a weakly deceleratingly costly trade-off.

However, under identical conditions but with explicit carrying capacities (free

logistic equations), branching was no longer possible. This further emphasised

the significance of emergent carrying capacities in terms of evolutionary be-

haviour (see [1] for Lotka-Volterra functional responses) and the resultant form

of the rate of intraspecific competition.

By taking the intrinsic growth rate as an evolving parameter, it brings about

a significant difference in the dynamics when taking either an emergent or

an explicit carrying capacity. Taking an emergent carrying capacity leads to

a fixed rate of intraspecific competition, fixed in that it does not change as

g, the intrinsic growth rate changes; whereas by taking an explicit carrying

capacity leads to a change in the rate of intraspecific competition as this is

dependent upon g (i.e. it is gZ/C). In fact, with an explicit carrying capacity,

a change in the intrinsic growth rate produces an equal change in the in-

traspecific competition, up to a constant, as there is a linear relation between

g and the intraspecific competition, whereas no relation exists if an emergent

carrying capacity is taken. In addition, for the particular choice of trade-off

above, as the time spent on predation increases and a cost is incurred in the
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intrinsic growth rate, an emergent carrying capacity falls whilst an explicit

one remains fixed. Some argue that it is individual properties which are acted

upon on by natural selection and therefore an emergent carrying capacity

seems more appropriate for evolutionary models [18].

Despite the above, we found that branching points are possible with explicit

carrying capacities. They occur in an identical model to the above but for

trade-offs between the intrinsic growth rate and the handling time.

The final part of our study looked at a more general model, with explicit

carrying capacities and a trade-off between the intrinsic growth rate and a

characteristic of the cross-species interaction (predation) term. We found that

if the cross-species term (the functional response for our predator-prey models)

was separable into the product of two functions, one including the densities

only (and any non-evolving parameters) and one solely including the trade-off

parameter (and any non-evolving parameters), then branching/speciation is

not possible - although it may be in other cases. This verified the results gained

for the example earlier: a trade-off involving the proportion of time spent on

predation k could not lead to branching (with the functional response of the

form pkX/(phX+1)), whereas a trade-off involving the handling time h could.

A significant feature of this general approach is that the ‘separable’ result is

not confined to predator-prey systems. As long as the evolving species (z) has

dynamics of the form

dZ

dt
= f(z)Z

(

1−
Z

C

)

+ F̃1(z)F̃2(X,Z)XZ,

dX

dt
=G(X,Z), (20)

branching is not possible (where the signs of parameters are not fixed). The

16



dynamics of (the non-evolving) species X are irrelevant. This is because the

term in the square brackets in B (in equation (A.24)), which is zero if F̃

is separable, is solely determined by the form of the dynamics of Z (only

∂Z/∂z|z∗ depends upon the form of the dynamics of X).

The shape and magnitude of the trade-off necessary for branching - weakly or

moderately decelerating - has been found in a number of evolutionary stud-

ies: for example, resistance to parasites [14] and polymorphism in Levene-type

models [19]. A deceleratingly costly trade-off occurs when each unit of im-

provement in one characteristic comes at an ever decreasing cost in the other

(‘weak’ and ‘moderate’ simply measure the magnitude of this). Here, with a

trade-off between the intrinsic growth rate g and the handling time h, branch-

ing was possible with an moderately acceletaingly costly trade-off, ie. each

unit of improvement comes at an ever increasing cost. Of course this shape

and magnitude of trade-off is only required locally near an evolutionary sin-

gularity for branching to occur; the shape of the remainder of the trade-off

curve may be irrelevant.

We should finally note that this study again confirms that there is a greater

likelihood of branching when carrying capacities are modelled as emergent

properties, ie. as a ratio of the intrinsic growth rates and susceptibility to

crowding.
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A Appendix

In this final section, we bring together much of the mathematical detail un-

derlying the results stated earlier.

