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Abstract

We prove that the minimum value of the least eigenvalue of the signless Laplacian of a connected non-
bipartite graph with a prescribed number of vertices is attained solely in the unicyclic graph obtained from
a triangle by attaching a path at one of its endvertices.
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1. Introduction

Let G be a simple graph with vertices 1, . . . , n, of degrees d1, . . . , dn, respectively. Let A

be the (0, 1)-adjacency matrix of G, and let D be the diagonal matrix diag(d1, . . . , dn). The
matrix D − A is the Laplacian of G, while D + A is called the signless Laplacian of G. The least
eigenvalue of D − A is zero, and the second least is known as the algebraic connectivity of G.

Computer investigations of graphs with up to 11 vertices [5] suggest that the spectrum of D + A

performs better than the spectrum of A or D − A in distinguishing non-isomorphic graphs, but
relatively few articles on D + A have appeared in the literature. Several references may be found
in the papers [3,4]. The latter lists 30 computer-generated conjectures concerning the eigenvalues
of D + A, and establishes various inequalities such as bounds on the largest eigenvalue of D + A.
Here we are concerned with the least eigenvalue of D + A, denoted by κ(G).

If R is the vertex-edge incidence matrix of G then

RRT = D + A, RTR = A(L(G)) + 2I, (1)

where A(L(G)) is the adjacency matrix of the line graph L(G). In particular, D + A is positive
semi-definite, and so always κ(G) � 0. From [3, Theorem 2.2.4] we know that, for a connected
graph G, we have κ(G) = 0 if and only if G is bipartite, and that in this case κ(G) is a simple
eigenvalue. In [6], κ(G) was studied as a measure of non-bipartiteness of a graph.

Conjecture 24 of [4] asserts the following:
If G is a connected non-bipartite graph of order n(n � 4), then κ(G) � κ(E3,n−3), where

Ee,f is the unicyclic graph on e + f vertices obtained by coalescing a vertex in the cycle Ce with
an endvertex of the path Pf +1.

Here we confirm this conjecture, which remained unproved in [4] notwithstanding the theoreti-
cal arguments presented there as further supporting evidence. Preliminary requirements are given
in Section 2. In Section 3, we establish several useful properties of an eigenvector corresponding
to κ(G) in the case that κ(G) is minimal among the graphs in question. These properties are used
in Section 4 to show that G = E3,n−3.

We note in passing that for n � 3e − 1, the graph Ee,n−e is the unique graph with least algebraic
connectivity among the connected graphs with n vertices and girth e [7].

2. Preliminaries

We extend the notation of Section 1 by writing φ(x, G) = det(xI − A) and ξ(x, G) =
det(xI − D − A). From the relations (1) we obtain the following, since the non-zero eigenvalues
of RRT and RTR coincide.

Theorem 2.1. Let G be a graph with n vertices and m edges. Then

φ(x, L(G)) = (x + 2)m−nξ(x + 2, G). (2)

The following theorem can be found, for example, in [1, p. 159].

Theorem 2.2. Let G · H be the graph obtained from disjoint graphs G and H by coalescing the
vertex u of G with the vertex v of H. Then

φ(x, G · H) = φ(x, G)φ(x, H − v) + φ(x, G − u)φ(x, H) − xφ(x, G − u)φ(x, H − v).



2772 D.M. Cardoso et al. / Linear Algebra and its Applications 429 (2008) 2770–2780

We write GuvH for the graph obtained from disjoint graphs G and H by adding an edge
joining the vertex u of G to the vertex v of H . We write Gu for the graph obtained from G by
adding a pendant edge at u. Now the line graph L(GuvH) is the coalescence (at uv) of L(Gu)

and L(Hv), and so two applications of Theorem 2.2 yield:

Corollary 2.3. With the notation above,

φ(x, L(GuvH)) − φ(x, L(Guv′H)) = φ(x, L(G))(φ(x, L(Hv)) − φ(x, L(Hv′))).

