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molecular/biochemical events 
that lead to excessive hepatic fat 
accumulation, and thus future time 
course studies are warranted. 

R Scott Rector1

Jamal A Ibdah1,2,3

1Division of Gastroenterology and 
Hepatology, 2Harry S. Truman 
Memorial Veterans Medical Center, 
and 3Department of Medical 
Pharmacology and Physiology, 
University of Missouri,Columbia, MO 
65212, USA.

References

Hannukainen JC, Nuutila P, Borra R, Kaprio 
J, Kujala UM, Janatuinen T, Heinonen 
OJ, Kapanen J, Viljanen T, Haaparanta 
M, Rönnemaa T, Parkkola R, Knuuti J & 
Kalliokoski KK (2007). Increased physical 
activity decreases hepatic free fatty acid 
uptake: a study in human monozygotic twins. 
J Physiol 578, 347–358.

Mokdad AH, Marks JS, Stroup DF & Gerberding 
JL (2004). Actual causes of death in the United 
States, 2000. JAMA 291, 1238–1245.

Perseghin G, Lattuada G, De Cobelli F, 
Ragogna F, Ntali G, Esposito A, Belloni E, Canu 
T, Terruzzi I, Scifo P, Del Maschio A & Luzi L 
(2007). Habitual physical activity is associated 
with intrahepatic fat content in humans. 
Diabetes Care 30, 683–688.

Rector RS, Thyfault JP, Laye MJ, Morris RT, 
Borengasser SJ, Uptergrove GM, Chakravarthy 
MV, Booth FW & Ibdah JA (2008a). Cessation 
of daily exercise dramatically alters precursors 
of hepatic steatosis in Otsuka Long-Evans 
Tokushima Fatty (OLETF) rats. J Physiol 586, 
4241–4249.

Rector RS, Thyfault JP, Morris RT, Laye MJ, 
Borengasser SJ, Booth FW & Ibdah JA (2008b). 
Daily exercise increases hepatic fatty acid 
oxidation and prevents steatosis in Otsuka 
Long-Evans Tokushima Fatty rats. Am J Physiol 
Gastrointest Liver Physiol 294, G619–G626.

Rector RS, Thyfault JP, Wei Y & Ibdah JA 
(2008c). Non-alcoholic fatty liver disease and 
the metabolic syndrome: An update. World J 
Gastroenterol 14, 185–192.

Shima K, Shi K, Sano T, Iwami T, Mizuno A & 
Noma Y (1993). Is exercise training effective 
in preventing diabetes mellitus in the Otsuka-
Long-Evans-Tokushima fatty rat, a model of 
spontaneous non-insulin-dependent diabetes 
mellitus? Metabolism 42, 971–977.

Shojaee-Moradie F, Baynes KC, Pentecost C, 
Bell JD, Thomas EL, Jackson NC, Stolinski M, 
Whyte M, Lovell D, Bowes SB, Gibney J, Jones 
RH & Umpleby AM (2007). Exercise training 
reduces fatty acid availability and improves 
the insulin sensitivity of glucose metabolism. 
Diabetologia 50, 404–413.

Statistical 
methodology and 
reporting – the 
case for confidence 
intervals
Jack just finished collecting some more data on 
the effects of rhubarb extract #654 (RE654) on 
the membrane potential of spinal neurones. 
He passed the new data over to Olivia who had 
already started up the statistics package on 
her computer. So far the results hadn’t quite 
reached statistical significance P < 0.05; adding 
the new data would hopefully change that – 
fingers crossed. Expectantly they both awaited 
the output of the t test. Yes! Significant! The 
P value was 0.033, that’s good enough. They 
quickly entered this last bit of data analysis into 
their now overdue manuscript: ‘…RE654 also 
depolarised the resting membrane potential, 
from –64.7±2.0 to −57.6±1.9 mV (P < 0.05, 
n = 20)’, and clicked the submit button to the 
online journal. Right, job done, off to the pub.