We start with the example involving emergent carrying capacities, in equation

(1), ie. with a Holling Type II functional response and a trade-off between the

proportion of time spent on predation, k, and the intrinsic growth rate, g, such

that g = f(k). Before any mutations occur, the predator and prey equilibrium

densities satisfy the relation

f(k)− cZ

k
= −

βpX

phX + 1
, (A.1)

(this follows from the dynamics in equation (1)). A stability condition for the

non-zero equilibria (ie. with Z > 0 and X > 0) which is required later is

qc(phX + 1)3 + βp2k2 − cp2khZ(phX + 1) > 0. (A.2)

This is derived from the determinant of the Jacobian matrix evaluated at the

non-zero equilibria; a second condition is also required for stability, derived

from the trace of the Jacobian, which we take to always be satified. The fitness

function, given by the per capita growth rate of a rare invading mutant, is

s̄ = f(k̄)− cZ −
βpk̄X

phX + 1
. (A.3)

Taking s̄ = s̄ − s, where s is simply s̄ with the mutant parameters set equal

to those of the resident and hence is zero by definition, gives

s̄ =
(

f(k̄)− f(k)
)

+
(

k̄ − k
) βpX

phX + 1
, (A.4)
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as in equation (2). Now differentiating s̄ with respect to k̄ gives

∂s̄

∂k̄
= f ′(k̄) +

βpX

phX + 1
. (A.5)

Setting k̄ = k, giving the fitness gradient and solving for when this is zero

gives the locations of any evolutionary singularities. These lie at the solutions

to

f ′(k∗) =
f(k∗) + cZ∗

k∗
, (A.6)

where the equilibrium relation in equation (A.1) is used in simplification. Dif-

ferentiating equation (A.5) for a second time with respect to k̄, and evaluating

at the evolutionary singularity k∗, gives

∂2s̄

∂k̄2

∣

∣

∣

∣

∣

k∗

= f ′′(k∗), (A.7)

where |k∗ ⇔|k̄=k=k∗. Now differentiating s̄ (in equation (A.4)) with respect to

k gives

∂s̄

∂k
= −f ′(k)−

βpX

phX + 1
+

βp(k̄ − k)

(phX + 1)2
∂X

∂k
. (A.8)

Differentiating for a second time with respect to k, and evaluating at the

evolutionary singularity, gives

∂2s̄

∂k2

∣

∣

∣

∣

∣

k∗

= −f ′′(k∗)−
2βp

(phX∗ + 1)2
∂X

∂k

∣

∣

∣

∣

∣

k∗

. (A.9)

The derivatives of the population equilibria, X and Z, evaluated at the sin-

gularity, can be found from the dynamics in equation (1) and are
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∂Z

∂k

∣

∣

∣

∣

∣

k∗

=
βpk∗

c(phX∗ + 1)2
∂X

∂k

∣

∣

∣

∣

∣

k∗

,

∂X

∂k

∣

∣

∣

∣

∣

k∗

=−
cpZ∗(phX∗ + 1)2

qc(phX∗ + 1)3 + βp2k∗2 − cp2k∗hZ∗(phX∗ + 1)
. (A.10)

Using this, the second derivative of s̄ with respect to k becomes

∂2s̄

∂k2

∣

∣

∣

∣

∣

k∗

=−f ′′(k∗) + 2Ã1,

where Ã1 =
βcp2Z∗

qc(phX∗ + 1)3 + βp2k∗2 − cp2k∗hZ∗(phX∗ + 1)
, (A.11)

where the denominator of Ã1 is positive due to the stability condition in

equation (A.2).

For the models which adopt explicit carrying capacities in the intraspecific

competition term, we solely derive the results for the general model near the

end of the main text at equation (17) (ie. with the more general functional

response). The results for the models involving Holling’s Type II functional

response can be derived from these, by taking F̃ = pk/(phX + 1), d = f(z)

and z to be either k, p or h (determined by which parameter is involved in

the trade-off). Here, a useful form for the prey equilibrium can be given, from

the predator dynamics in equation (17), as

X = −
f(z)

βF̃ (z,X, Z)

(

1−
Z

C

)

. (A.12)

Again for the non-zero equilibria (ie. when Z > 0 and X > 0) to be point

stable requires that we impose the condition

βF̃ 2 +
∂F̃

∂X

(

βXF̃ +
f(z)Z

C

)