We write Q = D + A, with eigenvalues q1, q2, . . . , qn, where q1 � q2 � · · · � qn. We refer
to the qi as the Q-eigenvalues of G, and to corresponding eigenvectors as Q-eigenvectors of G.
We write qi = qi(G), so that qn(G) = κ(G). The Q-eigenvalues of an edge-deleted subgraph of
G interlace those of G, as can be seen from (2) by applying the (standard) Interlacing Theorem
to L(G):

Theorem 2.4. Let e be an edge of the graph G. Let q1, q2, . . . , qn (q1 � q2 � · · · � qn) and
s1, s2, . . . , sn(s1 � s2 � · · · � sn) be the Q-eigenvalues of G and G − e, respectively. Then

0 � sn � qn � · · · � s2 � q2 � s1 � q1.

Given a connected non-bipartite graph G, we may delete edges from G to obtain an odd-unicy-
clic graph, that is, a unicyclic graph G′ whose cycle has odd length. By interlacing, κ(G′) � κ(G),
and so among the connected non-bipartite graphs on n vertices, the minimal value of κ(G) is
attained in an odd-unicyclic graph; moreover, if κ(G) is minimal then κ(G) = κ(G′) for some
odd-unicyclic graph G′, and G can be obtained from G′ by adding edges. Accordingly we shall
focus our attention first on odd-unicyclic graphs with n vertices (n � 4). For such a graph G,
we have 0 < κ(G) < 1 from Theorem 2.1, because −2 < λ(L(G)) < −1, where λ(L(G)) is the
least eigenvalue of A(L(G)) (see [2, Theorem 5.2.2]). It was noted in [4] that

1

12n2
� qn(Ee,n−e) � qn−1(Pn) = 2

(
1 − cos

π

n

)
= 4 sin2

( π

2n

)
and so

1

12n2
� κ(Ee,n−e) <

π2

n2
.

3. The form of a particular eigenvector

For a non-zero vector x = (x1, . . . , xn)
� ∈ IRn, let R(x) be the Rayleigh quotient x�Qx/x�x.

Recall that κ(G) � R(x), with equality if and only if x is a Q-eigenvector of G corresponding to
κ(G). We use this observation to prove the following lemma, where we write r ∼ s to indicate
that vertices r and s are adjacent.

Lemma 3.1. Let r, s, t be vertices of the graph G such that r ∼ s, r � t. Let G′ be the graph
obtained from G by replacing the edge rs with rt, and let x = (x1, x2, . . . , xn)

� be a Q-eigen-
vector of G corresponding to κ(G). If (xt − xs)(2xr + xs + xt ) � 0 then κ(G′) � κ(G), with
equality if and only if xr = −xs = −xt .
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Proof. We may take x to be a unit vector. Then we have

κ(G′) − κ(G) � xT(Q′ − Q)x = (xt − xs)(2xr + xs + xt ) � 0,

where Q′ is the signless Laplacian of G′. If κ(G′) = κ(G) = κ then (xt − xs)(2xr + xs + xt ) = 0
and x is a Q-eigenvector of G′ corresponding to κ . In this situation, the eigenvalue equations

κxu = duxu +
∑
v∼u

xv(u = r, s, t)

for both G and G′ yield xs = xt , xr + xs = 0 and xr + xt = 0, respectively. �

We refer to the modification in Lemma 3.1 as the rotation rs �→ rt .
Now let Ĝ be an odd-unicyclic graph on n vertices for which the least Q-eigenvalue κ is

minimal, and let C denote the cycle in Ĝ. The length of C is the girth of Ĝ, denoted by g.

Lemma 3.2. The graph Ĝ has a Q-eigenvector x = (x1, . . . , xn)
� corresponding to κ with the

following properties:

(i) xp � 0 and xq � 0 for some edge pq of C;
(ii) xuxv � 0 for any other edge uv of Ĝ;

(iii) if xpxq = 0 then either xp or xq is non-zero.

Proof. To start with, let x be any Q-eigenvector corresponding to κ . Since C is an odd cycle, we
cannot have xuxv < 0 for every edge uv of C, and so xpxq � 0 for some edge pq of C. Replacing
x with −x if necessary, we deduce statement (i).

Let T̂ be the tree Ĝ − pq. The vertices of T̂ may be coloured so that each edge of T̂ joins a
black vertex to a white vertex; without loss of generality, p and q are black. If uv is an edge of T̂

such that xuxv > 0 then we can reduce R(x) by replacing xw with −xw for each vertex w in one
component of T̂ − uv. This contradicts the minimality of R(x), and so we have statement (ii).