Despite the caricature, most people 
will identify with aspects of the 
above scenario. Some will also note 
statistical inadequacies. Recently 
I spent a couple of days reviewing 
the statistical methodology and 
reporting used by The Journal of 
Physiology research papers that 
appeared in the last four issues of 
2008. Among other things I looked 
at what statistical tests were used, 
how results were reported, paying 
particular attention to whether 
confidence intervals were used. I 
also noted whether the standard 
deviation (S.D.) or standard error 
(S.E.) was preferred, and whether 
which was used was clearly stated. 

As expected, the t test was the most 
popular test, being used in no fewer 
than 44 of the 60 papers. Last year, 
readers were treated to a fascinating 
history of this test (Brown, 2008). In 
doing a t test a statistical package 
typically churns out the means, each 
given with their standard error of the 
mean (S.E.M.) and S.D. Also given are 
the t value, sample size or degrees of 
freedom, and often the confidence 
interval. In reporting results, most 
research papers in my sample chose 
to give their calculated statistic (e.g. 
mean) ± some measure of variability. 
The large majority (46 of 58 papers 
which gave such measures) preferred 
to use the S.E., with only seven 
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papers using exclusively the S.D. In 
most papers, which one was used 
was clearly stated in the Methods 
section. However, in six papers it 
was unclear or one had to look in 
figure or table legends to find which 
was used. In a further five papers 
(9%) there was no mention of what 
measure of variability was used. One 
of these was an Open Access paper 
which gave 57 summary statistics 
using ± yet nowhere indicated what 
measure of variability (S.E. or S.D.) 
was used. My survey results for The 
Journal of Physiology were similar 
to those for another study which 
examined 88 research papers in 
the medical journal Infection and 
Immunity (Olsen, 2003). There, 12 
(14%) failed to identify the measure 
of variability. Why the sloppy 
reporting? Part of the reason may 
be that the difference between the 
S.E. and S.D. is not fully understood 
by researchers, and that these 
terms may be used interchangeably 
(Altman & Bland, 2005). Both S.D. 
and S.E. are measures of variability, 
and are related. The S.D. is an 
estimate of the variability of data 
points within a population, based 
upon a sample drawn from that 
population. In contrast, the S.E. 
is an estimate of the variability 
of a sample statistic (such as the 
mean) obtained by sampling from 
a population. Hence, the  S.E. is also 
a standard deviation – but of the 
sampling distribution. The fact that 
the S.D. and  S.E. are both standard 
deviations (but of different things) 
and are related, no doubt causes 
confusion. The persistence of the ± 
sign in papers is sometimes merely 
due to it being demanded by journal 
editors and reviewers. However, 
many journals, including the British 
Medical Journal, no longer allow 
the use of the ± sign, and request 

Peter 
Cahusac.  
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1Fisher’s paper is also of interest because it contains a polemic against the works of J. Neyman and E.S. Pearson who suggested the use of a fixed significance level 
of 0.05. Their proposals for Type II errors and confidence intervals were also attacked – but both these ideas are now accepted by mainstream statisticians.

2There is a distinction between these terms. The size of effect is given in the original units of measure (e.g. mmHg) and may be, for example, a mean difference.  
The effect size is a dimensionless but standardized quantity, examples being Cohen’s d (the mean difference divided by σ), a correlation, or an odds ratio 
(Rosenthal et al. 2000).
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the ‘95% confidence’ stated above). 
Such claims commit the so-called 
inverse probability error (Fisher, 
1947; Cohen, 1994), attributing a 
Bayesian-like probability to whether 
hypotheses are true or not (NHST 
only gives us P(Data|Hypothesis), 
while Bayes’ theorem gives 
P(Hypothesis|Data)). One difficulty 
is that the null hypothesis is rarely 
true anyway (Chew, 1977; Cohen, 
1994). If you get enough data 
then you will almost always obtain 
a statistically significant result 
(P < 0.05 or P < 0.01 etc) – but the 
size of the effect may be extremely 
small and inconsequential, of little 
scientific interest. The statistical 
significance which we obtain from 
a NHST is routinely confused with 
the scientific importance and even 
the magnitude of the effect (size of 
the effect or effect size2). Often, in 
the Discussion section of a paper, 
much is made of the star-studded 
Results section (figures and tables 
emblazoned with *, **, ***). Then, 
sometimes it’s difficult to publish 
without a ‘P < 0.05’ appearing 
somewhere in the manuscript. 
However, relying on P values alone 
can be misleading, as can be seen 
in Table 1. If the size of the effect 
is so small as to be unimportant 
scientifically then its association 
with statistical significance (even 
P < 0.001) does not necessarily 
mean that the result is scientifically 
important. For example, not a week 
goes by without epidemiologists 
informing the public (exacerbated by 
media reporting (Blastland & Dilnot, 
2008)) that a dietary component 
is statistically associated with 
either benefit or harm – typically 
such studies involve 1000’s of 
participants, and we are rarely 
properly informed about the size of 
the effect. Conversely, when there 
is a large effect which fails to reach 
statistical significance, this is often 
reported as unimportant (Altman & 
Bland, 1995), and yet it may be very 
clear from a confidence interval that 
not enough data were collected. 