+
∂F̃

∂Z

(

βZF̃ −
rβX

K

)

+
rf(z)

CK
> 0, (A.13)

again derived from the determinant of the Jacobian matrix; in addition to this,

although it is not stated , we take the trace of the Jacobian to be negative to
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ensure stability. For this (general) model, the fitness function initially takes

the form

s̄ = f(z̄)
(

1−
Z

C

)

+ βXF̃ (z̄, X, Z). (A.14)

Taking s̄ = s̄− s (as above) gives

s̄ = (f(z̄)− f(z))
(

1−
Z

C

)

+ βX
(

F̃ (z̄, X, Z)− F̃ (z,X, Z)
)

. (A.15)

Differentiating this with respect to the mutant parameter z̄ gives

∂s̄

∂z̄
= f ′(z̄)

(

1−
Z

C

)

+ βX
∂F̃ (z̄)

∂z̄
, (A.16)

where F̃ (z̄) = F̃ (z̄, X, Z) (and later F̃ (z) = F̃ (z,X, Z)) with X and Z de-

pending upon z. Setting z̄ = z, the evolutionary singularities then lie at the

roots of equation (A.16), ie. where

f ′(z∗)
(

1−
Z∗

C

)

= −βX∗
∂F̃ (z)

∂z̄

∣

∣

∣

∣

∣

z∗

. (A.17)

Substituting the form for the prey equilibrium at equation (A.12) into equation

(A.17) gives

f ′(z∗) =
f(z∗)

F̃ (z∗)

∂F̃ (z)

∂z

∣

∣

∣

∣

∣

z∗

. (A.18)

Differentiating s̄ (in equation (A.15)) with respect to the resident parameter

z, gives

∂s̄

∂z
=−f ′(z)

(

1−
Z

C

)

−
f(z̄)− f(z)

C

∂Z

∂z

+β
(

F̃ (z̄)− F̃ (z)
) ∂X

∂z
+ βX

[(

∂F̃ (z̄)

∂Z
−

∂F̃ (z)

∂Z

)

∂Z

∂z

+

(

∂F̃ (z̄)

∂X
−

∂F̃ (z)

∂X

)

∂X

∂z
−

∂F̃ (z)

∂z

]

. (A.19)
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Differentiating again with respect to z and evaluating at z∗ gives

∂2s̄

∂z2

∣

∣

∣

∣

∣

z∗

= −f ′′(z∗)
(

1−
Z∗

C

)

+
2f ′(z∗)

C

∂Z

∂z

∣

∣

∣

∣

∣

x∗

− 2β
∂F̃ (z)

∂z

∂X

∂z

∣

∣

∣

∣

∣

z∗

−βX

(

2
∂2F̃ (z)

∂z∂Z

∂Z

∂z
+ 2

∂2F̃ (z)

∂z∂X

∂X

∂z
+

∂2F̃ (z)

∂z2

)

. (A.20)

Returning to the prey equilibrium, differentiating equation (A.12) with respect

to z and evaluating at the singularity z∗ (hence using equation (A.17)) gives

∂Z

∂z

∣

∣

∣

∣

∣

z∗

(

f(z∗)

C
− βX∗

∂F̃ (z)

∂Z

∣

∣

∣

∣

∣

z∗

)

=

∂X

∂z

∣

∣

∣

∣

∣

z∗

(

βF̃ (z∗) + βX∗
∂F̃ (z)

∂X

∣

∣

∣

∣

∣

z∗

)

. (A.21)

Using this, the second derivative of s̄ with respect to z can be written

∂2s̄

∂z2

∣

∣

∣

∣

∣

z∗

− = f ′′(z∗)
(

1−
Z∗

C

)

+ AβX∗
F̃ (z∗)

f(z∗)
+ 2BβX∗

F̃ (z∗)

f(z∗)
, (A.22)

where A and B are

A=−
f(z∗)

F̃ (z∗)

∂2F̃ (z)

∂z2

∣

∣

∣

∣

∣

z∗

, (A.23)