To prove (iii), we first claim that x can be chosen so that xi is non-negative for all black vertices
i and non-positive for all white vertices i. To see this, suppose that, in T̂ , k is a vertex closest to p

which violates this property, and let j be the predecessor of k in the p−k path in T̂ . If k is black
then xk < 0, xj � 0 and xjxk � 0, whence xj = 0. Similarly, if k is white then xj = 0. Now
replace xw with −xw for each vertex w in the component of T̂ − jk containing k. Repetition of
this process results in a vector x′ = (x′

1, . . . , x
′
n) whose entries not only have the required signs

but also satisfy the eigenvalue equations

κx′
u = dux

′
u +

∑
v∼u

x′
v (u = 1, . . . , n).

Therefore, we may assume that x = x′.
Now suppose by way of contradiction that xp = xq = 0. Since xp = 0 the eigenvalue equation

for u = p shows that
∑

i∼p xi = 0. Now the neighbours of p are q (for which xq = 0) together

with white vertices i (for which xi � 0). Hence xi = 0 for every neighbour of p. Now Ĝ is
connected, and so if we repeat this argument with eigenvalue equations for successive neighbours,
we obtain the contradiction x = 0. This completes the proof. �

In what follows, we take x to be a unitQ-eigenvector with the properties specified in Lemma 3.2,
and we call xi the weight of vertex i. As above, we assume that black vertices have
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non-negative weight, and white vertices have non-positive weight. Without loss of generality,
we assume that xp � xq , so that xq > 0.

Lemma 3.3. If u is a vertex of Ĝ other than p or q, then

|xu| > xq (� xp).

Proof. First, let u be a black vertex other than p or q. Suppose, by way of contradiction, that
xu � xq . Then xu − xq � 0, 2xp + xq + xu > 0 and xp + xq > 0. By Lemma 3.1 the rotation
pq �→ pu results in a graph G′ such that κ(G′) < κ(Ĝ), and this contradicts the minimality
of κ(Ĝ).

Secondly, let u be any white vertex. From the eigenvalue equation

κxu = duxu +
∑
v∼u

xv

we deduce that

(du − κ)|xu| � duxq,

because the neighbours of u are black. Since 0 < κ < 1 we have |xu| > |xq |, as required. �

In what follows, we regard Ĝ as constructed from the cycle C by attaching a (possibly trivial)
rooted tree to each vertex. Let Ti be the rooted tree attached by its root ri to the ith vertex of C

(i = 1, . . . , g). We now examine how the weights of vertices in the trees Ti are distributed.

Lemma 3.4. Let v0v1 · · · vk be a path in Ti with v0 = ri . Then

|xv0 | < |xv1 | < · · · < |xvk
|.

Proof. It suffices to show:
(∗) |xu| > |xv| for all vertices u( /= v) reachable from ri via v.

We prove this by induction on r (0 � r � d), where d is the maximum distance from ri of a
vertex in Ti , and d(ri, v) = d − r . Note first that (∗) is satisfied vacuously when v is an endvertex,
in particular when r = 0. Now suppose that (∗) holds when d(ri, v) = d − r (0 � r � d − 1),
and let w be the penultimate vertex of the ri-v path in Ti . From the eigenvalue equation

κxv = dvxv +
∑
j∼v

xj ,

we deduce that (dv − κ)|xv| = ∑
j∼v |xj |, whence

1

dv

∑
j∼v

|xj | < |xv|.

By our induction hypothesis, |xj | > |xv| for all neighbours j of v other than w. Hence |xw| < |xv|
and (∗) holds also when d(ri, v) = d − r − 1. The result follows. �

One of our techniques will be to prune some trees Ti while extending others, and to this end
we prove:

Lemma 3.5. If ab and cd are two non-adjacent edges in Ti (i ∈ {1, . . . , g}), say with d(ri, a) <

d(ri, b) and d(ri, c) < d(ri, d), then the intervals [|xa|, |xb|] and [|xc|, |xd |] are disjoint.
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Proof. If ab and cd lie in the same path between a root ri and an endvertex then the result follows
from Lemma 3.4. If not, we distinguish two cases:

Case (i): b and d belong to different colour classes. Then

(xd − xa)(2xb + xa + xd) > 0 and (xb − xc)(2xd + xb + xc) > 0,

for otherwise Lemma 3.1 shows that we can reduce κ by rotating ba to bd or dc to db. (Note
that both inequalities are strict because xa + xb /= 0 and xc + xd /= 0 by Lemma 3.4.) But then,
in view of the colouring, we have

(|xd | − |xa|)(|xa| + |xd | − 2|xb|) > 0 and (|xc| − |xb|)(2|xd | − |xb| − |xc|) > 0.

