
Linear Algebra and its Applications 429 (2008) 234–241
www.elsevier.com/locate/laa

Graphs for which the least eigenvalue is minimal, I�

Francis K. Bell a,1, Dragoš Cvetković b, Peter Rowlinson a,
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a Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA,
Scotland, United Kingdom

b Department of Mathematics, Faculty of Electrical Engineering, University of Belgrade, P.O. Box 35-54,
11120 Belgrade, Serbia

c Mathematical Institute SANU, Kneza Mihaila 36, 11001 Belgrade, Serbia

Received 6 August 2007; accepted 14 February 2008
Available online 21 April 2008

Submitted by R.A. Brualdi

Dedicated to Horst Sachs on his 80th birthday.

Abstract

Let G be a connected graph whose least eigenvalue λ(G) is minimal among the connected graphs of
prescribed order and size. We show first that either G is complete or λ(G) is a simple eigenvalue. In the
latter case, the sign pattern of a corresponding eigenvector determines a partition of the vertex set, and we
study the structure of G in terms of this partition. We find that G is either bipartite or the join of two graphs
of a simple form.
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1. Introduction

Let G = (VG, EG) be a simple graph, with vertex set VG and edge set EG. Its order is |VG|,
denoted by n, and its size is |EG|, denoted by m. We write u ∼ v to indicate that vertices u and v

are adjacent, and we write AG for the (0, 1)-adjacency matrix of G. The zeros of det(xI − AG)

are called the eigenvalues of G; recall that they are real since AG is symmetric. We write λ(G)

for the least eigenvalue of G.
There are many results in the literature concerning the largest eigenvalue (spectral radius

or index) of simple graphs; see, e.g. [7] or [6]. Much less is known about the least eigen-
value. Recall first that the least eigenvalue of any graph is non-positive. It is equal to zero
only for totally disconnected graphs. Otherwise, for graphs with at least one edge, it is less
than or equal to −1 (by the Interlacing Theorem – see [4, p. 19]); it is equal to −1 if each
component is a complete graph. For all other graphs it is less than or equal to −√

2, the least
eigenvalue of K1,2 (again by the Interlacing Theorem). Graphs with least eigenvalue not less
than −2 are studied extensively in the literature (see [8] for details). In this paper we study
connected graphs whose least eigenvalue is minimal among graphs of prescribed order and
size.

If we drop the requirement of connectedness, then the minimal least eigenvalue is attained by
a graph with at most one non-trivial component (and our results apply to this component). To
see this, note first that since the spectrum of a disconnected graph is the union of spectra of its
components, we know that the least eigenvalue of a disconnected graph is the least eigenvalue of
one of these components. Secondly, by the Interlacing Theorem, we have

λ(G · H) � min{λ(G), λ(H)} = λ(G ∪ H); (1)

here G · H denotes any coalescence of the graphs G and H [4, p. 158], and G ∪ H denotes
the disjoint union of G and H . Therefore, if G is a disconnected graph with at least two non-
trivial components, say G1 and G2, then a graph G′ obtained from G by replacing G1 ∪ G2
with (G1 · G2) ∪ K1 is such that λ(G′) � λ(G). By extending this argument to the remaining
non-trivial components we obtain a graph (of the same order and size, with just one non-trivial
component) whose least eigenvalue cannot be larger than the least eigenvalue of G.

To make our statements more precise, let G(n, m) be the set of graphs of order n and size m,
and define

f (n, m) = min{λ(G) : G ∈ G(n, m)},
g(n, m) = min{λ(G) : G ∈ G(n, m) and G is connected}.

Then we have:

Proposition 1.1. With the notation above, f (n, m) =
min{g(k, m) : k � n and G(k, m) contains at least one connected graph}.

Example 1.2. From [3,4,5] we see that f (7, 9)=λ(K3,3 ∪ K1)=−3, while g(7, 9) ≈ −2.92081.
In view of Proposition 1.1 we shall be able to restrict our investigation to connected graphs.

However, the scope of k in the formula of Proposition 1.1 can be further reduced, as we shall see
in a further paper.

For graphs of given order, we have the following result of Constantine [2].
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Theorem 1.3. If G is a graph of order n then

λ(G) � −
√⌊n

2

⌋⌈n

2

⌉
,

with equality if and only if G = K	 n
2 
,� n

2 �.

Another relevant result appeared in [15]:

λ(G) � −√
m,

where m is the size of the graph G.
These results were improved by Favaron et al. [10]:

λ(G) � −√
MaxCut(G),

where MaxCut(G) is the size of a maximal bipartite subgraph of G.
For any non-complete connected graph G of order n � 4 we have the bounds

−n

2
� λ(G) < −1

2

{
1 +

√
1 + 4

n − 3

n − 1

}
.