B=
f(z∗)

βF̃ (z∗)
(

F̃ (z∗) +X ∂F̃ (z)
∂X

)

∂Z

∂z

∣

∣

∣

∣

∣

z∗

[

f(z)

CF̃ (z)

∂F̃ (z)

∂z

∂F̃ (z)

∂X

+β
∂F̃ (z)

∂z

∂F̃ (z)

∂Z
− β

∂2F̃ (z)

∂z∂Z

(

F̃ (z) +X
∂F̃ (z)

∂X

)

−
∂2F̃ (z)

∂z∂X

(

f(z)

C
− βX

∂F̃ (z)

∂Z

)]∣

∣

∣

∣

∣

z∗

. (A.24)

Differentiating s̄ in (A.15) with respect to the mutant parameter z̄ twice and

evaluating at the singularity gives

∂2s̄

∂z̄2

∣

∣

∣

∣

∣

z∗

= f ′′(z∗)
(

1−
Z∗

C

)

−AβX∗
F̃ (z∗)

f(z∗)
, (A.25)
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where A is as that in equation (A.23). From equations (A.22)-(A.25), and the

prey equilibrium in equation (A.12), the conditions for z∗ to be ESS and CS

become

ESS ⇔ f ′′(z∗) > −A,

CS ⇔ f ′′(z∗) > −(A +B). (A.26)

Taking F̃ to be seperable between the (evolving) parameter z and the densities,

X and Z, ie. F̃ (z,X, Z) = F̃1(z)F̃2(X,Z), the term B can be simplified to

B =
f(z∗)

βF̃1F̃2

(

F̃1F̃2 +X∗F̃1
∂F̃2

∂X

)

∂Z

∂z

∣

∣

∣

∣

∣

z∗

∂F̃1

∂z

∣

∣

∣

∣

∣

z∗

[

f(z)

C

∂F̃2

∂X

+βF̃1F̃2
∂F̃2

∂Z
− β

∂F̃2

∂Z

(

F̃1F̃2 +XF̃1
∂F̃2

∂X

)

−
∂F̃2

∂X

(

f(z)

C
− βXF̃1

∂F̃2

∂Z

)]∣

∣

∣

∣

∣

z∗

= 0, (A.27)

and hence the conditions for ESS and CS are identical.

So far, all the results do not depend upon the dynamics of (the fixed) prey X ,

only on the dynamics of the predator Z and the presence of a non-evolving

prey, X . To find B (in equation (A.24)) for the examples used earlier requires

an explicit form for ∂Z/∂z|z∗ . For this we must differentiate r(1 − X/K) −

ZF̃ (z) = 0 (gained from the dynamics in equation (17)) with respect to z.

This gives

−
r

K

∂X

∂z
− F̃ (z)

∂Z

∂z
− Z

(

∂F̃ (z)

∂Z

∂Z

∂z
+

∂F̃ (z)

∂X

∂X

∂z
+

∂F̃ (z)

∂z

)

= 0. (A.28)

Using equation (A.21) and re-arranging gives

∂Z

∂z

∣

∣

∣

∣

∣

z∗

= −
βZ ∂F̃

∂z

(

F̃ +X ∂F̃
∂X

)

βF̃ 2 + ∂F̃
∂X

(

βXF̃ + f(z∗)Z∗

C

)

+ ∂F̃
∂Z

(

βZF̃ − rβX

K

)

+ rf(z∗)
CK

,(A.29)
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where F̃ = F̃ (z,X, Z). From equation (A.13), it can be seen that the denomi-

nator of equation (A.29) is always positive, and hence, for notational purposes

we denote this (denominator) as Ã2. Using equation (A.29), along with the

results in equations (A.26) (with (A.23) and (A.24)) and F̃ = pk/(phX + 1)

for Holling’s Type II functional response, the conditions for the evolutionary

properties for the trade-offs between g and k, between g and p and between g

and h can be derived as

g = f(k) : ESS⇔ f ′′(k∗) > 0,

CS⇔ f ′′(k∗) > 0, (A.30)