Without loss of generality, we may assume that |xa| � |xc|. But then |xd | > |xa|, and the first of
the above inequalities yields |xb| < 1

2 (|xa| + |xd |). Hence |xb| < |xd |, and also 2|xd | − |xb| −
|xc| > 0. Now the second inequality yields |xc| > |xb|, and we have |xa| < |xb| < |xc| < |xd |.
Case (ii): b and d are in the same colour class. As in case (i) we have

(xc − xa)(2xb + xa + xc) > 0 and (xa − xc)(2xd + xa + xc) > 0

for otherwise κ can be reduced by rotating ba to bc or dc to da. But then (2xb + xa + xc)(2xd +
xa + xc) < 0. In view of the colouring we deduce that

(2|xb| − |xa| − |xc|)(2|xd | − |xa| − |xc|) < 0.

Without loss of generality, we may assume that |xb| � |xd |. Then we have 2|xb| − |xa| −
|xc| < 0, and 2|xd | − |xa| − |xc| > 0. Hence |xb| < 1

2 (|xa| + |xc|). Next, |xa| < |xc| (for oth-
erwise, |xb| < |xa|, a contradiction), and consequently, |xb| < |xc|. Thus again we have |xa| <

|xb| < |xc| < |xd |. This completes the proof. �

4. The structure of the extremal unicyclic graph

We retain the notation of the previous section, and we first prove the following crucial restriction
on the girth of Ĝ:

Lemma 4.1. The girth of Ĝ is 3.

Proof. By way of contradiction, suppose that g � 5. Let u and v be the vertices of C adjacent to
p and q, respectively. Then

(xv − xu)(2xp + xu + xv) > 0

for otherwise, by Lemma 3.1, we can reduce κ by rotating pu to pv. Similarly

(xu − xv)(2xq + xu + xv) > 0

for otherwise we can reduce κ by rotating qv to qu. (Note that by Lemma 3.3, |xp| /= |xu| and
|xq | /= |xv|.) Hence 2xp + xu + xv and 2xq + xu + xv are of opposite sign. Since xp � xq , it
follows that 2xq + xu + xv > 0, or equivalently (since u and v are white vertices) that xq >
1
2 (|xu| + |xv|) � min{|xu|, |xv|}, a contradiction to Lemma 3.3. This completes the proof. �

By Lemma 4.1, C is a triangle, and in what follows, r denotes its third vertex. We show next
that no (non-trivial) tree is attached to C at p.
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Lemma 4.2. The vertex p has degree 2.

Proof. We note first that we cannot have both dp > 2 and dq > 2. For otherwise there exists
a vertex u outside C adjacent to p, and a vertex v outside C adjacent to q. Then we obtain a
contradiction exactly as in the proof of Lemma 4.1.

To prove that dp = 2, assume to the contrary that dp > 2. Then dq = 2 and the eigenvalue
equations applied at vertices p and q read:

κxp = dpxp + xq + xr +
∑′

xw and κxq = 2xq + xp + xr ,

where
∑′ denotes the sum over all neighbours w of p other than q and r . Thus κ(xp − xq) =

(xp − xq) + (dp − 2)xp +∑′
xw. Since xw � 0 and |xw| > xp for all w /= q, r , we find that

(dp − 2)xp +∑′
xw = (dp − 2)|xp| −∑′ |xw| < 0. But then (1 − κ)(xq − xp) < 0, and we

have xp > xq , a contradiction. This completes the proof. �

We shall see later that also dq = 2. First we show how Lemma 3.5 helps us to prune the trees Ti .

Lemma 4.3. For each i, Ti consists of a path, with ri as an endvertex, and possibly some pendant
edges attached at vertices of this path.