a misunderstanding of what a P 
value represents (but more on that 
in a moment). So what’s the fuss? 
Readers will justifiably wonder 
how a confidence interval can 
materially add to a reported mean, 
its standard error, sample size and 
P value. Where to begin? Well, 
the procedure of null hypothesis 
significance testing (NHST), which 
is how we normally decide whether 
an intervention has had an effect 
or not, is undeniably useful and 
prevents us from over-interpreting 
results. However, it has attracted 
a steady stream of criticism over 
the years (Cohen, 1994; Sterne & 
Smith, 2001), including comments 
from some very distinguished 
quarters (Cox, 1982). A couple of 
contributions to this literature make 
entertaining reading, particularly 
(Salsburg, 1985) ‘The Religion of 
Statistics as Practiced in Medical 
Journals’. Another (Gigerenzer, 
1993) (in jest) reduces statistical 
testing to a Freudian ritual. The P 
value that we obtain in a statistical 
test is the probability of obtaining 
data as extreme, or more extreme 
as our sample, assuming a true null 
hypothesis (typically this is that 
there is no effect). Although often 
misunderstood, even by leading 
textbooks (Bland & Altman, 1988), 
this P value is not the probability of 
the null hypothesis being true. Nor 
can we claim, should we for example 
obtain a statistically significant 
difference in means (P < 0.05), that 
there is a 95% chance that there is a 
difference between these means (or 

authors to clearly state whether the  
S.E. or S.D. is quoted.

In my survey I looked at how P values 
were reported. Giving the actual 
P values obtained by statistical 
tests is useful in that it indicates 
how significant the result is. Giving 
P = 0.048 or P = 0.052 indicates 
marginally significant and marginally 
non-significant results, respectively. 
Giving P = 0.002 and P = 0.65 
indicates highly statistically and 
clearly non-statistically significant 
results. Usually extremely small P 
values can be expressed as P < 0.001, 
even though a computer output 
gives 0.000. Communicating 
information via the P value was 
something that the statistician and 
biologist R. A. Fisher encouraged as 
“…in doing this we have a genuine 
measure of the confidence with 
which any particular opinion may be 
held, in view of our particular data” 
(Fisher, 1955)1. If values are reported 
merely qualitatively as P < 0.05 
or P > 0.05, then quantitative 
information from the P value is lost. 
Unfortunately, such reporting is 
common practice in The Journal of 
Physiology.

I was keen to determine how many 
papers reported 95% confidence 
intervals. Only 3 of the relevant 
58 papers did so. Incidentally, one 
paper (not one of the 3) stated in 
its Methods section: “Significance 
was defined by a P-value less than 
0.05 (95% confidence).” That “95% 
confidence” was not what I was 
looking for, and further implies 

Table 1. Using P values can be misleading when there is a small effect size and small 
P value, and when there is a large effect size and a large P value. Adapted from 
Rosenthal et al. (2000).

Effect size

Large Small

Statistical 
significance

Small P value 
< 0.05

No problem Mistaking statistical 
significance for 
scientific importance

Large P value 
> 0.05

Failure to detect 
a scientifically 
important effect

No problem
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really interested in and to which the 
P value refers (this style of reporting 
individual means ± S.E. is common in 
The Journal of Physiology papers). 