The lower bound follows from Theorem 1.3, and the upper bound is due to Yong [17]. Note

also that as n tends to +∞, the upper bound tends to −
√

5+1
2 . This is the largest limit point for the

least eigenvalue (see [12]); the second largest limit point is −√
3. The families of graphs having

these two numbers as limit points for the least eigenvalue are characterized in [9].
We mention also an earlier result of Hoffman [11]:

λ(G) � −ρ(G)

χ(G) − 1
,

where ρ(G) is the index of G and χ(G) is the chromatic number of G.
For Kr+1-free graphs G, of order n and size m, the upper bound

λ(G) < −2

r

(
2m

n2

)r

n

is established in [14].
Some lower bounds for graphs of fixed order and size also appear in the literature, for exam-

ple in respect of planar graphs, or more generally in respect of graphs having prescribed Euler
characteristic (see [13]).

We focus our attention on the structure of a graph G whose least eigenvalue is minimal among
the connected graphs with prescribed order n and size m. In Section 2 we give some preliminary
results, using Rayleigh quotients as a tool. In Section 3, we show that the least eigenvalue is

simple when m <
(

n

2

)
, and show that in this case G is either bipartite or the join of two graphs of

a simple form.

2. Preliminaries

For any unit vector x = (x1, x2, . . . , xn)
T, we have λ(G) � xTAGx, with equality if and only

if x is an eigenvector of AG corresponding to λ(G) (see [7, Section 3.1]). Thus

λ(G) = min||x||=1
xTAGx = min 2�uv∈EG

xuxv. (2)
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In what follows we assume that x is a unit eigenvector of AG corresponding to λ(G). Let G′
be a graph obtained from G by relocating an edge, and let AG′ be its adjacency matrix. Then from
(2) we obtain:

λ(G′) − λ(G) = min||y||=1
yTAG′y − xTAGx � xT(AG′ − AG)x. (3)

Lemma 2.1. Let G′ be the graph obtained from the graph G by rotating the edge rs (around r)

to the non-edge position rt.

Then

(i) λ(G′) < λ(G) if xr < 0 and xs � xt , or xr = 0 and xs /= xt , or xr > 0 and xs � xt ;
(ii) λ(G′) � λ(G) if xr = 0 and xs = xt .

Proof. From (3) we have

λ(G′) − λ(G) � 2xr(xt − xs). (4)

In considering the relation (4), we distinguish two cases.
Case xr = 0. Then λ(G′) � λ(G). If xs /= xt then λ(G′) < λ(G). For otherwise, if λ =

λ(G′) = λ(G), then x must be an eigenvector of G′ corresponding to its least eigenvalue (see (3)).
Therefore, in G′, we must have λxr = ∑

v∼r xv; but this cannot be the case when xs /= xt . (Note
that if xs = xt then x as an eigenvector of G′ corresponding to λ(G), but λ(G) is not necessarily
the least eigenvalue of G′.)

Case xr /= 0. Without loss of generality, xr > 0 (for otherwise, we may replace x by −x). If
xt < xs then it follows at once from (4) that λ(G′) < λ(G). Assume next that xt = xs , so that
certainly λ(G′) � λ(G). If λ = λ(G′) = λ(G) then, as above, x must be an eigenvector of G′
corresponding to λ. This is impossible since, in G′, we have λxu /= ∑

v∼u xv for u equal to s

(or t).
This completes the proof. �

Lemma 2.2. Let G′ be the graph obtained from the graph G by relocating the edge ab to the
non-edge position cd, where {a, b} ∩ {c, d} = ∅. Then

(i) λ(G′) < λ(G) if xcxd < xaxb;
(ii) λ(G′) � λ(G) if xcxd = xaxb, and in this situation, λ(G′) = λ(G) only if xa = xb = xc =

xd = 0.

Proof. From (3) we have

λ(G′) − λ(G) � 2(xcxd − xaxb). (5)

It follows immediately that λ(G′) < λ(G) if xcxd < xaxb. Suppose that xcxd = xaxb. Then
λ(G′) � λ(G) from (5), and (as before) if λ = λ(G′) = λ(G) then x is an eigenvector of G′
corresponding to λ. Now all the eigenvalue equations λxu = ∑

v∼u xv are satisfied in G′ only
when xa, xb, xc and xd are all equal to 0.