Proof. Let w be a vertex of Ti at maximal distance m from the root ri , and let v be the unique
neighbour of w. We may assume that m � 2. Let P1 = u0u1 · · · um−1um be the path between
ri(= u0) and w(= um). Note that all neighbours of v(= um−1) other than um−2 are pendant
vertices. Consider now a vertex uk with k � m − 2. Suppose that P2 = v0v1v2 is a path in Ti

starting at v0 = uk , with v1 and v2 not belonging to P1. To apply Lemma 3.5, consider the
edges ukuk+1, uk+1uk+2 in P1, and v0v1, v1v2 in P2, together with the corresponding intervals
Ii = [|xuk+i

|, |xuk+i+1 |] (i = 0, 1), and Jj = [|xvj
|, |xvj+1 |] (j = 0, 1). By Lemma 3.5, we have

I0 ∩ J1 = ∅, whence uk+1 < v1; and I1 ∩ J0 = ∅, whence v1 < uk+1, a contradiction. We con-
clude that no path of length greater than one is attached at uk . It follows that Ti has the form
described. �

We now focus our attention on the vertex q.

Lemma 4.4. In the tree attached at q any vertex other than q is adjacent to q.

Proof. We note first that dr > 2. Otherwise, the eigenvalue equations at p and r yield

κxp = 2xp + xq + xr and κxr = 2xr + xp + xq,

whence κ = 1, a contradiction. Hence r has a neighbour r ′ not on C. Now suppose by way of
contradiction that q ′ and q ′′ are two vertices not on C with q ′ and q ′′ at distance one and two
from q, respectively. Consider the paths qrr ′ and qq ′q ′′. With these paths in the role of P1 and
P2 from the proof of Lemma 4.3, we obtain the same contradiction as there. This completes the
proof. �

We are now ready to prove that dq = 2, thereby proving that only the tree attached at r is
non-trivial.

Lemma 4.5. The vertex q has degree 2.
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Proof. Suppose by way of contradiction that q has a neighbour u not on C, and let v be a
neighbour of r not on C. (Recall that dr > 2, as we saw in the previous proof.) By Lemma 4.4,
u is an endvertex and so the eigenvalue equations at u and v yield:

κxu = xu + xq and κxv = dvxv +
∑
w∼v

xw.

In view of the colouring, we deduce that

xq = (1 − κ)|xu| and (dv − κ)|xv| =
∑
w∼v

|xw|.

From the latter equation we find that (1 − κ)|xv| > |xr |, since |xw| > |xv| for all w /= r (by
Lemma 3.4). Hence (1 − κ)|xv| > |xr | > xq = (1 − κ)|xu|, which in turn yields |xv| > |xu|.

Now (xu − xr)(2xv + xu + xr) > 0 by Lemma 3.1, for otherwise we can reduce κ by rotating
vr to vu. In view of the colouring, we have (xu − xr)(2|xv| − |xr | − |xu|) > 0. Since the second
factor is positive, we have xu > xr . Again, (xu − xr)(2xp + xu + xr) > 0, for otherwise we
can reduce κ by rotating pr to pu. We conclude that 2xp + xu + xr > 0, equivalently 2xp >

|xr | + |xu|, a contradiction to Lemma 3.3. This completes the proof. �

We shall prove several results based on the comparison of characteristic polynomials, which
will enable us to complete the proof of our main result. Recall that, by Eq. (2), for any unicyclic
graph G we have φ(x, L(G)) = ξ(x + 2, G), and so λ(L(G)) = κ(G) − 2, a fact used implicitly
below. We shall also need the following observation.

Lemma 4.6. Let G be a connected graph with an odd-unicyclic subgraph H. If λ(L(G)) =
λ(L(H)) then G has a Q-eigenvector (z1, . . . , zn)

� corresponding to κ(G) such that zu + zv = 0
for all edges uv of G not in H.

Proof. Let y be a unit eigenvector of L(H) corresponding to λ(L(H)). Then

λ(L(H)) = y�A(L(H))y =
(

y
0

)�
A(L(G))

(
y
0

)
� λ(L(G)).

Since λ(L(G)) = λ(L(H)),
(

y
0

)
is an eigenvector of L(G) corresponding to λ(L(G)). Now G is

odd-unicyclic [2, Theorem 5.2.2(i)] and so the map v �→ R�v is an isomorphism from the eigen-

space EQ(κ(G)) to the eigenspace EA(L(G))(λ(L(G))) (cf. [2, Lemma 2.2.3]). Let
(

y
0

)
= R�z.