Let us return again to our opening 
scenario featuring Jack and Olivia, 
where Jack has just collected some 
more data. Strictly speaking, if they 
have already tested their data for an 
effect using a significance level of 
0.05 and it fails to reach significance 
then that’s it – however much more 
data they collect it is not possible to 
perform another significance test 
and claim a statistically significant 
effect (even if subsequently they 
obtain P < 0.000001). This is an 
issue about multiple testing and 
stopping rules. If Jack and Olivia had 
decided before collecting any data 
that they would periodically test for 
statistical significance, that would be 
fine, but they would need to adjust 
their significance level accordingly, 
for example using Bonferroni. So, 
if they had actually decided to test 
twice after collecting sets of data (as 
they actually did), then they would 
need to use 0.05/2 = 0.025 as their 
significance level, which with their P 
value of 0.033 would mean that they 
still could not claim a statistically 
significant result. It is a fact that, 
even if the null hypothesis is 
completely true, you are guaranteed 
to obtain a statistically significant 
result, at whatever level you choose, 

In the circumstances it would be 
premature to exclude D as a useful 
intervention. This result could 
represent that indicated at the 
bottom left cell in Table 1 (large P 
value and large effect size).

Typically, the 95% confidence 
interval is reported but others, 
including 90% and 99% intervals, 
are also used. Confidence intervals 
immediately indicate (i) statistical 
significance (Fig. 1A and B 
statistically significant), (ii) the size 
of the effect (B > D > A > C), (iii) the 
sensitivity of the study (A, B and C 
have enough power, D does not), 
(iv) the precision of the statistic 
(A and C have greater precision, 
their intervals are narrower, than B 
and D respectively). Providing the 
P value only gives us (i). Providing 
the mean ± S.E. gives us very 
limited information about (ii)–(iv). 
Although very rough 95% confidence 
intervals for mean differences 
may be mentally calculated quite 
quickly by the average reader of 
The Journal of Physiology, the same 
confidence interval calculations will 
probably not be so easy for other 
(e.g. non-parametric) statistics. It 
should be noted that the ± S.E. values 
given in the opening paragraph 
‘…–64.7±2.0 to −57.6±1.9 mV…’ 
cannot be used to calculate the 
confidence interval for the difference 
in means – which is what we are 

How can one see this from 
a confidence interval? As an 
example, consider the effects of 
four different interventions on 
the blood pressure of patients 
with hypertension, where the 
horizontal axis represents the mean 
difference from pre-intervention 
(see Fig. 1). We assume (for the sake 
of argument) that any intervention 
that reduces blood pressure by 5 
mmHg or more is worthwhile and 
clinically (or scientifically) important. 
In Fig. 1, 95% confidence intervals 
are plotted for each intervention. In 
each case, such an interval calculated 
from sample data will 95% of the 
time (in the long run) contain 
the population mean difference 
value for that intervention. Values 
bracketed within the interval are 
consistent with the sample mean 
difference, while those outside are 
not (P < 0.05). For interventions 
A and B, the midpoint (sample 
mean difference) in each interval 
is 6  S.E.s away from 0 mmHg, and 
they therefore have identical t and 
P values, and are clearly statistically 
significant (since these confidence 
intervals do not contain 0 mmHg). 
Intervention A, though statistically 
significant, is of little clinical 
(scientific) interest as its confidence 
interval lies close to 0, and does not 
contain or is not less than –5 mmHg. 
Intervention B is of much more 
interest as the confidence interval 
spans a range of values much lower 
than –5 mmHg (approx. –18 to 
–9 mmHg). For interventions C and 
D, the midpoint of each interval is 
situated only 1  S.E. away from 0, 
which gives them identical t and 
P values. Moreover their intervals 
span 0, so neither is statistically 
significant (i.e. each is P > 0.05). 
The interval in C does not include 
clinically important values (below 
–5 mmHg), and therefore should be 
of little further interest. The interval 
is narrow enough to indicate that 
we have collected enough data. 
In contrast, intervention D has 
a very wide interval that almost 
reaches to –14 mmHg. So although 
intervention D is not statistically 
significant (just as C) it is of much 
more interest, and indicates that 
we have not collected enough data. 