This completes the proof. �

Remark. In Lemmas 2.1(ii) and 2.2(ii), we do not know whether strict inequality (λ(G′) < λ(G))
can occur.
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3. Structural considerations

Throughout this section, G denotes a non-trivial connected graph of order n and size m whose
least eigenvalue is minimal. We let (x1, x2, . . . , xn)

T be an eigenvector x corresponding to λ(G),
and we consider the partition of VG induced by the sign pattern of the entries of x. Accordingly,
we define

V −(x) = {u ∈ VG : xu < 0}, the set of negative vertices with respect to x;
V 0(x) = {u ∈ VG : xu = 0}, the set of zero vertices with respect to x;
V +(x) = {u ∈ VG : xu > 0}, the set of positive vertices with respect to x.

We first prove:

Lemma 3.1. If V 0(x) /= ∅ then deg(u) = n − 1 for any vertex u ∈ V 0(x).

Proof. Assume the contrary, and let r be a vertex in V 0(x) such that deg(r) < n − 1. Let Sr =
{s ∈ VG : s ∼ r}, and Tr = {t ∈ VG : t �∼ r, t /= r}. Note that Sr /= ∅ because G is connected and
non-trivial. Now choose a vertex s from Sr and a vertex t from Tr . Let G′ be the graph obtained
from G by rotating the edge rs around r to rt .

Assume first that G′ is connected for any choice of s and t . If xs /= xt for some s and t

then λ(G′) < λ(G) by Lemma 2.1(i). This contradicts the choice of G, and so xs = xt for any
choice of s and t . But then xv = c for any v /= r , where c is a real constant. Now λ(G)xr =∑

v∈Sr
xv = deg(r)c. Since deg(r) /= 0 and xr = 0, we conclude that c = 0 and hence x = 0, a

contradiction.
Now suppose that, for some choice of s and t , the graph G′ is disconnected. Then rs must

be a bridge in G, and s, t lie in different components Gs, Gt of G′, respectively. Let t ′ be a
vertex (if any) in Gs different from s. Note that t ′ ∈ Tr , for otherwise there exists an r–s path
in G avoiding the bridge rs. If xs /= xt ′ , then we obtain a contradiction by applying the above
argument to t ′ instead of t (note that the corresponding graph G′ is now connected). Consequently,
xu = xs for every u ∈ VGs . By the eigenvalue equation for the vertex s, applied in G, we obtain
λ(G)xs = (deg(s) − 1)xs , whence xs = 0. Therefore, Gt contains a vertex u such that xu /= 0.
Now the graph G

′′
obtained from G by rotating sr to su is connected, and λ(G

′′
) < λ(G) by

Lemma 2.1(i).
This final contradiction completes the proof. �

Theorem 3.2. Let G be a connected graph whose least eigenvalue λ(G) is minimal among the

connected graphs of order n and size m <

(
n

2

)
. Then λ(G) is a simple eigenvalue of G.

Proof. Suppose that λ(G) has multiplicity at least two. Then, for any vertex u ∈ VG, there exists
an eigenvector x whose uth entry is equal to zero (so that u ∈ V 0(x) and V 0(x) /= ∅). Since
G is not complete, we may choose u to be a vertex such that deg(u) < n − 1. Now we have a
contradiction to Lemma 3.1, and the proof follows. �

As an immediate consequence of Theorem 3.2 we see that if G is not complete then the partition
of VG induced by the sign pattern of any eigenvector corresponding to λ(G) is unique (note that
only the role of negative and positive vertices can be exchanged). Accordingly, in what follows

we assume that m <
(

n

2

)
, and write VG = V − ∪ V 0 ∪ V +.
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Given U ⊆ VG, denote by 〈U〉 the subgraph of G induced by the vertices in U . We write G∇H

for the join (or complete product) of two graphs [4, p. 54]. Using Lemma 3.1 we can now describe
the general structure of G: If V 0 /= ∅ then K = 〈V 0〉 is a complete graph and G = K∇H , where
H = 〈V − ∪ V +〉.

In what follows we focus our attention on the graph H , and we write H− = 〈V −〉, H+ = 〈V +〉.
These subgraphs of H are non-empty since the eigenspaces of λ(G) and ρ(G) are orthogonal and
the latter is spanned by a positive eigenvector; in contrast, V 0 can be an empty set.

A graph G is called a nested split graph2 if its vertices can be ordered so that jq ∈ EG implies
ip ∈ EG whenever i � j and p � q.

Proposition 3.3. Both H+ and H− are nested split graphs.

Proof. Let V + = {1, 2, . . . , k} where x1 � x2 � · · · � xk . We shall prove that jq ∈ EG implies
that ip ∈ EG whenever 1 � i � j � k and 1 � p � q � k. Asume for a contradiction that

1 � i � j � k, 1 � p � q � k, jq ∈ EG, ip /∈ EG.