Then z is a Q-eigenvector (z1, . . . , zn)
� of G corresponding to κ(G) such that zu + zv = 0 for

all edges uv of G not in H . �

We introduce some further notation concerning Ĝ. Let T ∼ (= Tr) be the tree attached to C

at r , let u be a vertex of T other than r , and let w be the penultimate vertex of the r-u path in T .
We write T (u) for the component of T − wu containing u.

Lemma 4.7. The tree T has no vertex u( /= r) such that du > 2 and T (u) = K1,h (h � 2).

Proof. Suppose by way of contradiction that Ĝ = HwuS, where H is odd-unicyclic and S is
a star K1,h (h � 2) with central vertex u. Let v be an endvertex of S, and let G∗ be the graph
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obtained from Ĝ by rotating wu to wv. Let

�(x) = φ(x, L(Ĝ)) − φ(x, L(G∗)).
By Corollary 2.3 we have

�(x) = φ(x, L(H))(φ(x, Kh+1) − φ(x, Kh · K2)).

Using Theorem 2.2 to calculate φ(x, Ks · K2), we find that

�(x) = −(h − 1)(x + 1)h−2(x + 2)φ(x, L(H)).

It follows that (−1)n�(x) > 0 for x ∈ (−2, λ(L(H)). By the Interlacing Theorem, we have
λ(L(Ĝ) � λ(L(H)) and λ(L(G∗)) � λ(L(H)). It follows that λ(L(G∗)) � λ(L(Ĝ)), and so
κ(G∗) � κ(Ĝ). By the minimality of κ(Ĝ), we have κ(G∗) = κ(Ĝ) = κ , and then κ = κ(L(H)).
Hence λ(L(Ĝ)) = λ(L(H)). By Lemma 4.6, Ĝ has a Q-eigenvector z = (z1, . . . , zn)

� corre-
sponding to κ such that zu + zv = 0. Hence |zu| = |zv|. Now we may take x to be constructed
from z as in Lemma 3.2, and then |xu| = |xv|, contradicting Lemma 3.4. This completes the
proof. �

A single comet with head u and tail v consists of a u − v path of length � 2 together with at
least one pendant edge at u. Note that the definition embraces paths of length > 2. We refine the
argument of Lemma 4.7 to prove:

Lemma 4.8. The tree T has no vertex u ( /= r) such that du > 2 and T (u) is a single comet with
head u.

Proof. Suppose by way of contradiction that Ĝ = HwuS, where H is odd-unicyclic and S is a
comet with head u. Let v be the tail of S, and let G∗ be the graph obtained from Ĝ by rotating
wu to wv. Let

�(x) = φ(x, L(Ĝ)) − φ(x, L(G∗)).
By Corollary 2.3 we have

�(x) = φ(x, L(H))(φ(x, L(Su)) − φ(x, L(Sv))).

Let du = h and d(u, v) = m. Note that Su (Sv) can be constructed from disjoint graphs Pm and
K1,h by adding an edge between an endvertex of Pm and the central vertex (respectively, a pendant
vertex) of K1,h. Applying Corollary 2.3 again, we have

φ(x, L(Su)) − φ(x, L(Sv)) = φ(x, Pm−1)(φ(x, Kh+1) − φ(x, Kh · K2))

and so

�(x) = −(h − 1)(x + 1)h−2(x + 2)φ(x, Pm−1)φ(x, L(H)).

Hence (−1)n�(x) > 0 when −2 < x < λ′, where λ′ = min{λ(Pm−1), λ(L(H))}. By the Inter-
lacing Theorem, λ(Ĝ) � λ′ and λ(G∗) � λ′, and so λ(G∗) � λ(Ĝ). It follows that λ(L(G∗)) �
λ(L(Ĝ)), and so κ(G∗) � κ(Ĝ). By the minimality of κ(Ĝ), we have κ(G∗) = κ(Ĝ) = κ , and
we obtain a contradiction as in Lemma 4.7. This completes the proof. �

Using the last two lemmas we now have:

Proposition 4.9. The tree T consists of a path (with r as an endvertex) and possibly some pendant
edges at r.
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Proof. Suppose that T has a vertex u /= r of degree > 2. Let u be such a vertex for which d(r, u)

is maximal, and consider the bridge wu, where w is the penultimate vertex on the path from r to
u. Then the graph T (u) is either a star or a comet. These possibilities are excluded by Lemmas
4.7 and 4.8, and so the result follows from Lemma 4.3. �

It follows that if dr > 3 then T is either a star with centre r or a single comet with head r , and
it remains to eliminate these possibilities.