Figure 1. The results of 4 different interventions A – D on the blood pressure of 
patients with hypertension
The results from each intervention are plotted as 95% confidence intervals along 
the horizontal axis, in mmHg. For interventions A and B the midpoint (sample mean 
difference) in each interval is 6 S.E.s away from the 0 mmHg difference, and therefore 
have identical t and P values, and clearly statistically significant (actually P < 0.001). 
For interventions C and D, the midpoint of each interval is situated only 1 S.E. away 
from 0 mmHg, which gives them identical t and P values. Adapted from Reichardt & 
Gollob (1997).
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For some years now statisticians 
have been placing greater emphasis 
on reporting confidence intervals 
rather than just P values (Altman 
et al. 2000). Many medical journals 
(e.g. the British Medical Journal) 
insist on them – where appropriate. 
Only limited use is made of them in 
physiology, and the Instructions for 
Authors for The Journal of Physiology 
makes no mention of them. In a 
review of 370 papers published in 
journals under the auspices of the 
American Physiological Society in 
1996, only two papers reported 
confidence intervals (Curran-Everett 
et al. 1998). This review, which 
appeared in the Journal of Applied 
Physiology, highlighted inadequacies 
of statistical reporting and made 
a strong case for using confidence 
intervals, rather than just null 
hypothesis testing. Ten years on, the 
December 2008 issue of the same 
journal finds little improvement, 
with just 4/35 papers reporting 
confidence intervals (a proportion 
similar to my 3/58 for The Journal of 
Physiology). 

Why aren’t confidence intervals 
used more widely? Perhaps they are 
considered superfluous to a results 
summary (as I used to think). Maybe 
they are just not understood, and 
there is a failure to realise what 
information they carry. Sometimes 
they can be embarrassingly wide! 
Whatever the reason, I hope that 
they will be better appreciated and 
appear more often in future issues of 
The Journal of Physiology and related 
journals.

Peter Cahusac  
University of Stirling, Stirling, 
Scotland, UK.
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if you continue to add more data 
to existing data and repeatedly test 
for significance. Problems like this 
have prompted some to use the 
Likelihood approach (Edwards, 1992; 
Royall, 2004). 

Actually, confidence intervals can 
help us out here too. Continuing 
with the example illustrated in 
Fig. 1, and values given in mmHg. 
If we have collected some data and 
the 95% confidence interval for 
the difference in means includes 
both 0 and –5, then we know 
immediately that the study was 
not sensitive enough (i.e. power 
was too low, as seen in D). The  S.E. 
is too large. Typically this can be 
reduced by increasing the sample 
size, that shrinks the confidence 
interval, until it is acceptably small. 
How small? Well, a nice stopping 
rule is suggested by Armitage et 
al. (2002) (p. 615). We should 
continue collecting data until our 
95% confidence interval is just 
less than 5 units wide. In this way, 
if the interval includes 0 then it 
will exclude –5, and if it includes 
–5 then it will exclude 0. (If it just 
happens to fall in between 0 and –5 
then we would claim a statistically 
significant effect but it would not 
be scientifically important.) Note 
that we are using the width of 
the confidence interval, not the 
smallness of the P value, to decide 
whether we have enough data. This 
procedure can be elaborated. For 
example, if we were not interested 
in interventions that reduce blood 
pressure by up to 4 mmHg, but 
were interested in interventions 
that reduce pressure by at least 
10 mmHg, then we could continue 
collecting data until our 95% 
confidence interval was just less than 
6 units wide. Few researchers appear 
to be aware of this useful stopping 
rule that allows us to collect data 
until the required precision is 
obtained. It forces us to explicitly 
recognise a size of effect which we 
believe to be scientifically important, 
and has the surprising advantage 
that it does not fall foul of the loss 
of power due to multiple testing 
protocols (e.g. Bonferroni (Perneger, 
1998)). 
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