g = f(p) : ESS⇔ f ′′(p∗) > −
2f(p∗)hX∗

p∗(p∗hX∗ + 1∗)2
,

CS⇔ f ′′(p∗) > −
2f(p∗)hX∗

p∗(p∗hX∗ + 1∗)2
+

f(p∗)2khZ∗

Ã2C(p∗hX∗ + 1∗)4
,(A.31)

g = f(h) : ESS⇔ f ′′(h∗) >
2f(h∗)p2X∗2

(ph∗X∗ + 1)2
,

CS⇔ f ′′(h∗) >
2f(h∗)p2X∗2

(ph∗X∗ + 1)2
−

f(h∗)2p3kX∗Z∗

Ã2C(ph∗X∗ + 1)4
. (A.32)

These are used to determine the evolutionary outcomes in each example in

the main text.
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Figure 1: Simulations involving how the proportion of time spent on predation,

k, evolves over time based upon the dynamics in (1). Here, the parameters

values are r = 0.75, c = 5/9, q = 0125, p = 0.5, h = 0.5 and β = 2. For

the trade-off between g and k we take g = f(k) = 1/9 − 4
a

(

1− e−
a

2
(k−0.5)

)

,

which fixes an evolutionary singularity at k∗ = 0.5, and f ′′(k∗ = 0.5) = a.

In (i) a = −0.5 which corresponds to k∗ being an evolutionary attractor, in

(ii) a = 1 corresponding to k∗ being an evolutionary branching point and in

(iii) a = 2.5 corresponding to k∗ being an evolutionary repellor. The (Matlab)

program used to create these was adapted from that used by the authors in

[1].
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Figure 2: Simulations involving how the proportion of time spent on predation,

k, evolves over time based upon the dynamics in (5). Here, the parameters

values are r = 0.75, C = 0.2, K = 6, p = 0.5, h = 0.5 and β = 2. For the

trade-off between g and k we take g = f(k) = 1/9− 1
25a

(

1− e5a(k−0.5)
)

, which

fixes an evolutionary singularity at k∗ = 0.5, and f ′′(k∗ = 0.5) = a. In (i)

a = 0.3 which corresponds to k∗ being an evolutionary attractor and in (ii)

a = −0.3 corresponding to k∗ being an evolutionary repellor. The (Matlab)

program used to create these was adapted from that used by the authors in

[1].
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Figure 3: Simulations involving how the searching efficiency, p, evolves over

time based upon the dynamics in (5). Here, the parameters values are r = 0.75,

C = 0.2, K = 6, k = 0.5, h = 0.5 and β = 2. For the trade-off between g and

p we take g = f(p) = 1/9 − 1
81a

(

1− e9a(p−0.5)
)

, which fixes an evolutionary

singularity at p∗ = 0.5, and f ′′(p∗ = 0.5) = a. In (i) a = 0.4 which corresponds

to p∗ being an evolutionary attractor, in (ii) a = 0.2 corresponding to p∗ be-

ing an ‘Garden of Eden’ point (where the simulation started at p∗ essentially

remained there, whereas the simulation started away from the singularity con-

tinues to evolve away) the and in (iii) a = −0.1 corresponding to p∗ being an

evolutionary repellor. The (Matlab) program used to create these was adapted

from that used by the authors in [1].
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Figure 4: Simulations involving how the handling time of the predator per

prey encountered, h, evolves over time based upon the dynamics in (5). Here,

the parameters values are r = 0.75, C = 0.2, K = 6, p = 0.5, k = 0.5

and β = 2. For the trade-off between g and h we take r = f(h) = 1/9 −

1
81a

(

1− e−9a(h−0.5)
)

, which fixes an evolutionary singularity at h∗ = 0.5, and

f ′′(h∗ = 0.5) = a. In (i) a = 0.4 which corresponds to h∗ being an evolutionary

attractor, in (ii) a = 0.2 corresponding to h∗ being an evolutionary branching

point and in (iii) a = −0.1 corresponding to h∗ being an evolutionary repellor.

The (Matlab) program used to create these was adapted from that used by

the authors in [1].
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