Delete jq and add ip, to obtain the graph G′. Now

0 � λ(G′) − λ(G) = 2(xi − xj )xp + 2(xp − xq)xj � 0,

and so xi = xj , xp = xq . Moreover x is an eigenvector corresponding to λ(G′) = λ(G). This is
a contradiction, since q has lost a neighbour from V +. Hence H+ is a nested split graph. In a
similar way we can derive the same conclusion for H−. �

Lemma 3.4. If V + or V − induces an edge ij, then pq ∈ EG for all p ∈ V −, q ∈ V +.

Proof. Otherwise we can remove ij and add an edge between V − and V + to reduce
2�xuxv . �

Accordingly, we arrive at the following conclusion.

Proposition 3.5. If at least one of the graphs H− or H+ is not a totally disconnected graph then
H = H−∇H+; otherwise, H is a bipartite graph (not necessarily a complete bipartite graph).

In addition we have:

Lemma 3.6. If V 0 /= ∅ then H = H−∇H+.

Proof. If H /= H−∇H+ then we obtain a contradiction by applying Lemma 2.2(i) to four ver-
tices chosen as follows. First, let c and d be two non-adjacent vertices taken from V − and V +,
respectively; secondly, choose a from V 0 and b from V − ∪ V +. By Lemma 3.1, a is adjacent to b,
and ab is not a bridge. Moreover, xcxd < xaxb. If we replace the edge ab with cd then we obtain
a connected graph G′ for which λ(G′) < λ(G) by Lemma 2.2(i). This contradicts the minimality
of λ(G), and so every vertex of H− is adjacent to every vertex of H+.

This completes the proof. �

2 This term comes from [1] with an equivalent definition. The present definition is used in [7], where the graphs in
question were called graphs with a stepwise adjacency matrix.
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It follows from Lemmas 3.1 and 3.6 that when V 0 /= ∅, G has the form K∇L, where K and L

are nested split graphs, the vertices of K are non-negative, and those of L are non-positive. Here
VK = V + ∪ X and VL = V − ∪ Y , where X ∪ Y is an arbitrary bipartition of V0. Combining this
observation with Proposition 3.5, we can state our main structural result as follows:

Theorem 3.7. Let G be a connected graph whose least eigenvalue λ(G) is minimal among the

connected graphs of order n and size m

(
0 < m <

(
n

2

))
. Then G is either

(i) a bipartite graph, or
(ii) a join of two nested split graphs (not both totally disconnected).

Remark. In case (i) of Theorem 3.7, the vertices of G from one colour class are negative, while
those from the other are positive. The graphs which arise in this case will be discussed in part II
of this paper.

In case (ii) of Theorem 3.7, it remains to determine the graph(s) with minimal least eigenvalue
λ among the non-bipartite graphs which are the join of two nested split graphs. As a possible
pointer to the solution of this problem we discuss such graphs under the assumption that V0 /= ∅.
Then we may write

AG =
⎛
⎝J − I J J

J A J

J J B

⎞
⎠ , x =

⎛
⎝ 0

y
−z

⎞
⎠ ,

where J denotes an all-1 matrix of appropriate size, A = AH+ , B = AH− and all entries of y and
z are positive. From the relation AGx = λx we deduce:

Jy − J z = 0, Ay − J z = λy, Jy − Bz = −λz.

It follows that Jx = 0 (i.e. λ is a non-main eigenvalue of G) and

(J − I − A)y = (−1 − λ)y, (J − I − B)z = (−1 − λ)z.

Hence −1 − λ = ρ(H+) = ρ(H−), and this common index is maximal.

Now assume further that
(

n

2

)
− m is even, say

(
n

2

)
− m = 2h, and that n > 2d + 2, where

d is the largest integer such that
(

d

2

)
� h. Recall from [16] that there is a unique graph G(h)

with maximal index among the graphs with h edges and no isolated vertices: if
(

d

2

)
= h then

G(h) = Kd , and if
(

d

2

)
< h then G(h) is obtained from Kd by adding a vertex of degree h −

(
d

2

)
.

Note that both G(h) and its complement are nested split graphs.
We claim that G = N ∪ G(h) ∪ G(h), where N consists of the appropriate number of isolated

vertices (namely n − 2d or n − 2d − 2). Otherwise, we can reduce λ by replacing each of H+ and
H− in G with G(h), and adjusting the number of isolated vertices accordingly. To see this, suppose
that H+ has p edges and H− has q edges. Then p + q = 2h and without loss of generality, q � h.
Then we have

ρ(H−) � ρ(G(q)) � ρ(G(h)).

If ρ(H−) = ρ(G(h)) then q = h and H− = G(h); in this situation, p = h and similarly H+ =
G(h). This contradiction shows that our replacements result in a strict decrease in λ. We conclude
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that (under our assumptions) H+ = H− = G(h), a graph that consists of isolated vertices and at
most one star. �
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