Proposition 4.10. The vertex r has degree 3.

Proof. For h � 0 and k � 1, let Gh,k be the graph obtained from the triangle pqr by adding h

pendant edges at r and a pendant path of length k with endvertex r . Let G(h, k) = L(Gh,k), of
order n = h + k + 3; and for h � 1 define

�(x) = φ(x, G(h, k)) − φ(x, G(h − 1, k + 1)).

By Corollary 2.3 we have

�(x) = φ(x, Pk−1)(φ(x, G(h, 1)) − φ(x, G(h − 1, 2)),

where φ(x, Pk−1) is defined as 1 when k = 1.
Now G(h, 1), of order h + 4, has a clique of order h + 3; by the Interlacing Theorem, −1 is an

eigenvalue of G(h, 1) of multiplicity � h + 1. But also G(h, 1) has a divisor of order 3 without
−1 as an eigenvalue, and we find

φ(x, G(h, 1)) = (x + 1)h+1(x3 − (h + 1)x2 − (p + 4)x + 2h).

Similarly, considering a divisor of order 5 in G(h − 1, 2), we have (for h � 1):

φ(x, G(h − 1, 2)) = (x + 1)h−1(x5 − (h − 1)x4 − 2(h + 2)x3

+2(h − 3)x2 + 3hx − 2(h − 2)).

It follows that (for h � 1):

�(x) = (x + 1)h−1φ(x, Pk−1)(−(h + 1)x3 − 3(h + 1)x2 − 4x + 4(h − 1)).

Thus

�(x) = −(h + 1)(x + 1)h−1φ(x, Pk−1)(x − x1)(x − x2)(x + 2),

where

x1,2 = 1

2

(
−1 ±

√
9 − 16

h + 1

)
.

Hence (−1)n�(x) > 0 when −2 < x < M , where M = min{x2, −2 cos π
k
}.

Now suppose by way of contradiction that dr > 3, so that Ĝ = Gh,k for some h � 1. We have
λ(L(Ĝ)) � λ(L(E3,h+k)) � −2 cos π

h+k+3 , and so clearly λ(L(Ĝ)) < −2 cos π
k

. Also

−2 cos
π

h + k + 3
� −2 cos

π

h + 4
< −2

(
1 − π2

2(h + 4)2

)
< x2

and so λ(L(Ĝ)) < M . We conclude that λ(G(h − 1, k + 1) < λ(L(Ĝ)), and hence that
κ(Gh−1,k+1) < κ(Ĝ), a contradiction. Thus dr = 3 as required. �
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Proposition 4.10 is the final step needed to confirm the original conjecture. Moreover, we can
now prove our main result:

Theorem 4.11. If G is a connected non-bipartite graph on n vertices whose least Q-eigenvalue
is minimal, then G = E3,n−3.

Proof. It remains to show that Ĝ (= E3,n−3) is the only connected non-bipartite graph G on
n vertices for which κ(G) = κ(Ĝ). Otherwise, some such graph G can be obtained from Ĝ by
adding edges (see Section 2), and by interlacing, κ(Ĝ + uv) = κ(Ĝ) for any edge uv of G not
in Ĝ. It suffices to derive a contradiction when G = Ĝ + uv. In this situation, let Q̂, Q be the
signless Laplacians of Ĝ, G respectively, and let (y1, . . . , yn)

� be a unit Q-eigenvector y of G

corresponding to κ(G). Then

κ(G) = y�Qy = y�Q̂y + y2
u + y2

v + 2yuyv � κ(Ĝ) + (yu + yv)
2 � κ(Ĝ).

Since κ(G) = κ(Ĝ), we conclude that yu + yv = 0 and y is a Q-eigenvector of Ĝ corresponding
to κ(Ĝ). In particular, |yu| = |yv|. We may take x to be constructed from y as in the proof of
Lemma 3.2, so that |xu| = |xv|. By Lemma 3.4, u and v cannot both lie on the path T , and so
without loss of generality we may assume that u is a vertex of T , while v = q. Now we have a
contradiction to Lemma 3.3, and the proof is complete. �

Finally, we note that our arguments show that, for an odd-unicyclic graph U with n vertices,
we have λ(L(U)) � λ(L(E3,n−3)), with equality if and only if U = E3,n−3.
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